
Grounding LTLf specifications in images
Elena Umili1, Roberto Capobianco1,2 and Giuseppe DeGiacomo1

1Sapienza University of Rome
2Sony AI

Abstract
A critical challenge in neurosymbolic approaches is to handle the symbol grounding problem without
direct supervision. That is mapping high-dimensional raw data into an interpretation over a finite set of
abstract concepts with a known meaning, without using labels. In this work, we ground symbols into
sequences of images by exploiting symbolic logical knowledge in the form of Linear Temporal Logic over
finite traces (LTLf) formulas, and sequence-level labels expressing if a sequence of images is compliant
or not with the given formula. Our approach is based on translating the LTLf formula into an equivalent
deterministic finite automaton (DFA) and interpreting the latter in fuzzy logic. Experiments show that
our system outperforms recurrent neural networks in sequence classification and can reach high image
classification accuracy without being trained with any single-image label.

1. Introduction

A crucial problem in neurosymbolic integration is handling the symbol grounding problem
without direct supervision. We refer to symbol grounding [1] as the process of mapping raw
data into an interpretation over a finite boolean symbolic alphabet, where each symbol expresses
a meaningful high-level concept. In particular, we focus on grounding symbols in raw data
sequences using some prior symbolic knowledge expressed in Linear Temporal Logic interpreted
on finite traces (LTLf) [2]. LTLf is used in a big variety of domains, from robotics [3] to Business
Process Management (BPM) [4], for specifying temporal relationships, dynamic constraints
and performing automated reasoning. It is unambiguous compared to natural language, yet
easy to use and understand. Evaluating if a symbolic sequence is compliant with a given LTLf
formula is straightforward. In several real-world applications, however, such sequences are not
symbolic but appear ‘rendered’, or grounded in raw data such as images, videos, words, audio,
etc. In some application domains, such for example in BPM [5], we could know a high-level
specification of the process expressed in terms of symbols, yet exploiting this knowledge is
impossible unless it is grounded in the data. Therefore, symbol grounding represents the first
preliminary step to be made to perform any logical reasoning, included evaluation.

Deep neural networks perform extraordinary well in perception tasks on raw data [6]. Su-
pervised classification can be seen as grounding a set of classes in the dataset, by training
directly on a set of (data, class) examples. Despite the success of deep learning in this area,

NeSy 2022, 16th International Workshop on Neural-Symbolic Learning and Reasoning, Cumberland Lodge, Windsor, UK
Envelope-Open umili@diag.uniroma1.it (E. Umili); capobianco@diag.uniroma1.it (R. Capobianco); degiacomo@diag.uniroma1.it
(G. DeGiacomo)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:umili@diag.uniroma1.it
mailto:capobianco@diag.uniroma1.it
mailto:degiacomo@diag.uniroma1.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


the main drawback remains the acquisition of the labeled data necessary for training. State-
of-the-art self-supervised approaches have seen enormous progress lately; they can compress
high-dimensional data and cluster it in a meaningful way [7] [8] without using any label. In
particular, some approaches can also extract a discrete representation of the input data [9],
which can be considered an interpretation over a symbolic alphabet [10] [11] [12]. However,
we do not know the meaning of these automatically-extracted symbols, and inspecting them or
connecting them to some human-designed knowledge remains extremely hard.

In this work, we take a step in the direction of grounding a known meaningful set of symbols
in perceptual data, with as little supervision as possible, by exploiting some prior knowledge
about expected sequencing expressed as an LTLf fomula in the same symbolic alphabet. Our
framework is based on translating the LTLf symbolic knowledge into an equivalent deterministic
finite automaton (DFA) and encoding the latter using fuzzy logic. The use of fuzzy logic has
seen many successes in neurosymboilc AI [13], and many framework are based on it, such as
Logic Tensor Networks (LTN) [14] and Lyrics [15]. Unlike prior work, we focus on grounding
knowledge into time-extended data sequences. Our work is similar to LTN, but extends it
to temporal logic and time-extended data. LTN extends First Order Logic (FOL) to make it
compatible with machine-learning tasks. For example introducing the concept of a dataset
containing more data samples, and the concept of feature. However, the concept of time is
still missing, in the sense that encoding knowledge on a set of examples (batch dimension),
each represented by a sequence of data (time dimension), eventually multidimensional (feature
dimension), is not straightforward. In our work, we manage the time dimension by applying
recursion over different time steps, in the same way recurrent neural networks do.

In summary, the main contribution of this paper is a framework able to encode temporally
extended specifications and ground them on sequences of images of any length, through a
recursive structure. Experiments show that our method effectively classifies both sequences
and single images. In particular, it is faster, requires less data, and is more robust to overfitting
than a classical end-to-end classical neural approach that cannot use high-level knowledge.

The remainder of this paper is organized as follows: in section 2 we report related works; in
section 3 we give some preliminaries on Linear Temporal Logic and Logic Tensor Networks; in
section 4 we formulate our problem and illustrate in detail the method used to solve it; we report
the experiments evaluating our approach in section 5; and finally we conclude and discuss
directions for future work in section 6.

2. Related works

Integrating logical knowledge and neural networks Integrating logical knowledge and
deep learning is still an open problem, and many different approaches have been proposed.
Some works propose embedding logical knowledge and symbolic data in the same feature
space and inferring connections between the two using the distance in the feature space as a
metric [16] [17]. In this case, the representation quality depends on the training, and obtaining
the same exact behavior of the logical knowledge can be hard. Some other approaches use
real-valued logic [14] [18], such as fuzzy logic or probabilistic logic, to integrate sub-symbolic
perception and symbolic reasoning. The use of real-valued logic is compatible with gradient



descent optimization that is at the base of neural network training. In this work, we use this
second approach and in particular we focus on the use of LTLf knowledge.

Machine learning and LTL Many works exploit the synergies between machine learning
and LTL in a beneficial way. In reinforcement learning, LTL-based reward machines are used
to simplify and automate the creation of reward functions for Markovian and non-Markovian
decision processes [19][20]. However, they are applicable only in discrete-state environments
or continuous problems for which a mapping between the continuous state and a symbolic
interpretation is known, also known as labeled MDP [21]. Some works use neural networks to
solve problems related to LTL, generally approached with combinatorial algorithms. Camacho
and McIlraith [22] use deep learning to guide research in program synthesis and improve
scalability. Walke et al. [23] use recurrent neural networks to learn LTLf formulas from a set of
traces. However, these works use symbolic data and do not consider the problem of discovering
latent symbols in the data, which is the problem we face in our work.

Exploiting high-level knowledge for vision tasks Previous works have shown that vision
tasks can benefit from background knowledge. Stewart and Ermon [24] perform detecting and
tracking objects, without any labels, by exploiting known laws of physics. Donadello et al.
[25] exploit logical knowledge to increase robustness to noisy datasets with incorrect labels
in semantic image interpretation tasks. In particular, our work focuses on classifying images
using logical symbolic knowledge instead of image-class labels in a semi-supervised fashion.

Semisupervised symbol grounding A benchmark for semisupervised symbol grounding
is the digit addition problem, where a system must learn to classify MNIST digits images by
knowing only the result of their sum and how addition works. LTN [14] and DeepProbLog
[18] show how their systems can benefit from knowing addition rules. However, they handle
the problem only in two settings: single-digit and double-digit addition. Dai et al. [26] use
logic abduction to correct the prediction of a CNN, by using a derivative-free optimization.
They tested their framework on binary sums of digits, where the two binary numbers can have
various lengths. We propose a similar experiment on MNIST digits, that does not concern
addition and where we do not know in advance the input sequence length. In particular, we
evaluate an LTLf formula over sequences of arbitrary lengths of digits by using a recurrent
specification in the form of a fuzzy DFA. We use the same approach of LTN, by adapting it to
LTLf formulas. To the best of our knowledge, it’s the first time LTN has been used to incorporate
temporal logic knowledge into neural networks.

3. Background

3.1. LTLf and DFA

Linear Temporal Logic (LTL) [27] is a language which extends traditional propositional logic
with modal operators. With the latter we can specify rules that must hold through time. In
this work, we use LTL interpreted over finite traces (LTLf) [2]. Such interpretation allows the



executions of arbitrarily long traces, but not infinite, and is adequate for finite-horizon planning
problems.

Given a set 𝑃 of propositions, the syntax for constructing an LTLf formula 𝜙 is given by

𝜙 ∶∶= ⊤ | ⊥ | 𝑝 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝑋𝜙 | 𝜙1𝑈𝜙2 (1)

where 𝑝 ∈ 𝑃. We use ⊤ and ⊥ to denote true and false respectively. 𝑋 (Next) and 𝑈 (Until) are
temporal operators. Other temporal operators are: 𝑁 (Weak Next) and 𝑅 (Release) respectively,
defined as 𝑁𝜙 ≡ ¬𝑋¬𝜙 and 𝜙1𝑅𝜙2 ≡ ¬(¬𝜙1𝑈¬𝜙2); 𝐺 (globally) 𝐺𝜙 ≡ ⊥𝑅𝜙 and 𝐹 (eventually)
𝐹𝜙 ≡ 𝑇𝑈𝜙. A trace 𝜌 = 𝜌[0], 𝜌[1], ... is a sequence of propositional assignments, where 𝜌[𝑥] ∈ 2𝑃
(𝑥 ≥ 0) is the 𝑥-th point of 𝜌. Intuitively, 𝜌[𝑥] is the set of propositions that are true at instant 𝑥.
Additionally, |𝜌| represents the length of 𝜌. Since each trace is finite |𝜌| < ∞ and 𝜌 ∈ (2𝑃)∗. We
refer the reader to [27] for a formal description of the operators’ semantics. Any LTLf formula
𝜙 can be translated in an equivalent Deterministic Finite Automaton (DFA) 𝐴𝜙 = (2𝑃, 𝑆, 𝑠0, 𝛿 , 𝐹 ),
where 2𝑃 is the automaton alphabet, 𝑆 is the set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝛿 ∶ 𝑆𝑥2𝑃 → 𝑆
is the transition function and 𝐹 ⊆ 𝑆 is the set of final states. Let be 𝐿(𝐴𝜙) the language composed
by all the strings accepted by the 𝐴𝜙 we have

𝜌 ⊨ 𝜙 iff 𝜌 ∈ 𝐿(𝐴𝜙) (2)

Despite the size of 𝐴𝜙 is double-exponential in 𝜙 in the worst-case [2], 𝐴𝜙 is often quite small in
practice, and scalable techniques are available for computing it from 𝜙 [28] [29] [30].

LTLf formulas are widely used in BPM. In particular, the BPM community has selected 21
types of formulas that are particularly significant for describing complex processes declaratively
[31]. The latter are at the base of the system Declare [32] and they generate DFAs that are
polynomial in the original formula [33]. We use the Declare formulas as a benchmark for
evaluating our approach.

3.2. Logic Tensor Networks

Logic Tensor Networks (LTN) [14] are a neurosymbolic framework that can reason and learn by
exploiting both structured symbolic knowledge and raw data. It implements a logic called Real
Logic, which contains constants, function and predicate symbols, as First Order Logic (FOL). LTN
also implements connectives (¬, ∧, ∨, →, 𝑙 ↔) and quantifiers (universal, existential, diagonal
universal, and guarded universal and existential). Any logic formula in Real Logic is interpreted
using fuzzy logic semantics, namely, it is assigned with a continuous truth-value between 0 and
1. Fuzzy logic has shown to be suitable in several real-world applications where a statement
can be only partially true or exceptions can be present. Notably, fuzzy interpretations are based
on continuous and differentiable functions, so neural networks can co-exist in the framework
and actually implement elements of the logic. Every element of Real Logic is grounded in real
tensor, so that it can be an assignment to available data, the output of a neural network, or a
satisfaction level of a logic formula between 0 and 1.

LTN can be used for querying, reasoning and learning: here we focus on learning. LTN
can learn from both data and symbolic knowledge by imposing the knowledge available, and
searching for the groundings that maximize the satisfiability of that knowledge. This is done



by simply defining a loss objective that is inverse to the given formula’s satisfaction level
and optimizing the system’s trainable weights by back-propagation. In our work, we use the
same concept of learning by best satisfiability, but we apply it to the DFA generated by the
LTLf formula. The neural computational graph implementing the automaton has therefore a
recurrent structure, like a Long short-term memory (LSTM) neural network, and can be applied
to sequences of any length. This feature is missing in the current implementation of LTN, and
it is very convenient for imposing logic specifications that are extended in the time dimension.

4. Method

In this section, we formulate our problem in detail, and we present the method used to encode
the LTLf knowledge and ground the alphabet in the data.

4.1. Problem formulation

We consider the problem of classifying a sequence of images 𝑥 = 𝑖[0], 𝑖[1], ..𝑖[𝑙] as compliant or
not with a certain specification expressed as an LTLf formula 𝜙. Each image is the ‘rendering’ of
a symbolic interpretation over the formula alphabet 𝑃. This means that there exists a function
𝑐 ∶ 𝐼 → 2𝑃, where 𝐼 is the space of images, that maps each image into the truth values of
symbols in 𝑃. If we map each image in the symbolic space with this function we obtain a trace
𝑝 = 𝑝[0], 𝑝[1], ..., 𝑝[𝑙 − 1], where 𝑙 is the sequence length and 𝑝[𝑖] = 𝑐(𝑖[𝑡]) ∀0 ≤ 𝑡 ≤ 𝑙. We denote
with 𝐴𝜙 = (2𝑃, 𝑆, 𝑠0, 𝛿 , 𝐹 ) the DFA corresponding to the formula 𝜙, where 2𝑃 is the automaton
alphabet, 𝑆 is the set of states, 𝑠0 is the initial state, 𝛿 is the transition function and 𝐹 is the set
of final states. If we run the trace in the DFA we obtain a sequence of 𝑙 + 1 automaton states
𝑠 = 𝑠[0], 𝑠[1], ...𝑠[𝑙], where 𝑠[0] = 𝑠0 is the initial state and the last state 𝑠[𝑙] ∈ 𝐹 if the sequence
of images is accepted or 𝑠[𝑙] ∈ (𝑆 − 𝐹) otherwise.

We are interested in the classifying function 𝑐. We assume that we can discover it in a weakly
supervised way, namely without using any single-image label (image, symbolic interpretation).
In particular, we assume to know the following information: (i) the formula 𝜙, from which
we can build the DFA 𝐴𝜙, (ii) a set of training data 𝐷 = {< 𝑥1, 𝑦1 >, < 𝑥2, 𝑦2 >, ..., < 𝑥𝑛, 𝑦𝑛 >}
where 𝑥𝑘 is an image sequence 𝑖[0], 𝑖[1], ..𝑖[𝑙 − 1] and 𝑦𝑘 ∈ {0, 1} is the label denoting whether
the sequence is accepted or not.

4.2. Framework

We consider our framework as a neural network composed of two parts:(i) a perception part,
represented by a trainable convolutional neural network that classifies symbols from images,
implementing the function c we want to discover; (ii) a logic part, represented by a non-trainable
recurrent structure, that is a fuzzy correspondent of the automaton 𝐴𝜙. Figure 1 shows an
example of the functioning of our framework.

The sequence of images 𝑥 = 𝑖[0], 𝑖[1], ..., 𝑖[𝑙 −1] is passed one by one to the classifier, producing
𝑙 continuous vectors of dimension |𝑃 | where 𝑃 is the set of propositions used by the formula.

We define a fuzzy predicate 𝑃𝑐(𝑐𝑖, 𝑡) denoting whether the 𝑡-th image in the sequence belongs
to class 𝑖. The classifier implements the grounding of 𝑃𝑐. In fact the component 𝑖 of the



(a) (b)

Figure 1: a) An example of LTLf formula with the corresponding equivalent automaton, b) our framework

CNN prediction for the image 𝑖[𝑡] in the sequence is the truth value of 𝑃𝑐(𝑐𝑖, 𝑡). We denote as
𝑝[𝑡] = [𝑃𝑐(𝑐0, 𝑡), 𝑃𝑐(𝑐1, 𝑡), ..𝑃𝑐(𝑐|𝑃 |, 𝑡)] the fuzzy interpretation over propositions in 𝑃 at time 𝑡. This
fuzzy interpretation can be used to proceed on the automaton.

In particular, at any time 𝑡 we are in a state of the automaton, we encode this information
with another fuzzy predicate 𝑃𝑠, where 𝑃𝑠(𝑠𝑖, 𝑡) is true if we are in state 𝑠𝑖 at time 𝑡. As before, we
define 𝑠[𝑡] the interpretation at time 𝑡 over the state symbols 𝑠[𝑡] = [𝑃𝑠(𝑠0, 𝑡), 𝑃𝑠(𝑠1, 𝑡), ..., 𝑃𝑠(𝑠|𝑆|, 𝑡),
with |𝑆| equal to the number of states in the DFA.

If at time 𝑡 we are in a state 𝑠𝑖 of the DFA and we receive a certain interpretation 𝑝[𝑡] over the
set of symbols, at time 𝑡 + 1 we transit to the state 𝑠𝑗 linked to 𝑠𝑖 by the edge 𝑒𝑖,𝑗 that is made true
by the interpretation. For example, if we are in state 1 of the DFA in Figure 1(a),and we receive
the interpretation [′𝑡ℎ𝑟𝑒𝑒′ = 𝐹𝑎𝑙𝑠𝑒,′ 𝑡𝑤𝑜′ = 𝐹𝑎𝑙𝑠𝑒] we move to state 2 because the interpretation
satisfies the formula ¬𝑡ℎ𝑟𝑒𝑒 ∧¬𝑡𝑤𝑜 on the arc 𝑒1,2. More formally 𝑃𝑠(𝑠𝑗, 𝑡 +1) = (𝑃𝑠(𝑠𝑖, 𝑡)∧𝑒𝑖,𝑗(𝑝[𝑡])),
where we denote as 𝑒𝑖,𝑗(𝑝[𝑡]) the truth value of the formula on arc 𝑒𝑖,𝑗 when evaluated on the
interpretation 𝑝[𝑡].

We start at the initial state 𝑠0 of the automaton, and we have therefore

𝑃𝑠(𝑠0, 0) = ⊤ ∧ (𝑃𝑠(𝑠𝑖, 0) = ⊥ ∀1 ≤ 𝑖 ≤ |𝑆|) (3)

Then we simulate a run of the automaton using the fuzzy symbolic interpretations the
classifier has predicted. The transition from a state 𝑠𝑖 to a state 𝑠𝑗 through an interpretation 𝑝[𝑡]
follows the rule:

𝑃𝑠(𝑠𝑗, 𝑡 + 1) = ⋃
𝑖∶(𝑖,𝑗) is an edge of 𝐴𝜙

𝑃𝑠(𝑠𝑖, 𝑡) ∧ 𝑒𝑖,𝑗(𝑝[𝑡]) (4)

Finally we evaluate the last interpretation over the state symbols 𝑠[𝑙] and we impose this
must be either: one state in 𝐹 if the sequence is accepted; or one state not in 𝐹 if the sequence is
negative. For this purpose we define the predicate 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑥) that is ⊤ if the label 𝑦 associated
with 𝑥 in the dataset is 1, and ⊥ if the label is 0. We know that:

∀𝑥𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑥) ↔ ⋃
𝑠𝑖∈𝐹

𝑃𝑠(𝑠𝑖, 𝑙) (5)



We optimize the network so as to maximize the satisfiability of this formula. In fact the truth
value of formula 5 depends on the truth value of the last state, that in turn depends on the
previous state and the previous classes and so on. Let 𝑠(𝑥𝑖, 𝑦𝑖) be the truth value of Equation 5
for one particular sample (𝑥𝑖, 𝑦𝑖) in the dataset. The loss associated with that sample is 1 − 𝑠(𝑥𝑖)
that is aggregated over all data, since the formula must be true ∀𝑥.

𝐿 =
𝑖=𝑛
∑
𝑖=0

(1 − 𝑠(𝑥𝑖, 𝑦𝑖)) (6)

The loss 𝐿 is backpropagated through the network and the classifier weights are updated with
classical gradient descent. In particular Equations 3, 4 and 5 are the axioms in our knowledge
base. They are all evaluated in fuzzy logic using the product t-norm 𝑇𝑃 for conjunction, its
dual t-conorm 𝑆𝑃 for disjunction, standard negation 𝑁𝑆 , and the Reichenbach implication 𝐼𝑅, as
suggested in the LTN paper [14].

¬ ∶ 𝑁𝑆(𝑎) = 1 − 𝑎
∧ ∶ 𝑇𝑃(𝑎, 𝑏) = 𝑎 ∗ 𝑏

∨ ∶ 𝑆𝑃(𝑎, 𝑏) = 𝑎 + 𝑏 − 𝑎 ∗ 𝑏
→∶ 𝐼𝑅(𝑎, 𝑏) = 1 − 𝑎 + 𝑎 ∗ 𝑏

In figure 1(b) we show the network behaviour in case of perfect grounding. In this case the
classifier predicts all one-hot encodings, this represent an ideal situation where no uncertainty
is present, and symbols are all either perfectly true or perfectly false. Also the output from the
fuzzy trainsitions is perfectly boolean and the fuzzy automaton behaves exactly as the original
DFA. However, the fuzzy automata can predict the sequence of states even with some uncertainty
in the symbol grounding layer, while the original DFA cannot handle any uncertainty.

5. Experiments

In this section we report the experiments supporting our method. The implementation code is
available online at https://github.com/whitemech/grounding_LTLf_in_image_sequences.

Since LTL can be used to specify innumerable constraints, we test our framework on a
subset of formulas that is as complete as possible and, at the same time, useful for practical
applications. We choose, therefore, to test it on the Declare constraints. Declare [32] is one
of the prime languages of the declarative process modeling paradigm, and is composed of 20
types of activity constraints expressed as LTLf formulas. See the appendix for a complete
list of Declare formulas. Declare formulas assume that one and only one proposition is ⊤ at
each instant of time, that is symbols are mutually exclusive. For each Declare formula, we
perform an LTLf evaluation experiment in three settings: (1) training on the complete dataset;
(2) training on a restricted dataset; (3) training on the complete dataset by dropping the Declare
assumption on mutually exclusive symbols (see the following section for more details about
the dataset creation process). We report the sequence classification accuracy, that is the ratio
of correctly evaluated sequences, and the image classification accuracy, namely the ratio of
correctly predicted symbolic interpretation in single images.

https://github.com/whitemech/grounding_LTLf_in_image_sequences


5.1. Dataset

The dataset is created by rendering symbolic configurations using images of zeros and ones
from the MNIST dataset. In these experiments, therefore, we used an alphabet composed of only
two symbols. However, we can apply the framework to an alphabet of any size by changing the
classifier output layer. For each formula, all the possible symbolic traces with length between
1 and 4 are created. The latter are randomly split in train traces and test traces, we denote as
𝑝𝑡𝑟𝑎𝑐𝑒𝑠,𝑡𝑟𝑎𝑖𝑛 the percentage of traces used for training. In the same way images in the MNIST
dataset are randomly divided in train and test images, we denote as 𝑝𝑖𝑚𝑎𝑔𝑒𝑠,𝑡𝑟𝑎𝑖𝑛 the percentage
of images used for training.

We construct the training dataset by rendering train traces with train images and the test
dataset by rendering test traces with test images. In this way, the test contains symbolic traces
never observed in the training, in which each symbolic interpretation is rendered with an image
never observed during training.

We test our approach on three dataset: (i) complete, (ii) restricted, (iii) complete with non
mutually exclusive symbols. The complete dataset is built as described above with parameters
𝑝𝑡𝑟𝑎𝑐𝑒𝑠,𝑡𝑟𝑎𝑖𝑛 = 50% and 𝑝𝑖𝑚𝑎𝑔𝑒𝑠,𝑡𝑟𝑎𝑖𝑛 =85%. The restricted dataset is constructed by using parameters
𝑝𝑡𝑟𝑎𝑐𝑒𝑠,𝑡𝑟𝑎𝑖𝑛=40% and 𝑝𝑖𝑚𝑎𝑔𝑒𝑠,𝑡𝑟𝑎𝑖𝑛 = 15%. Achieving good perception performances on the restricted
dataset is therefore more difficult, since a big percentage of possible renderings are not observed
during training.

Images from MNIST dataset render only one digit at time (mutually exclusive symbols),
however our framework can be tested also for multilabel classification, as needed when symbols
are not mutually exclusive. For this purpose we create also a dataset rendering interpretations
non in MNIST: when all symbols are set to false (rendered as a black image), when both symbols
set to true (rendered as a ‘zero’ image and a ‘one’ image superimposed on each other). We
create a dataset for multilabel classification by modifying MNIST images as described above
and using the same parameters values used for the complete dataset, namely 𝑝𝑡𝑟𝑎𝑐𝑒𝑠,𝑡𝑟𝑎𝑖𝑛 = 50%
and 𝑝𝑖𝑚𝑎𝑔𝑒𝑠,𝑡𝑟𝑎𝑖𝑛 =85%.

5.2. Results

We compare our neurosymbolic approach (NS) with a classical supervised deep learning ap-
proach (DL). We implement the latter with a convolutional neural network (the same used by
NS) followed by an LSTM. For each approach, each formula, and each dataset, we perform 10
experiments with different seeds, and we keep the best 8 ones. For space reasons, we report
the results obtained with each single Declare formula in the appendix and the mean results
over the 20 different Declare formulas in Figure 2. In all the plots solid line is the mean, and
the shaded area represents the standard deviation. In the sequence classification task, Figure 2
(first row), our approach outperforms the deep learning approach in all three datasets, even
in the non-mutually exclusive symbol case, although Declare formulas are not designed for
this kind of interpretation. The lstm-based approach struggles to reach the top accuracy on the
test set, and this is even more evident in the experiment on the restricted image dataset. It also
happens because in some formulas the lstm tends to overfit the training data, which is visible in
the results in the appendix.



Figure 2: Experiments over 20 Declare formulas. In the first row: sequence classification accuracy,
in the second row: image classification accuracy. They are obtained by training on three different
datasets: (first columns) complete dataset, (second column) restricted dataset, (third column) com-
plete dataset with non-mutually exclusive symbols. Solid lines represent mean values, shaded areas
represent standard deviations.

In the image classification task, Figure 2 (second row), our approach reaches high accuracy
on both the test and training sets without exploiting any image label.

5.3. Discussion on ‘groundability’

Our system does not need any single-data label to ground the symbols of a given formula into
data, however, correctly grounding single data using only sequence labels and the formula is
not always possible for any arbitrary formula. In particular, if there exists a redenomination
of the symbols in the alphabet that maintains all the accepted traces still accepted and all the
unaccepted traces still not accepted, multiple groundings are possible. When trained on these
formulas, our system can still distinguish one class from the other, but can choose the wrong
names for symbols. For example, in our experiment on MNIST digits, the classifier may assign
all images of zeros the label 1 and all the images of ones the label 0. In this case, we observe
that the accuracy on single image classification approaches 0% while the sequence classification
accuracy still approaches 100%. In order to aggregate results from these formulas, which can do
either 100% or 0%, we do not plot the value x of image classification accuracy, but the distance
from 50%, that is (50 + |x - 50|)% in Figure 2 (second row). This value goes to 100%, which means
the system correctly clusters all images of zeros together and all images of ones together.

This happens for all the formulas except one: choice(c0,c1), that is 𝐹𝑐0 ∨ 𝐹𝑐1 LTL (see the
appendix). This formula accepts any trace of mutually exclusive symbols, it is therefore not
specific enough, even to cluster images in the correct way. In fact, this formula achieves the
highest sequence classification accuracy and the lowest image classification accuracy. We would
obtain the same results with a tautology or an unsatisfiable formula.

Let us notice that this is not a problem with our implementation or the specific experiment
we made, but it is a problem with the process of abduction in general. However, our system is
compatible with the use of single image labels, which can be employed to ensure the assignment



of the correct class names to the clusters in case the LTLf specification is not informative enough
to infer them.

6. Conclusion and future work

In conclusion, we propose a framework for exploiting high-level logical knowledge in the form
of LTLf formulas. In particular, we use this knowledge to map images into a set of symbols
with a known meaning without any image label. We have shown that discovering this mapping
is possible by using only sequence-level labels and the logical knowledge. Furthermore, in
sequence classification, our approach outperforms the end-to-end approach based on recurrent
neural networks: it is more general and can maintain high performances using fewer labels.

In the future, we want to apply this framework to a more realistic scenario in the area of
BPM or natural language processing, and we want to investigate how it can perform in the case
of nonperfect symbolic knowledge.

Acknowledgments

This work is partially supported by the ERC Advanced Grant WhiteMech (No. 834228), by the
EU ICT-48 2020 project TAILOR (No. 952215), by the PRIN project RIPER (No. 20203FFYLK)”.

References

[1] L. L. Steels, The symbol grounding problem has been solved, so what’s next?, 2008.
[2] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite

traces, in: Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, IJCAI ’13, AAAI Press, 2013, p. 854–860.

[3] K. He, A. M. Wells, L. E. Kavraki, M. Y. Vardi, Efficient symbolic reactive synthesis for
finite-horizon tasks, in: 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 8993–8999. doi:10.1109/ICRA.2019.8794170 .

[4] G. D. Giacomo, R. D. Masellis, M. Grasso, F. M. Maggi, M. Montali, Monitoring business
metaconstraints based on ltl and ldl for finite traces, in: BPM, 2014.

[5] W. Kratsch, F. König, M. Röglinger, Shedding light on blind spots – developing a reference
architecture to leverage video data for process mining, Decision Support Systems 158
(2022) 113794. URL: https://www.sciencedirect.com/science/article/pii/S0167923622000653.
doi:https://doi.org/10.1016/j.dss.2022.113794 .

[6] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[7] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Do-

ersch, B. Ávila Pires, Z. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos,
M. Valko, Bootstrap your own latent - a new approach to self-supervised
learning, in: NeurIPS, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
f3ada80d5c4ee70142b17b8192b2958e-Abstract.html.

http://dx.doi.org/10.1109/ICRA.2019.8794170
https://www.sciencedirect.com/science/article/pii/S0167923622000653
http://dx.doi.org/https://doi.org/10.1016/j.dss.2022.113794
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html


[8] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, A. Joulin, Emerg-
ing properties in self-supervised vision transformers, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 9650–9660.

[9] E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-softmax, in: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, OpenReview.net, 2017. URL: https://openreview.
net/forum?id=rkE3y85ee.

[10] M. Asai, A. Fukunaga, Classical planning in deep latent space: Bridging the subsymbolic-
symbolic boundary, Proceedings of the AAAI Conference on Artificial Intelligence 32
(2018). URL: https://ojs.aaai.org/index.php/AAAI/article/view/12077.

[11] A. Dittadi, F. K. Drachmann, T. Bolander, Planning from pixels in atari with learned
symbolic representations, in: AAAI, 2021.

[12] E. Umili, E. Antonioni, F. Riccio, R. Capobianco, D. Nardi, G. De Giacomo, Learning a
symbolic planning domain through the interaction with continuous environments, in:
Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL),
2021.

[13] E. van Krieken, E. Acar, F. van Harmelen, Analyzing Differentiable Fuzzy Implications,
in: Proceedings of the 17th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 2020, pp. 893–903. URL: https://doi.org/10.24963/kr.2020/92.
doi:10.24963/kr.2020/92 .

[14] S. Badreddine, A. d’Avila Garcez, L. Serafini, M. Spranger, Logic tensor networks, Artificial
Intelligence 303 (2022) 103649. URL: https://www.sciencedirect.com/science/article/pii/
S0004370221002009. doi:https://doi.org/10.1016/j.artint.2021.103649 .

[15] G. Marra, F. Giannini, M. Diligenti, M. Gori, Lyrics: A general interface layer to integrate
logic inference and deep learning, in: ECML/PKDD, 2019.

[16] Y. Xie, F. Zhou, H. Soh, Embedding symbolic temporal knowledge into deep sequential
models, 2021. URL: https://arxiv.org/abs/2101.11981. doi:10.48550/ARXIV.2101.11981 .

[17] Y. Xie, Z. Xu, M. S. Kankanhalli, K. S. Meel, H. Soh, Embedding symbolic knowl-
edge into deep networks, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol-
ume 32, Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/file/
7b66b4fd401a271a1c7224027ce111bc-Paper.pdf.

[18] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, L. De Raedt, Deepproblog: Neural
probabilistic logic programming, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems,
volume 31, Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper/2018/
file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

[19] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, S. A. McIlraith, Ltl and beyond:
Formal languages for reward function specification in reinforcement learning, in: Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, International Joint Conferences on Artificial Intelligence Organization, 2019, pp.
6065–6073. URL: https://doi.org/10.24963/ijcai.2019/840. doi:10.24963/ijcai.2019/840 .

[20] G. De Giacomo, L. Iocchi, M. Favorito, F. Patrizi, Foundations for restraining bolts: Re-
inforcement learning with ltlf/ldlf restraining specifications, Proceedings of the Inter-

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://ojs.aaai.org/index.php/AAAI/article/view/12077
https://doi.org/10.24963/kr.2020/92
http://dx.doi.org/10.24963/kr.2020/92
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103649
https://arxiv.org/abs/2101.11981
http://dx.doi.org/10.48550/ARXIV.2101.11981
https://proceedings.neurips.cc/paper/2019/file/7b66b4fd401a271a1c7224027ce111bc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7b66b4fd401a271a1c7224027ce111bc-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://doi.org/10.24963/ijcai.2019/840
http://dx.doi.org/10.24963/ijcai.2019/840


national Conference on Automated Planning and Scheduling 29 (2021) 128–136. URL:
https://ojs.aaai.org/index.php/ICAPS/article/view/3549.

[21] C. Wang, Y. Li, S. L. Smith, J. Liu, Continuous motion planning with temporal logic
specifications using deep neural networks, 2020. URL: https://arxiv.org/abs/2004.02610.
doi:10.48550/ARXIV.2004.02610 .

[22] A. Camacho, S. A. McIlraith, Towards neural-guided program synthesis of Linear Temporal
Logic specifications, in: Workshop on Knowledge Representation and Reasoning Meets
Machine Learning (KR2ML) at NeurIPS, 2019.

[23] H. Walke, D. Ritter, C. Trimbach, M. Littman, Learning finite linear temporal logic speci-
fications with a specialized neural operator, 2021. URL: https://arxiv.org/abs/2111.04147.
doi:10.48550/ARXIV.2111.04147 .

[24] R. Stewart, S. Ermon, Label-free supervision of neural networks with physics and domain
knowledge, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[25] I. Donadello, L. Serafini, A. d’Avila Garcez, Logic tensor networks for semantic image
interpretation, in: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, 2017, pp. 1596–1602. URL: https://doi.org/10.24963/ijcai.
2017/221. doi:10.24963/ijcai.2017/221 .

[26] W.-Z. Dai, Q. Xu, Y. Yu, Z.-H. Zhou, Bridging machine learning and logical reason-
ing by abductive learning, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol-
ume 32, Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/file/
9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf.

[27] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, IEEE
Computer Society, 1977, pp. 46–57. URL: https://doi.org/10.1109/SFCS.1977.32. doi:10.1109/
SFCS.1977.32 .

[28] S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Y. Vardi, Symbolic ltlf synthesis, in: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, 2017,
pp. 1362–1369. URL: https://doi.org/10.24963/ijcai.2017/189. doi:10.24963/ijcai.2017/189 .

[29] S. Bansal, Y. Li, L. M. Tabajara, M. Y. Vardi, Hybrid compositional reasoning for reactive
synthesis from finite-horizon specifications, in: The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, AAAI Press,
2020, pp. 9766–9774. URL: https://aaai.org/ojs/index.php/AAAI/article/view/6528.

[30] G. D. Giacomo, M. Favorito, Compositional approach to translate ltlf/ldlf into deterministic
finite automata, in: S. Biundo, M. Do, R. Goldman, M. Katz, Q. Yang, H. H. Zhuo (Eds.),
Proceedings of the Thirty-First International Conference on Automated Planning and
Scheduling, ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021, AAAI Press, 2021,
pp. 122–130. URL: https://ojs.aaai.org/index.php/ICAPS/article/view/15954.

[31] M. Pesic, W. M. van der Aalst, A declarative approach for flexible business processes
management, in: Business Process Management Workshops, 2006.

[32] M. Pesic, H. Schonenberg, W. M. van der Aalst, Declare: Full support for loosely-structured
processes, in: 11th IEEE International Enterprise DistributedObject Computing Conference

https://ojs.aaai.org/index.php/ICAPS/article/view/3549
https://arxiv.org/abs/2004.02610
http://dx.doi.org/10.48550/ARXIV.2004.02610
https://arxiv.org/abs/2111.04147
http://dx.doi.org/10.48550/ARXIV.2111.04147
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/10.24963/ijcai.2017/221
http://dx.doi.org/10.24963/ijcai.2017/221
https://proceedings.neurips.cc/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
https://doi.org/10.24963/ijcai.2017/189
http://dx.doi.org/10.24963/ijcai.2017/189
https://aaai.org/ojs/index.php/AAAI/article/view/6528
https://ojs.aaai.org/index.php/ICAPS/article/view/15954


(EDOC 2007), 2007, pp. 287–287. doi:10.1109/EDOC.2007.14 .
[33] M. Westergaard, Better algorithms for analyzing and enacting declarative workflow

languages using ltl, in: S. Rinderle-Ma, F. Toumani, K. Wolf (Eds.), Business Process
Management, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 83–98.

[34] J. De Smedt, S. vanden Broucke, J. Weerdt, J. Vanthienen, A full r/i-net construct lexicon
for declare constraints, 2015. doi:10.2139/ssrn.2572869 .

A. Appendix

Figure 3: Experiments over 20 Declare constraints training on the full dataset inmutually exclusive
symbols. On the y axis: sequence classification accuracy ; on the x axis: epochs of training. Solid
lines represent mean values, shaded areas represent standard deviations.

http://dx.doi.org/10.1109/EDOC.2007.14
http://dx.doi.org/10.2139/ssrn.2572869


Figure 4: Experiments over 20 Declare constraints training on a restricted dataset in mutually
exclusive symbols setting. On the y axis: sequence classification accuracy ; on the x axis: epochs
of training. Solid lines represent mean values, shaded areas represent standard deviations.

A.1. Mutually exclusive symbols setting

Figure 3 shows the sequence classification accuracy of our approach (NS) and a convolu-
tional+LSTM neural network (DL) when trained on the full dataset for the different Declare
formulas. The results show that our approach outperforms the LSTM in all the formulas in the
full-dataset settings. Our approach reaches the top accuracy in a couple of epochs for all the
formulas. In contrast, the only-neural system struggles to reach the top, reaches it slower than
our method, or completely overfits. Figure 3shows the same experiment conducted on fewer
data, as described in the section Dataset. Performances of both methods degrade if we train on
the restricted dataset; however, our method is more robust and maintains higher performances
than the LSTM in 19 formulas over 20.

Figures 5 and 6 show the image classification accuracy obtained training on the full dataset
and the small one, respectively. We observe that our system achieves top classification accuracy



Figure 5: Experiments over 20 Declare constraints training on the full dataset in non mutually
exclusive symbols setting. On the y axis: image classification accuracy ; on the x axis: epochs of
training. Solid lines represent mean values, shaded areas represent standard deviations.

on the single images without being trained with any single-image label. This is particularly
evident in the experiments over the full dataset.

A.1.1. Non mutually exclusive symbols

In this section, we describe results obtained in non-mutually exclusive symbol configurations.
Figures 7 and 8 show the classification accuracy obtained on sequences and single images,
respectively. Our approach remains better than the LSTM in 18 over 20 formulas, even if the
formulas where designed for mutually exclusive symbol interpretations.



Figure 6: Experiments over 20 Declare constraints training on a restricted dataset in mutually
exclusive symbols setting. On the y axis: image classification accuracy ; on the x axis: epochs of
training. Solid lines represent mean values, shaded areas represent standard deviations.



Figure 7: Experiments over 20 Declare constraints training on the full dataset in non mutually
exclusive symbols setting. On the y axis: sequence classification accuracy ; on the x axis: epochs
of training. Solid lines represent mean values, shaded areas represent standard deviations.



Figure 8: Experiments over 20 Declare constraints training on the full dataset in non mutually
exclusive symbols setting. On the y axis: image classification accuracy ; on the x axis: epochs of
training. Solid lines represent mean values, shaded areas represent standard deviations.



Figure 9: List of Declare formulas as in [34]. We tested on all except last(a). Meaning of modal operators
symbols:○=X, ♦=F, □=G


	1 Introduction
	2 Related works
	3 Background
	3.1 LTLf and DFA
	3.2 Logic Tensor Networks

	4 Method
	4.1 Problem formulation
	4.2 Framework

	5 Experiments
	5.1 Dataset
	5.2 Results
	5.3 Discussion on `groundability'

	6 Conclusion and future work
	A Appendix
	A.1 Mutually exclusive symbols setting
	A.1.1 Non mutually exclusive symbols



