
Knowledge-based Analogical Reasoning in
Neuro-symbolic Latent Spaces
Vishwa Shah1, Aditya Sharma1, Gautam Shroff2, Lovekesh Vig2, Tirtharaj Dash1 and
Ashwin Srinivasan1

1APPCAIR, BITS Pilani, K.K. Birla Goa Campus
2TCS Research, New Delhi

Abstract
Analogical Reasoning problems pose unique challenges for both connectionist and symbolic AI systems
as these entail a carefully crafted solution combining background knowledge, deductive reasoning and
visual pattern recognition. While symbolic systems are designed to ingest explicit domain knowledge and
perform deductive reasoning, they are sensitive to noise and require inputs be mapped to a predetermined
set of symbolic features. Connectionist systems on the other hand are able to directly ingest rich input
spaces such as images, text or speech and can perform robust pattern recognition even with noisy inputs.
However connectionist models struggle to incorporate explicit domain knowledge and perform deductive
reasoning. In this paper, we propose a framework that combines the pattern recognition capabilities of
neural networks with symbolic reasoning and background knowledge for solving a class of Analogical
Reasoning problems where the set of example attributes and possible relations across them are known
apriori. We take inspiration from the ‘neural algorithmic reasoning’ approach [DeepMind 2020] and
exploit problem-specific background knowledge by (i) learning a distributed representation based on a
symbolic model of the current problem (ii) training neural-network transformations reflective of the
relations involved in the problem and finally (iii) training a neural network encoder from images to the
distributed representation in (i). These three elements enable us to perform search-based reasoning
using neural networks as elementary functions manipulating distributed representations. We test our
approach on visual analogy problems in RAVENs Progressive Matrices, and achieve accuracy competitive
with human performance and, in certain cases, superior to initial end-to-end neural-network based
approaches. While recent neural models trained at scale currently yield the overall SOTA, we submit that
our novel neuro-symbolic reasoning approach is a promising direction for this problem, and is arguably
more general, especially for problems where sufficient domain knowledge is available.

Keywords
neural reasoning, visual analogy, neuro-symbolic learning, RPMs

1. Introduction

Many symbolic reasoning algorithms can be viewed as searching for a solution in a space defined
by prior domain knowledge. Given sufficient domain knowledge represented in symbolic form,
‘difficult’ reasoning problems, such as analogical reasoning, can be ‘solved’ via exhaustive search,
even though they are challenging for the average human. However, such algorithms operate on
a symbolic space, whereas humans are easily able to consume rich data such as images or speech.
Neural networks on the other end are proficient in encoding high-dimensional continuous data

NeSy 2022, 16th International Workshop on Neural-Symbolic Learning and Reasoning, Cumberland Lodge, Windsor, UK
Envelope-Open f20180109@goa.bits-pilani.ac.in (V. Shah)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:f20180109@goa.bits-pilani.ac.in
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and are robust to noisy inputs, but struggle with deductive reasoning and absorbing explicit
domain knowledge. ‘Neural Algorithmic Reasoning’[1], presents an approach to jointly model
neural and symbolic learning, wherein rich inputs are encoded to a latent representation that
has been learned using from symbolic inputs. This design allows neural learners and algorithms
to complement each other’s weaknesses. Through this work, we aim to investigate a variation
of the neural algorithmic reasoning approach applied to analogical reasoning, using RAVENs
Progressive Matrices [2] problems as a test case.

Figure 1: RPM : Problem Matrix (Top), An-
swer Options (Bottom)

Our approach essentially exploits the domain
knowledge to train a suite of neural networks, one
for each known domain predicate. For RAVENs
problems, these predicates represent rules that
might apply to ordered sets (rows) of images in a
particular problem. Further, these neural pred-
icates are trained to operate on a special high-
dimensional representation space (‘symbolic latent
space’) that is derived, via self-supervised learning,
from the symbolic input space. Note that a purely
symbolic algorithm can consume symbolic inputs
to solve the problem exactly, however a distributed
representation can allow for real world analogical
reasoning for rich input spaces such as images or
speech (see Fig 1 for a RAVENs problem; one can
also imagine tasks with speech inputs where the analogous example signals are high pitch
transformed versions of the original). Our approach differs from [1] where the symbolic latent
space is derived via a supervised approach; by using a self-supervised learning approach we are
able to use the same representation space to train multiple neural predicates, unlike in [1] where
only a single function is learned. Next, we train a neural network encoder to map real-world
images (here sub-images of the RAVENs matrices) to the ‘symbolic latent space’. Finally, using
the above elements together we are able to perform symbolic search-based reasoning, albeit
using neural-networks as primitive predicates, to solve analogical reasoning problems.
Contributions (1) We adapt and extend Neural Algorithmic Reasoning to propose a neuro-
symbolic approach for a class of visual analogical reasoning problems (2) We present experi-
mental results on the RAVENs Progressive Matrices dataset and compare our neuro-symbolic
approach to purely connectionist approaches, and analyse the results. In certain cases, our
approach is superior to initial neural approaches, as well as to human performance (though more
recent neural approaches trained at scale remain SOTA) (3) We submit that our approach can
be viewed as a novel and more general neuro-symbolic procedure that uses domain knowledge
to train neural network predicates operating on a special, ‘symbolically-derived latent space’,
which are then used as elementary predicates in a symbolic search process.

2. Problem Definition

In general, ‘RAVEN-like’ analogical reasoning tasks can be viewed as comprising of 𝑛 ordered
sets 𝑠1, 𝑠2, ..., 𝑠𝑛 containing 𝑚 input samples each, an additional test set containing 𝑚 − 1 samples
and a target 𝑚𝑡ℎ sample. Each sample 𝐼𝑗𝑘 where 𝑗 ∈ [1...𝑛], 𝑖 ∈ [1...𝑚] is comprised of a set
of entities 𝐸𝑗𝑘 and each entity 𝑒 ∈ 𝐸𝑗𝑘 has attributes from a set 𝐴 of 𝑘 predefined attributes
𝑎1, 𝑎2, ..., 𝑎𝑘 ∈ 𝐴. Assume a predefined set of all possible rules 𝑅 = 𝑟1, 𝑟2..., 𝑟𝑢 that can hold over
sample attributes in an example set(s). For a given task the objective is to infer which rules hold
across the𝑚 samples in each of the 𝑛 example sets in order to subsequently predict the analogous
missing sample for the test set, either by generating the target sample as in the ARC challenge
[3], or by classifying from a set of possible choices as in RPMs. Note that the problem definition
assumes prior domain knowledge about possible sample entities, their possible attribute values,
and possible rules over sample attributes within the example sets. It is worth mentioning that
while here we investigate visual analogies, the problem definition can accommodate input
samples of any datatype such as audio or text as long as the problem structure is unchanged.

3. Proposed Approach

Figure 2: Overview of our approach for RAVEN’s RPM

We adapt a variation of the neural algorithmic reasoning approach to the problem defined
in Section 2, where we (i) learn a latent representation based on the symbolic representation
of the tasks, via self-supervised learning; (ii) train neural networks to infer the rules involved
in the problem; (iii) train a neural encoder from images to align with the symbolic latent
representations in (i), and (iv) use the above elements to solve a given task via a neuro-symbolic
search procedure, i.e., where the elementary predicates are neural networks. We assume the

presence of a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 with correct answer labels for the analogical reasoning
tasks. The components (i), (ii) and (iii) are trained independently as for each of them we know
or can determine the inputs and the targets depending on their function. We also evaluate an
alternative of (v) encoding an image to the symbolic latent space via the neural encoder in (iii)
above, and decode it to symbolic form using the decoder trained in (i) on the symbolic space, on
which purely symbolic search is used to solve a problem instance.

3.1. Learning a Distributed Representation from the Symbolic Space

We begin with a symbolic multihot task representation 𝑠, which is a series of concatenated
one-hots, one for each image entity attribute. Each attribute can take a value from a finite set
and hence is represented using a one-hot vector. To obtain the latent representations of the
tasks, we train an auto-encoder on the symbolic task definitions S as 𝕃(S) = (𝐸S𝜃 , 𝐷

S
𝜙) where

the encoder 𝐸S𝜃 maps from the symbolic space to the latent space and the decoder 𝐷S
𝜙 maps the

representation from the latent space back to the symbolic space as shown in component (i) of
Fig. 2. As we want to reconstruct the multihot representation, a sum of negative-log likelihood
is computed for each one-hot encoding present in the multihot representation. We provide an
example in C.1 where the parameters 𝜃 and 𝜙 are obtained via gradient descent on a combination
of negative log-likelihood loss functions as shown in equation 1 and 2 in the appendix.

3.2. Training Rule Identification Neural Networks

Next for every attribute, and for each applicable rule for that attribute, we train a Rule Identifi-
cation neural network classifier to predict if the rule (pattern) holds for the example set. As
mentioned in 2, we know the rules that can hold over attributes, giving us a definite set of net-
works to be trained. We refer to any rule identification network 𝐹 using the (𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒, 𝑟𝑢𝑙𝑒−𝑡𝑦𝑝𝑒)
pair for which it is trained. The latent representations obtained after encoding the symbolic rep-
resentations of each of the samples in the example set are concatenated and sent as input to the
rule identification networks. While training a neural net for a (𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒, 𝑟𝑢𝑙𝑒 − 𝑡𝑦𝑝𝑒) pair, we cat-
egorize each example set with the specific label for that particular rule and attribute, labeling it
with 0 if the rule-type is not followed, 1 if the rule-type is followed or a rule-value indicating the
level of the rule-type when being followed. As each of these rule-types is deterministic, we can
obtain the rule-type and value for each row using their symbolic representations. The overview
can be seen in component (ii) of Fig. 2 where we see the input for these elementary neural
networks and the expected output determined for the (𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒, 𝑟𝑢𝑙𝑒 − 𝑡𝑦𝑝𝑒) pair. We see in Fig.
2 that type (shape) changes in row 𝐸𝑔1, hence the expected target for 𝐹(𝑡𝑦𝑝𝑒, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) should
be 1 as type stays constant and in case of 𝐸𝑔2 as the type changes, we expect 𝐹(𝑡𝑦𝑝𝑒, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
to predict 0, indicating the rule is not obeyed. With these labels, each network is optimized
using cross-entropy loss. For parameterized rules we train additional networks to predict the
parameters.1

1Examples provided in appendix section C.2

3.3. Sample representation

As our objective to apply our approach on samples in an unstructured (image, text, speech)
format, we want to develop a representation for the samples that resembles the latent represen-
tation of symbolic inputs. For this we train any neural network encoder 𝐸X𝜓 over the rich input
space X which encodes each sample to a latent space. We want to minimize the disparity in the
latent representations from the sample 𝑥 and its corresponding symbolic representation 𝑠. For
this we use 𝐸S𝜃 trained in 3.1. We minimize the mean squared error over all pairs of symbolic and
input representations (equation shown in C.1). This enables us to use the previously learned
neural networks for rule inference on our image data.

3.4. Combining the Elements

As shown in component (iv) of Fig. 2, we first use 𝐸X𝜓 (𝑥) as inputs to find the underlying rules
using the neural networks trained in section 3.2. Once we obtain the set of (rule-type, value)
pairs for each attribute, we apply these neural networks for each of the answer choices by
adding them to the test set. For each attribute, we obtain the output probability score for that
rule-type and value. The final score is the sum of these probability scores for all the inferred
rules 2. The choice with the highest score is returned as the answer.

4. Empirical Evaluation

Raven’s Progressive Matrices (RPM): is a widely accepted visual reasoning puzzle used to
test human intelligence [2]. The idea is to infer multiple patterns to be able to find the answer
from the options, an example of the same from the RAVEN[4] dataset is seen in Fig 1. In this
dataset, for every problem, each independent attribute follows an algorithmic rule. The task
here is to deduce the underlying rules applied over each row for the first two rows; followed by
selecting the option that validates all the inferred rules when aligned with the images in the last
row. As seen in the first two rows in the Fig 1 we observe the attributes: Number, Position and
Type stay constant across the rows. We observe an increasing progression in Size and a fixed set
of 3 Colors are permuted within the row indicating distribute three. Hence option 3 is the only
solution that satisfies all the rules3. For our experiments, We use the “Relational and Analogical
Visual rEasoNing” dataset (RAVEN)[4], which was introduced to drive reasoning ability in
current models. RAVEN consists of 10,000 problems for each of the 7 different configurations
of the RPM problem shown in Fig 3. Each problem has 16 images (8 : problem matrix and 8 :
target options).

Figure 3: Examples of 7 different configurations of the RAVEN dataset
2We explain the complete pseudo-algorithm along with the scoring function in the appendix.
3We provide the dataset overview, set of rule and attribute definitions for the RAVENs problems used in the appendix.

4.1. Experimental Details

As each image in a RAVENs problem can be represented symbolically in terms of the entities
(shapes) involved and their attributes: Type, Size, and Color; and multiple entities in the same
image have Number and Position attributes. Such attributes are also rule-governing in that
rules based on these can be applied to each row and the combination of rules from all rows is
used to solve a given problem. Example: for each entity, the multihot representation 𝑠 is of size
|𝑇 |+ |𝑆|+ |𝐶|where 𝑇, 𝑆 and 𝐶 are the set of shapes, possible sizes and possible colors respectively.
The multi-hot vector is made up of 3 concatenated one-hot vectors, one each for type, size, and
color. In case of multiple components, e.g: Left-Right, we concatenate the multihots of both the
entities. For our auto-encoder architecture, we train simple MLPs with a single hidden layer for
both 𝐸𝑠 and 𝐷𝑠 (using loss function 1,2) in appendix. The dimensions of the layers and latent
representations are chosen based on the RPM configuration.

Following [2]’s description of RPM, there are four types of rules: Constant, Distribute Three,
Arithmetic, and Progression. In a given problem, there is a one rule applied to each rule-
governing attribute across all rows, and the answer image is chosen so that this holds. We aim
to find a set of rules being obeyed by both the rows.

So for every attribute and its rule-type, we train an elementary neural network classifier
𝐹(𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒,𝑟𝑢𝑙𝑒−𝑡𝑦𝑝𝑒), to verify if the rule is satisfied in a given row, or pair of rows. The rules of
Progression and Arithmetic are further associated with a value (e.g., Progression could have
increments or decrements of 1 or 2). For rule-type Constant and ‘Distribute-three’ we train a
binary classifier, and for rule-type Arithmetic and Progression, we train a multi-class classifier
to also predict the value associated with the rule. An example is described in the appendix
along with further details on the neural networks used.

We train a CNN-based image encoder 𝐸X𝜓 over the image space X which encodes each image
of the problem to a latent space and minimize the disparity with the corresponding symbolic
latent space as described in Section 3.3. Finally, as shown in component (iv) of Fig. 2, we find
the underlying rules using the neural networks trained in section 3.2. Once we obtain the set
of (rule-type, value) pairs for each attribute, we apply these neural networks for each of the 8
options by placing them in the last row. We obtain the output probability score for that attribute,
rule-type and value and sum the probability scores for all the inferred rules 4 and the image
with the highest score is returned as the answer.

4.2. Results

We use the test set provided by RAVEN to evaluate rule classification networks and the fi-
nal accuracy. Table 2 lists the F1 of each 𝐹(𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒,𝑟𝑢𝑙𝑒−𝑡𝑦𝑝𝑒) classification network across all
configurations. We observe that 85% of the neural networks have an F1-score ≥ 0.90. This is
corroborated by the idea that these networks are trained on latent representations of symbolic
data to perform elementary functions and do well on specialized reasoning components.

Table 1 shows end-to-end accuracy for different RAVENs problem configurations. Our
proposed neural reasoning approach (A) is where we have image input encoded by 𝐸𝑥(𝑥) and
neural reasoning in the latent space, i.e. steps (i)-(iv) in Section 3. We also show results for

4We explain the complete pseudo-algorithm along with the scoring function in the appendix.

Table 1
Configuration Wise Accuracy

Center Left-Right Up-Down Out-In Center 2x2 Grid 3x3 Grid Out-In Grid
Input/Reasoning

A: Image/Neural(ours) 89.40% 85.00% 89.10 % 89.80% 53.10% 33.90% 31.90%
B: Image/Symbolic(ours) 97.30% 98.35% 98.95% 96.95% 88.40% 19.15% 34.15%
c: Symbolic/Neural(ours) 94.60% 90.65% 91.90% 93.85% 62.20% 54.10% 59.40%

RAVEN(ResNet+DRT)[4] 58.08% 65.82% 67.11% 69.09% 46.53% 50.40% 60.11%
CoPINet[5] 95.05% 99.10% 99.65% 98.50% 77.45% 78.85% 91.35%
SCL[6] 98.10% 96.80% 96.50 % 96.00% 91.00% 82.50% 80.10%

DCNet[7] 97.80% 99.75% 99.75% 98.95% 81.70% 86.65% 91.45%

Human [4] 95.45% 86.36% 81.81% 86.36% 81.82% 79.55% 81.81%

an alternative (B), (v) mentioned in Section 3, i.e., image inputs decoded to symbolic space via
𝐷𝑠(𝐸𝑥(𝑥)) followed by purely symbolic reasoning (algorithmic solving). Results using neural
reasoning in the latent space but using the correct symbolic inputs mapped via 𝐸𝑠(𝑠) are also
shown as (c) to highlight the loss in accuracy incurred while encoding images using 𝐸𝑥(𝑥).

We use ResNet+DRT from RAVEN as our baseline, human performance (provided in [4])
as a reference and other SOTA methods for comparison. We note that the RAVEN baseline
is bested by A: neural reasoning on image inputs for 4 out of the 7 configurations, and by B:
symbolic reasoning on image inputs for one of the more difficult cases (2x2). At the same time
we observe that approach B is better than A except for the difficult case of 3x3 grid, where the
encoder-decoder combination 𝐷𝑠(𝐸𝑥(𝑥)) produces too many errors, adversely affecting purely
symbolic reasoning.

Neural reasoning from symbolic inputs, i.e. (c), accuracy consistently exceeds approach A,
which can be attributed to the closer relation of the latent space to the algorithmic symbolic
space. We also observe lower performance for the configurations 2x2 Grid, 3x3 Grid, and Out-In
grid. Upon analysis, we find that the performance of 𝐸𝑥 for these configurations is relatively
lower as each of these components have multiple entities and the task to transform the image
into the latent space and identifying rules becomes difficult.

While more recent purely neural-network based approaches remain SOTA, we note that for
the simpler configurations our neuro-symbolic approaches are competitive. We speculate that
because of the complex nature and difficulty of these configurations, using more powerful neural
architectures (such as transformers) for self-supervised learning of the symbolic latent space
as well as for learning predicates can be useful. More generally our results provide evidence
that a neuro-symbolic search using neural-network based elementary predicates, trained on
a symbolic latent space, may be a promising approach for learning complex reasoning tasks,
especially where domain knowledge is available.

5. Discussion

While the results presented in this paper pertain to visual analogical reasoning problems, it
should be noted that the procedure presented in Section 3 is agnostic to the input modality.
Figure 4 illustrates analogical reasoning problems in speech and text respectively; the first task

involves analogical reasoning in speech, where the input corresponds to a speech sample in a
male voice and the output samples correspond to the same utterance in a female voice: The task
is to infer that this is the transformation involved and analogously generate the output speech
signal for the target query. Possible attributes for rules on a speech signal can include discrete
values of pitch, tone, volume or others. In the second, text-based example, inputs correspond to
positive reflections of an input passage, and the outputs correspond to negative reflections of
the same passage. Attributes for text rule identification can similarly include textual aspects
like language, sentiment and style. Note that both these examples require generation of the
missing target output which is a harder task than classification from a set of possible choices.
However, given the recent progress in conditional generation for images [8] and text[9], this
seems entirely feasible.

Figure 4: Analogical reasoning problems across different input modalities.

6. Related Work

The ‘neural algorithmic reasoning’[1] approach presents a procedure for building neural net-
works that can mimic algorithms. It includes training processor networks that can operate over
high-dimensional latent spaces to align with fundamental computations. This improves gener-
alization and reasoning in neural networks. RAVEN[4] combines both visual understanding
and structural reasoning using a Dynamic Residual tree (DRT) graph developed from structural
representation and aggregates latent features in a bottom-up manner. This provides a direction
suggesting that augmenting networks with domain knowledge performs better than black-box
neural networks. Scattering Compositional learner(SCL)[6] presents an approach where the
model learns a compositional representation by learning independent networks for encod-
ing object, attribute representations and relationship networks for inferring rules, and using
their composition to make a prediction. Our work bears similarity with this approach as both
utilize background knowledge in composing a larger mechanism from elementary networks.
CoPINet[5] presents the Contrastive Perceptual Inference network which is built on the idea of
contrastive learning, i.e. to teach concepts by comparing cases. The Dual-Contrast Network
(DCNet)[7] works on similar lines as it uses 2 contrasting modules: rule contrast and choice

contrast for its training. We draw inspiration from [10] which also presents a variation of the
Neural Algorithmic Reasoning approach applied to visual reasoning.

7. Conclusion

In this work, we have proposed a novel neuro-symbolic reasoning approach where we learn
neural-network based predicates operating on a ‘symbolically-derived latent space’ and use
these in a symbolic search procedure to solve complex visual reasoning tasks, such as RAVENs
Progressive Matrices. Our experimental results (though preliminary, in that our predicates are
composition of simple MLPs) indicate that our the approach points to a promising direction for
neuro-symbolic reasoning research.

Acknowledgments

This work is supported by “The DataLab” agreement between BITS Pilani, K.K. Birla Goa
Campus and TCS Research, India.

References

[1] P. Veličković, C. Blundell, Neural algorithmic reasoning, Patterns 2 (2021) 100273.
[2] P. Carpenter, M. Just, P. Shell, What one intelligence test measures: A theoretical account

of the processing in the raven progressive matrices test, Psychological review 97 (1990)
404–31. doi:10.1037/0033- 295X.97.3.404 .

[3] F. Chollet, On the measure of intelligence, arXiv preprint arXiv:1911.01547 (2019).
[4] C. Zhang, F. Gao, B. Jia, Y. Zhu, S.-C. Zhu, Raven: A dataset for relational and analogical

visual reasoning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[5] C. Zhang, B. Jia, F. Gao, Y. Zhu, H. Lu, S.-C. Zhu, Learning perceptual inference by
contrasting, in: Advances in Neural Information Processing Systems (NeurIPS), 2019.

[6] Y. Wu, H. Dong, R. Grosse, J. Ba, The scattering compositional learner: Discovering objects,
attributes, relationships in analogical reasoning, 2020. arXiv:2007.04212 .

[7] T. Zhuo, M. Kankanhalli, Effective abstract reasoning with dual-contrast network, in:
International Conference on Learning Representations, 2021. URL: https://openreview.net/
forum?id=ldxlzGYWDmW.

[8] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, I. Sutskever, Zero-shot
text-to-image generation, 2021. URL: https://arxiv.org/abs/2102.12092. doi:10.48550/ARXIV.
2102.12092 .

[9] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, R. Liu, Plug
and play language models: A simple approach to controlled text generation, 2019. URL:
https://arxiv.org/abs/1912.02164. doi:10.48550/ARXIV.1912.02164 .

[10] A. Sonwane, G. Shroff, L. Vig, A. Srinivasan, T. Dash, Solving visual analogies using neural
algorithmic reasoning, CoRR abs/2111.10361 (2021). URL: https://arxiv.org/abs/2111.10361.
arXiv:2111.10361 .

http://dx.doi.org/10.1037/0033-295X.97.3.404
http://arxiv.org/abs/2007.04212
https://openreview.net/forum?id=ldxlzGYWDmW
https://openreview.net/forum?id=ldxlzGYWDmW
https://arxiv.org/abs/2102.12092
http://dx.doi.org/10.48550/ARXIV.2102.12092
http://dx.doi.org/10.48550/ARXIV.2102.12092
https://arxiv.org/abs/1912.02164
http://dx.doi.org/10.48550/ARXIV.1912.02164
https://arxiv.org/abs/2111.10361
http://arxiv.org/abs/2111.10361

A. Overview of RAVEN dataset generation

To give an overview of how the RAVEN dataset was generated, the authors used an A-SIG
(Attributed Stochastic Grammar) to generate the structural representation of RPM. Each RPM is
a parse tree that instantiates from this A-SIG. After this, rules and the initial attributes for that
structure are sampled. The rules are applied to produce a valid row. This process is repeated 3
times to generate a valid problem matrix. The answer options are generated by breaking some
set of rules. This structured representation is then used to generate images.

The RAVEN dataset provides a structural representation that is semantically linked with the
image representation. The structural representation of the image space available in RAVEN
makes it generalizable. As each image in a configuration follows a fixed structure, we use
this knowledge to generate the corresponding symbolic representations. RAVEN has 10,000
problems for each configuration split into 6000: Train, 2000:Val and 2000:Test. We use the same
split for training and validation and provide the results on the test set.

B. Rule and Attribute definitions

B.1. Attributes

Number: The number of entities in a given layout. It could take integer values from [1; 9].
Position: Possible slots for each object in the layout. Each Entity could occupy one slot.
Type: Entity types could be triangle, square, pentagon, hexagon, and circle.
Size: 6 scaling factors uniformly distributed in [0:4; 0:9].
Color: 10 grey-scale colors

B.2. Rules

4 different rules can be applied over rule-governing attributes.
Constant: Attributes governed by this rule would not change in the row. If it is applied on
Number or Position, attribute values would not change across the three panels. If it is applied
on Entity level attributes, then we leave “as is” the attribute in each object across the three
panels.
Progression: Attribute values monotonically increase or decrease in a row. The increment or
decrement could be either 1 or 2, resulting in 4 instances in this rule.
Arithmetic: There are 2 instantiations in this rule, resulting in either a rule of summation or
one of subtraction. Arithmetic derives the value of the attribute in the third panel from the first
2 panels. For Position, this rule is implemented as set arithmetics.
Distribute Three: This rule first samples 3 values of an attribute in a problem instance and
permutes the values in different rows.

C. Autoencoder, Neural Predicates and Image Encoder

C.1. Autoencoder

The symbolic encoder 𝐸S𝜃 (𝑠) is trained using the following losses as described in Section 3. As we
want to reconstruct the multihot representation, a sum of negative-log likelihood is computed
for each one-hot encoding present in the multihot representation. Here 𝑝𝑘 denotes the output
nodes from the decoder corresponding to the 𝑘𝑡ℎ attribute and 𝑡𝑘 denotes the one-hot input for
the same attribute. In equations 1 and 2 we use the example from RAVEN where the attributes
are type, size, color, etc.

LS(𝑝, 𝑡) = ∑
𝑘∈{𝑡𝑦𝑝𝑒,𝑠𝑖𝑧𝑒,𝑐𝑜𝑙,… }

−𝑙𝑜𝑔(𝑒
𝑝𝑘
𝑎𝑟𝑔𝑚𝑎𝑥(𝑡𝑘)

Σ𝑖𝑒𝑝
𝑘
𝑖

) (1)

𝜃, 𝜙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃,𝜙Σ𝑠∈𝑆LS(̂𝑠, 𝑠),where ̂𝑠 = 𝐷S
𝜙(𝐸

S
𝜃 (𝑠)) (2)

C.2. Neural Predicates for Rule Classification

For every attribute, for each of its rule-type, we train an elementary neural network classifier
to verify if the rule is satisfied in the row- this acts as our Rule Identification network. In this
work, we refer to any rule identification network 𝐹 using a (𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒, 𝑟𝑢𝑙𝑒 − 𝑡𝑦𝑝𝑒) pair for which
it is trained. For rule-type Constant and Distribute Three we train a binary classifier. The rules
of Progression and Arithmetic are also associated with a value (e.g., Progression could have
increments or decrements of 1 or 2), hence for rule-type Arithmetic and Progression, we train
a multi-class classifier to also predict the value associated with the rule. Example: A neural
network for Center: 𝐹(𝑇 𝑦𝑝𝑒,𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) is a binary classifier trained to identify if the row from the
configuration Center has constant type (shape) across the 3 panels. Similarly a neural network
for Left: 𝐹(𝑆𝑖𝑧𝑒,𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) is a five-class classifier trained to classify if there is a progression in size
in the Left component. This predicts 0 if there is no progression and predicts the progression
value: increment or decrement (-2, -1, 1, 2) otherwise.

The latent representations 𝐸S𝜃 (𝑠) obtained after encoding the symbolic representations of each
of the three panels in the row are concatenated and sent as input to the neural networks. While
training a neural net for a (𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒, 𝑟𝑢𝑙𝑒 − 𝑡𝑦𝑝𝑒) pair, we categorize each row with the specific
label for that particular rule and attribute, labeling it with 0 if the rule-type is not followed
and with 1 or rule-value indicating the level of the rule-type when being followed. As each of
these rule-types is deterministic, we can obtain the rule-type and value for each row using their
symbolic representations. The overview can be seen in component (ii) of Fig. 2 where we see
the input for these elementary neural networks and the expected output determined for the
(𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒, 𝑟𝑢𝑙𝑒 − 𝑡𝑦𝑝𝑒) pair. With these labels, each network is optimized using cross-entropy
loss. Each network is a shallow MLP classifier with 1 or 2 hidden layers whose dimensions are
chosen depending on the configuration and validation set. These classifiers are trained using
symbolic representations for each component across the various configurations and we provide
the results in Table. 2.

C.3. Image Encoder

To learn the latent representation of the unstructured data such that it mimics the symbolic latent
space, we minimize the mean squared error over all pairs of symbolic and input representations
obtained from 𝐸S𝜃 (𝑠)) and 𝐸X𝜓 (𝑥) respectively. This enables us to use the previously learned
neural networks for rule inference on our image data.

𝜓 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜓Σ(𝑥,𝑠)(𝐸X𝜓 (𝑥) − 𝐸S𝜃 (𝑠))
2 (3)

Table 2
F1-score of rule classification networks. Note: Different components have different set of rules as in the
case of Left-Right, Out-In Center, and Out-In Grid, wherein we train a separate set of networks for each
component. Blank entries indicate that the rule setting does not exist for that particular component. Eg:
Number attribute is always 1 in Center configuration.

Center Left-Right Up-Down Out-In Center 2x2 Grid 3x3 Grid Out-In Grid

F1 Left Right Up Down Out In Out In Grid

Typ
Constant 1.0 1.0 1.0 1.0 1.0 0.99 1.0 0.94 0.94 0.99 0.91

Distri Three 1.0 0.99 0.99 0.99 1.0 0.99 0.99 0.92 0.91 0.99 0.88

Progression 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.96 0.99 0.97

Siz

Constant 1.0 0.99 1.00 0.99 1.0 0.99 1.0 0.91 0.90 1.0 0.95

Distri Three 1.0 0.97 0.96 0.98 0.98 1.0 0.98 0.77 0.72 0.99 0.94

Progression 0.95 0.99 0.99 0.99 0.99 0.97 0.99 0.93 0.94 0.96 0.98

Arithmetic 0.91 0.96 0.96 0.96 0.97 - 0.96 0.90 0.84 - 1.0

Col

Constant 0.98 0.99 0.99 0.99 0.99 - 0.99 0.82 0.87 - 0.86

Distri Three 0.98 0.99 0.97 0.98 0.98 - 0.98 0.61 0.74 - 0.63

Progression 0.99 1.0 0.99 0.99 0.98 - 0.99 0.95 0.92 - 0.95

Arithmetic 0.93 0.91 0.93 0.92 0.95 - 0.94 0.78 0.68 - 0.78

Num

Constant - - - - - - - 0.93 0.92 - 0.96

Distri Three - - - - - - - 0.81 0.77 - 0.83

Progression - - - - - - - 0.97 0.85 - 0.95

Arithmetic - - - - - - - 0.96 0.84 - 0.94

Pos

Constant - - - - - - - 0.93 0.92 - 0.96

Distri Three - - - - - - - 0.87 0.94 - 0.89

Progression - - - - - - - 0.95 0.96 - 0.93

Arithmetic - - - - - - - 0.95 0.92 - 0.93

D. Search Algorithm

Algorithm 1 Search Overview
𝑟𝑢𝑙𝑒𝑠 ← []
𝑒𝑖𝑗 ← 𝐸X

𝜓 (𝑥𝑖𝑗) ▷ 𝑥𝑖𝑗 refer to problem matrix images (𝑖 ∶ 𝑟𝑜𝑤, 𝑗 ∶ 𝑐𝑜𝑙)
𝑜𝑘 ← 𝐸X

𝜓 (𝑦𝑘) ▷ 𝑦𝑘 refer to option images
𝑅1 ← (𝑒11, 𝑒12, 𝑒13), 𝑅2 ← (𝑒21, 𝑒22, 𝑒23)
for 𝑎𝑡𝑡𝑟 in attributes do

for 𝑟𝑢𝑙𝑒 in rule-types do
𝐹 ← 𝐹(𝑎𝑡𝑡𝑟 ,𝑟𝑢𝑙𝑒) ▷ Use the trained neural network for the specific (attr,rule) pair
𝑝1 ← 𝐹(𝑅1), 𝑝2 ← 𝐹(𝑅2) ▷ 𝑝 is the network output containing class wise probabilities
if 𝑟𝑢𝑙𝑒 is Constant | Distribute Three then

if 𝑝1 > 𝜏 ∧ 𝑝2 > 𝜏 then
𝑟𝑢𝑙𝑒𝑠.𝑎𝑑𝑑(𝑎𝑡𝑡𝑟 , 𝑟𝑢𝑙𝑒, 1)
break

end if
else if 𝑟𝑢𝑙𝑒 is Progression | Arithmetic then

if 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝1)! = 0 ∧ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝2)! = 0 ∧ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝1) == 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝2) then
𝑣𝑎𝑙𝑢𝑒 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑟𝑒𝑑1)
𝑟𝑢𝑙𝑒𝑠.𝑎𝑑𝑑(𝑎𝑡𝑡𝑟 , 𝑟𝑢𝑙𝑒, 𝑣𝑎𝑙𝑢𝑒)
break

end if
end if

end for
end for
𝑠1, 𝑠2, … , 𝑠8 ← 0 ▷ Initializing Scores for each option image
for 𝑘 in {1,2,…,8} do

𝑜 ← 𝑜𝑘
for (𝑎𝑡𝑡𝑟 , 𝑟𝑢𝑙𝑒, 𝑣𝑎𝑙𝑢𝑒) in 𝑟𝑢𝑙𝑒𝑠 do

𝑅3 ← (𝑒31, 𝑒32, 𝑜)
𝐹 ← 𝐹(𝑎𝑡𝑡𝑟 ,𝑟𝑢𝑙𝑒)
𝑝3 ← 𝐹(𝑅3)
𝑠𝑖 = 𝑠𝑖 + 𝑝3,𝑣𝑎𝑙𝑢𝑒 ▷ Probability of the value inferred for the rule

end for
end for
𝑎𝑛𝑠 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠1, 𝑠2, … , 𝑠8) return ans

	1 Introduction
	2 Problem Definition
	3 Proposed Approach
	3.1 Learning a Distributed Representation from the Symbolic Space
	3.2 Training Rule Identification Neural Networks
	3.3 Sample representation
	3.4 Combining the Elements

	4 Empirical Evaluation
	4.1 Experimental Details
	4.2 Results

	5 Discussion
	6 Related Work
	7 Conclusion
	A Overview of RAVEN dataset generation
	B Rule and Attribute definitions
	B.1 Attributes
	B.2 Rules

	C Autoencoder, Neural Predicates and Image Encoder
	C.1 Autoencoder
	C.2 Neural Predicates for Rule Classification
	C.3 Image Encoder

	D Search Algorithm

