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Abstract		
Zero Defect Manufacturing (ZDM), being one of the main concepts of Industry 4.0, is 
especially critical in the offset printing industry, since it is associated with production 
enhancement and environmental footprint reduction. This work proposes a Machine Learning 
clustering-based approach to determine hidden order attributes that can be used to define a 
beneficial machine selection policy for the incoming orders in terms of fault occurrence 
reduction and production enhancement. Three clustering methods (k-means, agglomerative 
hierarchical clustering and density-based scanning) are modified in order to reveal the hidden 
order features that have a significant impact on the number of defected pieces. First, the ML 
framework of the clustering methods is presented, mainly including the fine-tuning of the 
learning parameters. Then, the trained ML models are compared in terms of their 
performance on unseen data to evaluate the machine selection process. The evaluation 
outcomes demonstrate the ability of the clustering ML framework to ensure proactive 
machine selection policy, reducing the printing defects. 
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1. Introduction	

The primary target of Industry 4.0 is to ameliorate the current conventional production methods by 
combining innovative data technologies from both physical and digital contexts [1, 2]. This 
transformation will enable the manufacturing production to move from the state of a posteriori 
management to the state of timely prediction of optimal resource and process management, 
optimizing the quality of the product and the usage of raw materials, while also minimizing the 
production chain defects [3]. The concept of Zero-Defect Manufacturing (ZDM) has therefore been 
adapted by the majority of the stakeholders operating in the manufacturing domain, not only due to 
the effective cost reduction in their production chain, but also due to the reduction of their 
environmental footprint [4]. For these purposes, the whole industrial field is currently moving beyond 
reactive resource management towards proactive and predictive solutions, necessitating the 
establishment of Artificial Intelligence (AI)-assisted solutions. In the context of Industry 4.0, AI-
based techniques and Machine Learning (ML) methods are used as the primary instigators to enable 
self-optimization and automation in the manufacturing process, as well as provide fault detection and 
real-time decision making functionalities towards ZDM [1–4].  

By leveraging proactive and predictive measures in the industrial production chain, product quality 
can be effectively maximized and the cost associated with defects can be eliminated. AI/ML-assisted 
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solutions have therefore been developed for typical manufacturing applications such as fault 
detection, predictive maintenance, optimization of the manufacturing process and machine 
configuration parameters and enhancement of the energy savings [3, 5]. With the use of ML 
algorithms, prediction of defected products can be identified in advance and machine configuration 
parameters can be linked with the fault occurrence [6, 7].  

 Offset printing is one of the widely-used printing processes ever developed, accommodating many 
types of printing jobs, including newspapers, magazines, brochures, labels, books, and many others. 
The main identified issues that still remain unsolved are: (i) the number and the diversity of 
characteristics of the orders do not allow for an easy standardization of the processes; (ii) the 
deficiencies are typically observed during the quality control of the final product, thus leaving no 
space for corrective actions; (iii) existing rule-based optimization methods work in an a-posteriori 
management instead of timely prediction of optimal resource management; (iv) the printing industry 
exhibits a significant environmental footprint, since the manufacturing process involves extensive 
usage of raw materials (water, paper, ink, aluminum), where defected products contribute the largest 
part. 

In the present exploratory work, we propose three modified Unsupervised Learning (UL) modeling 
algorithms in order to facilitate the standardization of ML-empowered methods in the offset printing 
industry. The present work proposes: (i) unsupervised learning-driven modeling of each machine with 
the goal of revealing the cluster of the minimum defects per order; (ii) investigation of the hidden 
attributes of machines to optimize the machine selection policy; (iii) construction of machine-specific 
clustering models using three well-established algorithms, namely k-means, agglomerative 
hierarchical clustering and density-based scanning (DBSCAN); (iv) a constraint-dependent clustering 
approach based on pre-defined functions; (v) quantitative validation of the developed models 
compared to the existing machine selection policy. 

2. Methods	

2.1. Dataset	Description	

The offset printing process consists of three phases, namely pre-press, press and post-press. In 
each one of these three phases, several (raw, organic, chemical and recycled) materials are used, 
including paper, water, ink, aluminum, alcohol solutions, having a direct impact not only on the 
environmental footprint but also on the economic growth. This paper exploits a subset of historical 
dataset obtained from the press stage of an offset printing company during the last two years. Data 
collection was performed at the single-order level for five operating printing machines, meaning that 
the features of a given order were recorded, along with the associated machine ID. Specifically, the 
dataset contains 10K entries per machine (a total of 50K data), corresponding to 10K historical orders.  

The collected features for each order are: (i) Quantity: Number of pieces requested in a particular 
order. Indicative values range from 100 to 1000 pieces, depending on the order type; (ii) Quality: 
Paper quality requested in a particular order. Quality is a categorical variable that takes values 
‘Velvet’, ‘Uncoated’ or ‘Illustration/Gloss’. Note that ‘Velvet’ is the most-frequently requested paper 
quality (57%), followed by ‘Uncoated’ (26%) and ‘Gloss’ (17%); (iii) Color: Color requirements of a 
particular order. Color is also a categorical variable that takes values ‘Color’ (typical 4-color printing, 
88%), ‘Color+’ (4+1 color printing, 10%) or ‘B&W’ (grayscale printing, 2%); (iv) Ink: Ink level 
required for each piece of a particular order. Typical ink values vary between 0.1 to 1 gr; (v) Type: 
The requested outcome type of a particular order. Type is a categorical variable with values ‘Book’ 
(30%), ‘Poster’ (30%) or ‘Journal’ (40%); (vi) Accuracy: The ratio between the accurately printed 
pieces and the quantity of the order. Accuracy is a scalar variable ranging from 0 – 1 and reflects the 
percentage of defected pieces in the order (1 corresponds to zero defected pieces).  

 
 



2.2. Machine	 Selection	 through	 Unsupervised	 Learning	 and	 Constraint	
Clustering	

The modeling process follows the basic assumption that one or multiple order features are 
associated with enhanced accuracy levels. Given the variability in the number and shape of the 
clusters resulted by each algorithm, we determined an objective function to stabilize the algorithms’ 
hyper-parameters (number of clusters for k-means and agglomerative clustering and minimum 
number of points in a ε radius for DBSCAN). The Accuracy Discrimination Score (ASD) is used as 
an objective function: 

 
 𝐴𝑆𝐷! = (max

!!!"
[𝐴!!] + 𝑆𝑆!)/𝐶! , (1) 

 
where 𝐶! is the number of clusters exceeding the accuracy threshold, 𝐴! is the within-cluster accuracy 
score (90%) and 𝑆𝑆! is the silhouette score over the 𝑘 clusters (ASD value is zero in case that 𝐶! =
0). The ASD targets to jointly maximize the within-cluster accuracy score, while also minimizing the 
number of clusters that exhibit 90% accuracy levels, enabling the determination of constraint-
clustering models. 

3. Simulation	Results	

3.1. Hyperparameter	Tuning	

K-Means. The 10K dataset collected by each machine is provided to the algorithm using a varying 
number of clusters k (1 to 100). K-means iteratively assigns the data samples to k clusters, targeting to 
minimize the within cluster variance (6-dimensional squared distance between each sample and the 
cluster centroid). Figure 1 shows the ADS relative to k for each individual machine. Evidently, ADS 
is maximized for Machines 1-3 and 5 with relatively low number of total clusters k, while the dataset 
obtained by Machine 4 requires a significant k=88 in order to identify at least one cluster with 
accuracy level above 90%.   

 

 
Figure	 1: ADS	 relative	 to	 the	 number	 of	 clusters	 k	 for	 the	 five	 printing	 machines	 using	 k-means	
algorithm.	Colored	arrows	designate	the	variable	k	exhibiting	maximum	ADS. 

 
Agglomerative Hierarchical Clustering. The hierarchical clustering algorithm initially considers 

that each data sample forms its individual cluster. Then, depending on the distance between the data, 
adjacent samples in the 6-dimensional space are iteratively grouped together until the defined number 
of clusters k is reached. Similarly to the k-means algorithm, the ADS for varying k (1 to 100) is 
shown in Figure 2, along with the number of clusters k exhibiting the maximum ADS value for each 
machine. 

 



 
Figure	 2: ADS	 relative	 to	 the	 number	 of	 clusters	 k	 using	 agglomerative	 hierarchical	 clustering.	
Colored	arrows	designate	the	variable	k	exhibiting	maximum	ADS. 

 
DBSCAN. The density-based clustering algorithm is suitable for more complex clusters, e.g. when 

dense data areas are nested. The algorithm identifies core points in the data samples that are used to 
establish clusters depending on the minimum number of neighbouring data points N in radius ε. For 
this reason, the parameters N, ε are jointly varied in order to identify the optimal (N, ε) pair that 
maximizes the ADS. Figure 3 depicts the ADS as a function of (N, ε) as surface plot for each 
individual machine. 

 

 
Figure	3:	Machine-specific	2D-surface	plot	of	Objective	score	(ADS)	as	a	function	of	(N,	ε).	Red	dots	
indicate	the	(N,	ε)	points	of	objective	maxima.		

3.2. Validation	Results	and	Machine	Labeling	

A validation dataset containing 100 unseen orders per machine, each one exhibiting accuracy 
levels above 90%, was used to verify the performance of the pre-trained models. The performance 
metric for each machine was calculated as the ratio between the number of validation samples 
grouped within the best-accuracy cluster and the total number of validation samples. For 
benchmarking purposes, Figure 4 depicts the performance of the three clusters along with a round-
robin machine selection policy. All metrics are illustrated in relation to the ground-truth performance 
(Relative Performance Gain - RPG), resulted by the existing machine selection policy (rule-based 
approach, primarily exploiting specifications of the machines’ manufacturers). 

As evident from Figure 4, k-means outperforms the rest of the clustering models in Machine 1 and 
3, implying that training datasets can be clustered following geometrically centroid-based criteria. On 
the contrary, datasets from Machines 2 and 5 formed density-based groups to isolate the best-accuracy 
clusters, thereby showing beneficial RPG for DBSCAN. Finally, Machine 4 did not reveal any 
excessive RPG score, concluding that there are no gains in using clustering methods for proactive 
machine selection. Note that, an RPG value of 1 denotes that a particular model performs equivalently 
with the currently used policy. 

 
 



 
Figure	 4:	 Relative	 Performance	 Gain	 of	 the	 ML	 clustering	 models	 and	 a	 round-robin	 scheme	
employing	100	validation	data	per	machine.	

 
The presented ML clustering methods can be used to further analyze the features of the data 

samples that form clusters with enhanced accuracy scores and determine the hidden order attributes 
for each machine. To this end, a machine/feature labeling can be established for beneficial machine 
selection policy (new orders are assigned to the printing machine showing suitable feature labels), 
which in turn will contribute to the enhancement of the production efficiency, the minimization of 
defected products and the reduction of the company’s environmental footprint. 
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