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Abstract		
Teaming.AI aims to overcome the lack of flexibility as a limiting factor of human-centered 
AI collaboration by envisioning a teaming framework that integrates the strengths of both, 
namely the flexibility of human intelligence and the scaling and processing capabilities of 
machine intelligence. In Teaming.AI, this will be achieved by employing a teaming model 
that structures the interactions between humans and AI systems, and a knowledge graph that 
dynamically supports the teaming model to cope with process, regulatory and context 
knowledge. We expect that the developed Teaming.AI platform provides the human team 
members with a better understanding and control of automated services and decision support 
within the manufacturing environment, leading to a more trustful collaboration between the 
human and AI. 
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1. Introduction	

The Teaming.AI project aims to address the open problem of the “missing middle” (see [1]) in 
scenarios where humans and AI systems collaborate towards a common goal. This missing middle is 
defined along a spectrum between human-only to machine-only activities. Human only activities 
include leading, empathizing, creating, and judging; machine-only activities include transacting, 
iterating, predicting and adapting. The “missing middle” lies in between these extremes - i.e., human 
and machine hybrid activities. These can be broken down into teaming activities where (i) “humans 
complement machines” (i.e., train, explain, sustain) and (ii) “AI gives humans superpowers” (amplify, 
interact, embody). Such hybrid activities are neglected in the state of the art and deserve more 
recognition, especially given the observation that human intelligence outperforms current AI systems 
in a wide field of applications, particularly in terms of flexibility and taking context into account. 

The envisioned Teaming.AI approach aims to support the systematic development and evolution 
of AI systems in manufacturing in order to address current limitations of today’s narrow AI systems. 
Such systems typically lack self-adaptive capabilities and the ability to assimilate and interpret new 
information outside of its predefined programmed parameters. They are typically tailored to solve 
specific tasks in a specific predefined setting; changes in this underlying setting typically requires 
system adaptations, ranging from fine-grained parameter adaptations to fully-fledged re-design and 
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re-development of AI systems. In order to tackle this challenge, Teaming.AI has to provide a flexible 
framework to specify mechanisms for collaborative self-adaptation of the overall system that may 
involve both human actors and AI agents. Employing a teaming model provides a flexible way for 
performing adaptations on multiple levels, taking inspiration from conceptual models of self-adaptive 
systems developed in the software engineering literature (cf. [2]). 

2. Related	work	

The teaming intelligence of humans has been studied and practiced several decades ago in the 
research community to increase the productivity and lessen task completion duration. The 
advancement in robot technologies pushed the teaming concept to a new era of human collaboration 
with machines, agents and AI systems. Within recent years, the advancement in technology has 
created robots and AI systems being able to perform a variety of tasks in manufacturing, space, 
agriculture, healthcare, autonomous vehicles and in other real-life scenarios [3]. Human-robot 
teaming is studied from multiple perspectives, such as: concepts and design components [4], 
perspective on analysis and implementation issues [5], human-robot interaction theory [6], Human-
robot cross-training [7], and mutual trust between human and robot in decision making [8]. 

[9] studied human teamwork and identified five core components for effective teaming (see Figure 
1A), considering not only whether the team performed well (e.g., completed the team task) but also 
how the team interacted (i.e., team processes, teamwork) to achieve the team outcome. They argued, 
that team effectiveness can be improved by a well-designed coordination mechanisms to ensure that 
the “Big Five” are consistently updated and that relevant information is distributed throughout the 
team. Recently, research has made advancements towards achieving common goals by human and 
autonomous systems using their unique capabilities for specific portions of a task as a team. The 
current collaborative teaming concepts like human-agent teaming [10] and human-autonomy teaming 
[11] are the motivation of our proposed Teaming.AI platform towards a novel approach for human-AI 
teaming. 

3. High-level	perspective	on	teaming	

Although the study of [9] focuses purely on human teaming and not human-AI teaming, we 
believe this theory builds a solid foundation for the digitalization of human-AI teaming interaction for 
two reasons. First, the clear segregation of teamwork and coordination mechanisms supports 
separation of concerns in digitalization. Second, we believe that team effectiveness as a goal instead 
of team performance keeps human team members more in the focus than AI, because team 
performance only incorporates the outcome of the work, while team effectiveness also takes the 
interactions among team members into account. To be an effective team member, the AI must take 
part in the coordination activities of the team, and it needs to know what information to share or when 
to ask for assistance. Being capable of observing one another’s state, sharing information, or 
requesting assistance is regarded by [12] as Teaming Intelligence. [13] captured human-AI teaming 
requirements beyond traditional task-based approaches towards human-autonomy teaming (i.e. 
human-AI teaming preserving human autonomy). We believe that this fits well to achieve team 
effectiveness as defined by [9]. Human autonomy teaming requires understanding interdependency. 
[13] defines an Interdependence Analysis tool to understand how people and automation can 
effectively team by providing insight into the interdependence relationships used to support one 
another throughout an activity. 

In Teaming.AI, we follow these design principles and analyze the interdependence relationships 
along the four dimensions of the 4S framework as described by [12]. Starting from the analysis of 
team and task structure, the skills of the team actors are identified and linked to the different teaming 
activities. Different to [13] and their concept of jointness, we expect that, at the most granular level, 
an activity is either performed by a human team member or an automated AI service. However, the 
performer of this activity can be supported either by a human or the AI by providing additional 
insights the performer can rely on. We introduce abstract activities as a mechanism to model this 



performer/supporter pattern. We envision the supporter role as a more passive role that monitors the 
current state of the production process and interacts if needed, similar as described by [14]. 

4. Teaming	model	

[12] defined Teaming Intelligence as intelligently managing the interdependencies of coordination 
work. Teaming.AI offers a method to manage these interdependencies and interactions by modelling 
them in a structured manner and linking these models to relevant activities, resources, and constraints 
(policies). To this end, the teaming model is comprised of multiple sub-models, in particular: 

Teaming Process Model: The teaming process model defines the individual teaming processes 
and tasks, describing the state, structure, skills, and strategy of teaming interaction between human 
and the Teaming.AI platform according to the 4S framework. The teaming process model is 
instantiated and executed by the teaming engine within the Teaming.AI platform. 

Activity Model: To achieve a high interchangeability, the information that is required for the 
concrete/abstract activities is separated from the teaming process model. The activity model is 
responsible for storing and querying the activity information. The activity model enriches the 
activities in the teaming process model with additional information required to execute the processes, 
such as necessary inputs, preconditions, and generated outputs. 

Event Model: The teaming model is used by the teaming engine (see Figure 1B) to orchestrate the 
teaming aspects of the process execution and to act in case specific events are detected. If an event is 
detected, the teaming engine uses the teaming process model to decide on the next tasks that must be 
performed, together with the information who is performing the task, by considering policies and 
other aspects (e.g., human skills or organizational roles). 

 

 
Figure	 1:	 The	 Big	 Five	 of	 teamwork	 and	 their	 coordinating	 mechanisms	 (left).	 Overview	 of	 the	
Teaming.AI	architecture	(right).	

 
Policy Model: The policy model enriches the overall teaming model with additional information 

regarding rules that control the teaming process in order to achieve effective teaming interaction and 
fulfill the team’s goals. In particular, this encompasses external policies adhering to legal and ethical 
requirements or company regulations, as well as internal policies that are rules driven by the teaming 
process and provide a mechanism to increase flexibility and make the teaming process more adaptive 
at runtime. 

These teaming model elements are formalized and stored in a knowledge graph, which makes it 
possible to associate and ground them in application-specific background knowledge – i.e., a concrete 
description of organizational roles and responsibilities, the production system, its resources and its 
environment, as well as industrial products and production processes. The teaming model should 
provide means to model effective teaming interaction according to the ”Big Five” framework as well 
as enabling coordinating mechanisms that form a trust-enhancing communication cycle. 



5. Teaming.AI	platform	overview	

The Teaming.AI platform supports the development and execution of a flexible model for dynamic 
teaming of human stakeholders and AI systems in order to improve learning and knowledge transfer. 
A key goal is to enable better coordination of work sharing across teams of human agents and AI 
components. The central coordination element in the Teaming.AI platform is the Teaming Engine, 
which monitors the execution environment, tracks the dynamic context of the enacted teaming process 
in the production environment and applies policies to orchestrate teaming processes. This includes 
making decisions based on specified policies, e.g., who executes a specific task, when roles between 
task performer and task supporter need to be switched etc. 

Figure 1B depicts the architectural components of the Teaming.AI platform. The interaction and 
communication are based on events, which are handled by a central event stream broker. Events can 
be enriched either automatically or manually with specific process knowledge (e.g., machine data or 
error descriptions). The knowledge graph runtime is responsible for filtering and aggregating these 
events into meaningful so-called complex events. These complex events are stored in a dynamic data 
knowledge graph and analyzed further in order to identify higher level correlations that can be used 
for decision making (e.g., to automate quality inspection of work pieces). With the use of a 
knowledge graph [15], we strive for solutions that allow for the generation of ML models that are 
easier to interpret and can make the derived information semantically explicit. 

The knowledge in Teaming.AI has both static and dynamic parts. As static knowledge, we 
consider all knowledge that only changes at low frequencies (e.g., less than daily), for example 
product data, organizational structures, and policies. Dynamic knowledge on the other hand changes 
at higher frequencies, which may include data streams (e.g., state of machines or work pieces). These 
updates are retrieved from the event stream broker and need to be incorporated into the knowledge 
graph, e.g., by means of stream reasoning (see [16]) or online machine learning (see [17]). 

Most current knowledge graph solutions have comparatively low update rates and would be 
considered static in the above frequency-of-change based definition. Hence, novel techniques are 
required that refine the current state of the art in knowledge graph processing. In Teaming.AI, we 
follow a modular approach that facilitates purpose-driven, agile construction of reusable knowledge 
graphs across multiple layers of abstraction and perspectives. This means e.g., that every layer of the 
knowledge graph represents a partial view on the real-world system that links relevant aspects for a 
given perspective (e.g. business / operational). 

6. Conclusion	

A key element for successful human-AI teamwork is a careful design and implementation of the 
coordinating mechanisms involved. Mutual trust increases if the appropriate amount of information is 
shared through a closed-loop communication between humans and AI components. The envisioned 
Teaming.AI platform has the goal to orchestrate the information exchange and to organize the 
collected information within a layered knowledge graph, reduce the information to its key aspects and 
semantically enrich this knowledge with context information. Transparent storage and processing of 
information is the foundation for a decision support system that can be understood and further 
analyzed by human team members. 
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