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Abstract
Model averaging has become a standard for improving neural networks in terms of accuracy, calibration, and the ability to
detect false predictions (FPs). However, recent findings show that model averaging does not necessarily lead to calibrated
confidences, especially for underconfident networks. While existing methods for improving the calibration of combined
networks focus on recalibrating, building, or sampling calibrated models, we focus on the combination process. Specifically,
we evaluate the impact of averaging logits instead of probabilities on the quality of confidence (QoC). We compare combined
logits instead of probabilities of members (networks) for models such as ensembles, Monte Carlo Dropout (MCD), and Mixture
of Monte Carlo Dropout (MMCD). Comparison is done using experimental results on three datasets using three different
architectures. We show that averaging logits instead of probabilities increase the confidence thereby improving the confidence
calibration for underconfident models. For example, for MCD evaluated on CIFAR10, averaging logits instead of probabilities
reduces the expected calibration error (ECE) from 12.03% to 5.44%. However, the increase in confidence can bring harm to
confidence calibration for overconfident models and the separability between true predictions (TPs) and FPs. For example, for
MMCD evaluated on MNIST, the average confidence on FPs due to the noisy data increases from 51.31% to 94.58% when
averaging logits instead of probabilities. While averaging logits can be applied with underconfident models to improve the
calibration on test data, we suggest to average probabilities for safety- and mission-critical applications where the separability
of TPs and FPs is of paramount importance.
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1. Introduction
Recently, averaging the predictions of multiple stochas-
tic or deterministic networks has become a standard ap-
proach for improving accuracy [1, 2] and uncertainty
estimates [3]. Generally, the quality of uncertainty es-
timates (e.g.: QoC) is assessed by the degree of calibra-
tion and/or the ability to detect FPs. Model averaging
can yield well-calibrated confidence [4, 5] and is one of
the state-of-the-art methods for detecting FPs caused
by out-of-distribution examples [4, 3]. However, recent
findings [6, 7, 8] show that model averaging does not nec-
essarily lead to calibrated confidence, especially when
the networks are built using modern regularization tech-
niques, such as mixup [9] or label smoothing [10, 11].
This is because modern regularization techniques can
(strongly) regularize networks, resulting in underconfi-
dence. Furthermore, averaging underconfident networks
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produce more underconfident networks. For example, [7]
showed that averaging networks trained with modern
regularization techniques resulted in more underconfi-
dent networks and therefore miscalibrated predictions.
[12] supported this argument by theoretically and empir-
ically showing that averaging calibrated networks do not
always lead to calibrated confidences. Calibrating confi-
dences of averaged networks has received little attention
in the literature. Generally, post-processing calibration
methods, such as temperature scaling [13], can be used
to recalibrate the confidences of averaged networks, as
demonstrated in [8, 12]. From [14] and further supported
by [8], confidence calibration in model averaging is cor-
related to diversity inherent in individual networks and
the more diverse the networks, the better the calibration.
Motivated by this observation, [14] promoted model di-
versity using structured dropout to reduce calibration
errors. [7] proposed class-adjusted mixup that trains
less confident networks by evaluating the difference be-
tween accuracy (estimated on a validation dataset after
each training epoch) and the confidence of each train-
ing sample to activate or deactive mixup training for
overconfidence (average confidence > accuracy) or un-
derconfidence (average confidence < accuracy), respec-
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tively. All these methods for improving the calibration
of combined networks focus on recalibrating, building,
or sampling the calibrated networks. However, this work
focuses on combining the networks. Specifically, we ad-
dress the question: What is the impact of averaging
logits instead of probabilities of multiple (stochastic
or deterministic) networks on the QoC?

We hypothesized that averaging logits instead of prob-
abilities of multiple networks increases the confidence
of the averaged network. This is because logits (inputs
to softmax), which can be interpreted as found evidence
for possible classes [15], are continuous values normal-
ized using the softmax to produce discrete probabilities.
The softmax normalization of continuous values (log-
its) to discrete values (probabilities) causes information
loss and possible robustness to changes in the magni-
tudes of logits. This implies that the softmax function
is a nonlinear function that maps multiple logit vectors
with large differences in magnitudes to the same discrete
probability vector. We evaluated the impact of the in-
crease in confidence caused by averaging logits instead
of probabilities on the QoC. Specifically, we evaluated the
QoC by assessing the degree of confidence calibration,
which measures the difference between the predicted
(average confidence) and true probabilities (empirical ac-
curacy). Furthermore, we evaluated the QoC by assessing
its ability to seperate TPs and FPs. To provide empirical
evidence for evaluating the QoC, we considered the logit
averaging against probability averaging and compared
both approaches using different averaged models, such
as ensemble, MCD, and MMCD. The comparison was
based on results from different experiments conducted
on three datasets, namely, MNIST, FashionMNIST, and
CIFAR10 evaluated on VGGNet, ResNet, and DenseNet,
respectively.

Results show that averaging logits instead of probabil-
ities preserves accuracy, but increases confidence. For
example, for MCD evaluated on CIFAR10 (see Table 2),
the accuracy remained around 85.36% while the aver-
age confidence increased from 73.35% to 80.04% when
we averaged logits instead of probabilities. Furthermore,
given underconfident models, the increase in the degree
of confidence reduces the calibration error on the test
data. For example, for MCD evaluated on CIFAR10, ECE
dropped from 12.04% to 5.40% when the average confi-
dence increased from 73.35% to 80.04%. However, given
overconfident models, the increase in the degree of con-
fidence increased the calibration error on the test data.
For example, for the ensemble evaluated on CIFAR10 (see
Table 3), ECE increased from 3.03% to 7.40% when the av-
erage confidence increased from 89.43% to 96.17%. Finally,
for underconfident or overconfident models, the increase
in the degree of confidence can harm the separability
between TPs and FPs. This is because averaging logits
instead of probabilities increases the confidence of both

TPs and FPs. Therefore, FPs can be made with high confi-
dence similar to TPs. For example, for MMCD evaluated
on FashionMNIST (see Table 4), the average confidence
on FPs due to the noisy data increased from 51.31% to
94.58% when averaging logits instead of probabilities. In
summary, we provide empirical evidence demonstrating
how combining logits instead of probabilities of multiple
(stochastic or deterministic) networks

• preserves accuracy, but increases the confidence
on TPs and FPs.

• reduces the calibration error (given underconfi-
dent networks), but increases the calibration error
(given overconfident networks).

• can harm the separability between TPs and FPs.

2. Related works
The combination process describes how multiple mem-
bers are combined and the information type (e.g., logits
or probabilities) that is combined. Several approaches
such as stacking [16] and voting [17, 18, 19]) have been
reported for aggregating multiple predictions. Some of
these approaches have been reviewed and discussed in
[20, 21] and experimentally compared in [18, 16] to find
the one with the best accuracy. It was found that one
approach improves accuracy better than another depend-
ing on several factors, such as the number of members,
diversity inherent in individual members, and accuracy
of individual members. However, in [22], we compared
approaches such as averaging, plurality voting, or major-
ity voting to find the one that better captures uncertainty.
We found that the averaging approach captures uncer-
tainty better than voting approaches. Before our work,
[23] argued that simple averaging approaches are more
robust than voting approaches. This argument was fur-
ther supported by [24]. This is because the averaging
approach considers all members’ predictions, whereas
plurality/majority voting ignores uncertain predictions
and therefore, reduces the uncertainty in the combined
members’ prediction. Although various combination ap-
proaches have been presented and compared in the liter-
ature, the information type that is combined has received
relatively little attention. [25] showed that averaging
quantiles rather than probabilities improve the predic-
tive performance. Generally, for neural networks and
classification problems in particular, multiple members
(networks) are combined by averaging probabilities [16].
[16] evaluated the impact of combining logits instead of
probabilities on accuracy, however, the impact on the
QoC remains unclear. Thus, we investigated the impact
of combining logits instead of probabilities on the QoC.



3. Background
In the context of image classification, let the training
data 𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑖 ∈ R𝐻×𝑊×𝐶 , 𝑦𝑖 ∈ 𝑈𝐾}𝑖∈[1,𝑁 ] be a
realization of independently and identically distributed
random variables (𝑥, 𝑦) ∈ 𝑋 × 𝑌 , where 𝑥𝑖 denotes
the 𝑖𝑡ℎ input and 𝑦𝑖 its corresponding one hot encoded
class label from the set of standard unit vectors of R𝐾 ,
𝑈𝐾 . 𝑋 and 𝑌 denote the input and label spaces. 𝐻 ×
𝑊 × 𝐶 denotes the dimension of input images, where
𝐻 , 𝑊 , and 𝐶 refer to the height, weight, and number of
channels, respectively. 𝐾 and 𝑁 denote the numbers of
possible output classes and samples within the training
data, respectively.

3.1. Convolutional neural network (CNN)
A CNN is a nonlinear function 𝑓𝜃 parameterized by model
parameters 𝜃, called the network weights. Here, it maps
input images 𝑥𝑖 ∈ R𝐻×𝑊×𝐶 to class labels 𝑦𝑖 ∈ 𝑈𝐾 ,

𝑓𝜃 : 𝑥𝑖 ∈ R𝐻×𝑊×𝐶 → 𝑦𝑖 ∈ [0, 1]𝐾 ; 𝑓𝜃(𝑥𝑖) = 𝑦𝑖 (1)

The network parameters are optimized on the train-
ing dataset, 𝐷𝑡𝑟𝑎𝑖𝑛. Given a new data sample 𝑥 ∈
R𝐻×𝑊×𝐶 , a trained CNN 𝑓𝜃 predicts the corresponding
target 𝑦 = 𝑓𝜃(𝑥) using the set of trained weights 𝜃. The
network output (logit) is given by 𝑧 = 𝑓𝜃(𝑥), from which
a probability vector 𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧), can
be computed. In the following, this probability vec-
tor will be abbreviated by 𝑝 and its entries by 𝑝𝑘 with
𝑘 = 1, . . . ,𝐾 and

∑︀𝐾
𝑘=1 𝑝𝑘 = 1. Further, we get the

predicted confidence 𝑐 = max𝑘(𝑝𝑘) and predicted class
label 𝑦 = argmax𝑘(𝑝𝑘)

3.2. Monte Carlo Dropout (MCD)
MCD was investigated in [26, 27, 28] for uncertainty
estimation. It is one of the most widespread Bayesian
methods reviewed in [3]. It approximates the predic-
tion 𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛) using the mean of 𝑆 stochastic for-
ward passes, 𝑝(𝑦|𝑥, 𝜃1), ..., 𝑝(𝑦|𝑥, 𝜃𝑆), representing 𝑆
stochastic CNNs parameterized by samples 𝜃1, 𝜃2,..., and
𝜃𝑆 . That is

𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛) ≈ 1

𝑆

𝑆∑︁
𝑠=1

𝑝(𝑦|𝑥, 𝜃𝑠) ≈ 1

𝑆

𝑆∑︁
𝑠=1

𝑓𝜃𝑠(𝑥). (2)

Specifically, MCD approximates the prediction with a
dropout distribution realized by sampling weights with
masks drawn from known distributions, such as Gaus-
sian, Bernoulli, or a cascade of Gaussian and Bernoulli
distributions [22]. For example, given the activation vec-
tor 𝑎 fed to a MCD layer (placed for example at the input
of the first fully-connected layer) and assuming that sam-
pling is realized with masks drawn from a cascade of

Gaussian and Bernoulli distribution, the MCD layer sam-
ples the 𝑗𝑡ℎ element of 𝑎 as 𝑎𝑠

𝑗 = 𝑎𝑗 * 𝛼𝑗 * 𝛽𝑗 with
𝛼𝑗 ∼ 𝒩 (1, 𝜎2 = 𝑞/(1 − 𝑞)) and 𝛽𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞).
Here, 𝑞 denotes the dropout probability. In this work, we
can refer to MCD as an average of 𝑆 stochastic CNNs.

3.3. Ensemble
An (explicit) ensemble was investigated in [4, 27, 28] for
uncertainty estimation. It approximates the prediction
𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛) by learning different settings. Given a set
of CNNs 𝑓𝜃𝑚 for 𝑚 ∈ 1, 2, ...,𝑀 , the ensemble predic-
tion is obtained by averaging over the predictions of the
CNNs. That is,

𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛) :=
1

𝑀

𝑀∑︁
𝑚=1

𝑝(𝑦|𝑥, 𝜃𝑚)

:=
1

𝑀

𝑀∑︁
𝑚=1

𝑓𝜃𝑚(𝑥).

(3)

In this work, we can refer to an ensemble as an average
of 𝑀 deterministic CNNs.

3.4. Mixture of Monte Carlo Dropout
(MMCD)

MMCD was investigated in [29, 30, 31] for uncertainty
estimation. It combines both MCD and ensemble. For
prediction estimation, MCD evaluates a single feature rep-
resentation, but additionally considers the uncertainty
associated with the feature representation. However,
an ensemble evaluates multiple feature representations
without considering the uncertainty associated with in-
dividual feature representations. Hence, MMCD applies
MCD to an ensemble to evaluate multiple feature repre-
sentations and consider the uncertainty associated with
individual feature representations. Given a set of CNNs
𝑓𝜃𝑚 for 𝑚 ∈ 1, 2, ...,𝑀 , the MMCD prediction is ob-
tained by averaging over the predictions of all stochastic
CNNs. That is,

𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛) ≈ 1

𝑀 · 𝑆

𝑀∑︁
𝑚=1

𝑆∑︁
𝑠=1

𝑝(𝑦|𝑥, 𝜃𝑚𝑠)

≈ 1

𝑀 · 𝑆

𝑀∑︁
𝑚=1

𝑆∑︁
𝑠=1

𝑓𝜃𝑚𝑠
(𝑥).

(4)

In this work, we can refer to MMCD as an average of
𝑀 · 𝑆 stochastic CNNs.

4. Combining logits instead of
probabilities

The output layer of a CNN-based classifier includes
𝐾 output neurons with a softmax activation function,



(a) Logit averaging (b) Probability averaging

Figure 1: Example showing the difference between averaging logits and averaging probabilities in an ensemble.

which normalizes its inputs (continuous values) to pro-
duce discrete probabilities 𝑝𝑘 (with 𝑘 = 1, . . . ,𝐾 and∑︀𝐾

𝑘=1 𝑝𝑘 = 1) representing the probability that the
input image belongs to the class associated with the
𝑘𝑡ℎ output neuron. The input to the softmax func-
tion are logits and interpreted as evidence for possible
classes [15]. The discrete probability 𝑝𝑘 is interpreted
as the model confidence that the input belongs to the
class associated with the 𝑘𝑡ℎ output neuron. Given the
logit vector 𝑧 =

[︀
𝑧1 . . . 𝑧𝐾

]︀𝑇 , the softmax estimates

𝑝 =
[︀
𝑝1 . . . 𝑝𝐾

]︀𝑇 as

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

=
1∑︀𝐾

𝑘=1 exp(𝑧𝑘)

[︀
exp(𝑧1) . . . exp(𝑧𝐾)

]︀𝑇
.

(5)

From Figure 1, given an ensemble of 𝑀 deterministic
CNNs with logits 𝑧𝑚, the average logit 𝑧 can be estimated
as

𝑧 :=
1

𝑀

𝑀∑︁
𝑚=1

𝑧𝑚 :=
1

𝑀

𝑀∑︁
𝑚=1

𝑓𝜃𝑚(𝑥). (6)

and the predicted probability vector of the ensemble of
deterministic CNNs can be reformulated as

𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧). (7)

Given MCD representing an ensemble of 𝑆 stochastic
CNNs with logits 𝑧𝑠, we can estimate the average logit 𝑧
as

𝑧 ≈ 1

𝑆

𝑆∑︁
𝑠=1

𝑧𝑠 ≈ 1

𝑆

𝑆∑︁
𝑠=1

𝑓𝜃𝑠(𝑥), (8)

and reformulate the predicted probability vector of MCD,
as shown in (7). Similarly, given MMCD representing an
ensemble of 𝑀 · 𝑆 stochastic CNNs with logits 𝑧𝑚𝑠 , we
can estimate the average logit 𝑧 as

𝑧 ≈ 1

𝑀 · 𝑆

𝑀∑︁
𝑚=1

𝑆∑︁
𝑠=1

𝑧𝑚𝑠 ≈ 1

𝑀 · 𝑆

𝑀∑︁
𝑚=1

𝑆∑︁
𝑠=1

𝑓𝜃𝑚𝑠
(𝑥), (9)

and reformulate the predicted probability vector of
MMCD, as shown in (7). From Figure 2, averaging logits
instead of probabilities of multiple stochastic or deter-
ministic CNNs increases the confidence of the averaged
CNNs. Intuitively, logit averaging provides the best evi-
dence (characterized by a low level of uncertainty caused
by the reduction of inductive biases inherent in individ-
ual logits) for making decisions. However, probability
averaging provides the best confidence associated with
decisions made using weak evidence (characterized by
a high level of uncertainty caused by inductive biases
inherent in individual logits). This implies that a decision
made using probability averaging considers more uncer-
tainty than that made using logit averaging. In this work,
we evaluated the impact of the possible increase in the
degree of confidence caused by applying logit averaging
instead of probability averaging on the QoC.

5. Experiments

5.1. Experimental setup
We hypothesized that the QoC of CNNs (strongly) de-
pends on the task-difficulty (specified using the train-
ing data), the underlying architecture, and/or the train-
ing procedure (mostly influenced by the regularization



 

 Softmax

Figure 2: Example showing how averaging logits in-
stead of probabilities increases the confidence of an en-
semble of four deterministic CNNs: 𝑧 = 1

4

∑︀4
𝑚=1 𝑧

𝑚,
𝑝𝑧 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧), and 𝑝 = 1

4

∑︀4
𝑚=1 𝑝

𝑚 with 𝑝1 =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧1), 𝑝2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧2), 𝑝3 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧3),
and 𝑝4 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧4). One can see that averaging log-
its (𝑝𝑧) results in more confident predictions than averaging
probabilities (𝑝). This is attributed to averaging logits being
more sensitive to the magnitude of logit values than averaging
probabilities. Here, 𝑧𝑚 with large values contributes most to
𝑧. In our example, 𝑧 is mostly influenced by the values of 𝑧1.
That is, the contributions of 𝑧2, 𝑧3, and 𝑧4 to 𝑧 are minor.
However, 𝑝 is influenced by the values of all probability vec-
tors 𝑝𝑚 and therefore, is less sensitive to the magnitude of
individual logits.

strength). Therefore, we compared logits and probabili-
ties averaging on three datasets to evaluate the impact of
the task-difficulty on the QoC. Moreover, we compared
logits and probabilities averaging using three different
architectures to evaluate the impact of the underlying ar-
chitecture on the QoC. Specifically, we evaluated MNIST
[32] on VGGNets [1], FashionMNIST [33] on ResNets [2]
and CIFAR10 [34] on DenseNets [35]. Finally, we com-
pared logits and probabilities averaging on CNNs trained
using two regularization strengths (strong and weak reg-
ularization summarized in Table 1) to evaluate the impact
of the regularization strength on the QoC. We observed
strong and weak regularization results in underconfident
and overconfident CNNs, respectively. All CNNs were
regularized using batch normalization [36] layers placed
before each convolutional activation function. All CNNs
were randomly initialized and trained with random shuf-
fling of training samples. All CNNs were trained using
the categorical cross-entropy and stochastic gradient de-
scent with momentum of 0.9, learning rate of 0.02, batch
size of 128, and epochs of 100. All images were standard-
ized and normalized by dividing pixel values by 255. For
all MCD and MMCD, we sampled activations of the first
fully-connected layer using masks drawn from a cascade
of Bernoulli and Gaussian distributions [22] and using
a dropout probability of 0.5. We performed 100 stochas-
tic forward passes (𝑆 = 100) and considered ensembles
consisting of five deterministic CNNs (𝑀 = 5).

Table 1
Summary of values assigned to regularization hyper-
parameters.

Hyper-parameters
Values
(weak regu-
larization)

Values
(strong regu-
larization)

Probability of dropout ap-
plied at inputs to max
pooling layers

- 0.05

Probability of dropout ap-
plied at inputs to fully-
connected layers

0.05 0.5

Rotation range [Degree] [-5, +5] [-45, +45]
Width and height shift
range [Pixel]

[-1, +1] [-5, +5]

Scale intensity range [0.95, 1.05] [0.9, 1.2]
Shear intensity range 0.05 0.1
Additive Gaussian noise
standard deviation range

0.05 0.5

5.2. Evaluation metrics
QoC was evaluated by assessing the degree of confidence
calibration. Specifically, we evaluated the calibration er-
ror using measures, such as the negative log likelihood
(NLL) applied in [4, 5, 31], expected calibration error
(ECE) applied in [13, 8, 12], and Brier score (BS) applied
in [4]. Low values of NLL, ECE, and BS indicate low cali-
bration error and vice versa. Furthermore, we evaluated
QoC by assessing its ability to separate TPs and FPs. Here,
we evaluated the average confidence on evaluation data
causing TPs or FPs. Given evaluation data causing TPs,
we expect the average confidence on the evaluation data
to be high. However, for the evaluation data causing FPs,
we expect low average confidence on the evaluation data.
Moreover, we evaluated the ability to separate TPs and
FPs by evaluating the area under the receiver operator
characteristic (AU-ROC) applied in [37, 5]. AU-ROC sum-
marizes the trade-off between the fraction of TPs that are
correctly detected and those of FPs that are undetected
using different thresholds. In summary, in addition to the
NLL, ECE, and BS, we evaluated the accuracy, average
confidence, and AUC-ROC.

5.3. Evaluation data
We used five evaluation data for different purposes,
namely test data, subsets of the correctly classified test
data, out-of-domain data, swapped data, and noisy data.

Test data represent the test data from the experimental
data, namely, MNIST, CIFAR10, and FashionM-
NIST. These datasets include both correctly clas-
sified and misclassified test data. Test data are
used for estimating the accuracy, NLL, ECE, and



(a) Test data (b) Swapped data (c) Noisy data

Figure 3: Examples of evaluation data for experiments conducted on CIFAR10.

BS. We expect the accuracy to be high and NLL,
ECE and BS to be low on test data.

Subsets of the correctly classified test data
include 1000 correctly classified test data from
the experimental data. Since CNNs will make TPs
on these data, we used these data for evaluating
the average confidence on TPs.

Swapped data were simulated using subsets of the cor-
rectly classified test data structurally perturbed
by dividing images into four regions and diago-
nally permuting the regions. From Figure 3b, the
upper left and right are permuted with the bottom
right and left regions, respectively. Swapped data
include structurally perturbed objects within the
given images. We expect CNNs to make FPs on
swapped data. Therefore, we used these data for
evaluating the average confidence on FPs caused
by structurally perturbed objects.

Noisy data were simulated using subsets of the cor-
rectly classified test data perturbed by applying
additive Gaussian noise with a standard devia-
tion of 500. From Figure 3c, noisy data include
noise within the given images. We expect CNNs
to make FPs on these data. Therefore, we used
these data for evaluating the average confidence
on FPs caused by noisy objects.

Out-of-domain data were simulated using 1000 test
data of CIFAR100 [34]. Since CNNs will make
FPs on these data, we used these data for evalu-
ating the average confidence on FPs caused by
unknown objects.

In general, we expect the average confidence to be high
on TPs and to be low on FPs.

5.4. Experimental results
We evaluate the conducted experiments with respect to
accuracy and QoC.

Table 2 and Table 3 summarize the accuracy, aver-
age confidence, NLL, ECE, and BS of different models
using the two averaging approaches and CNNs trained
using strong regularization (causing underconfidence)
and weak regularization (causing overconfidence). The
results show that averaging logits instead of probabil-
ities do not strongly affect the accuracy. This means
that averaging logits can preserve accuracy. Further-
more, averaging logits instead of probabilities signifi-
cantly increases the average confidence. Figure 2 illus-
trates why the confidence increases. Further, Table 2
shows that averaging logits instead of probabilities sig-
nificantly decreases the NLL, ECE, and BS for under-
condifent CNNs (trained using strong regularization).
This means that averaging logits, unlike averaging prob-
abilities, reduces the calibration error for undercondifent
CNNs. This is because the stronger the regularization,
the lower the confidence and the higher the gap between
accuracy and average confidence. Here, the increase
in the degree of confidence caused by averaging log-
its instead of probabilities reduces the gap between ac-
curacy and average confidence. For example, Table 2
shows that averaging logits instead of probabilities of
the ensemble reduces the gap between accuracy and av-
erage confidence from 18.24(= |88.75 − 70.51|)% to
9.52(= |88.94− 79.42|)% on CIFAR10.

However, the increase in the degree of confidence caused
by averaging logits instead of probabilities increases the cal-
ibration error for overconfident CNNs (trained using weak
regularization). Table 3 provides empirical evidence for
this claim by showing that, on CIFAR10 and FashionM-
NIST, NLL, ECE, and BS of the ensembles increase when
the logits are averaged instead of probabilities. We ar-
gued that the more overconfident the CNNs, the higher



Table 2
Comparison of accuracy[%], average confidence[%] (in bracket), NLL[10−2], ECE[10−2], and BS[10−2] of different models
using two approaches for averaging underconfident CNNs trained using strong regularization: average probabilities (AP) and
average logits (AL). The results were obtained using the test data described in Section 5.3.

Accuracy (Average confidence)↑ NLL ↓ ECE ↓ BS ↓
AP AL AP AL AP AL AP AL

CIFAR10 (DenseNets)
Ensemble 89.52 (84.31) 89.60 (87.97) 34.66 32.81 5.23 2.47 16.13 15.38
MCD 85.36 (73.35) 85.37 (80.04) 52.13 46.55 12.04 5.40 23.32 21.57
MMCD 88.75 (70.51) 88.94 (79.42) 50.83 40.99 18.24 9.55 21.82 18.34
FashionMNIST (ResNets)
Ensemble 92.70 (87.86) 92.58 (90.16) 22.57 20.99 5.15 2.86 11.37 10.87
MCD 90.56 (79.22) 90.56 (83.95) 35.45 30.18 11.47 6.85 15.82 14.57
MMCD 92.65 (76.37) 92.73 (83.78) 35.57 26.96 16.31 9.10 14.87 12.47
MNIST (VGGNets)
Ensemble 99.04 (98.24) 99.04 (98.89) 3.25 2.90 1.03 0.52 1.52 1.41
MCD 98.16 (94.53) 98.16 (96.48) 8.73 6.87 3.81 1.98 2.99 2.79
MMCD 99.03 (94.67) 99.04 (97.46) 6.91 4.13 4.49 1.75 1.89 1.52

Table 3
Comparison of accuracy[%], average confidence[%] (in bracket), NLL[10−2], ECE[10−2], and BS[10−2] of ensembles using
two approaches for averaging overconfident CNNs trained using weak regularization: average probabilities (AP) and average
logits (AL). The results were obtained using the test data described in Section 5.3.

Accuracy (Average confidence) ↑ NLL ↓ ECE ↓ BS ↓
AP AL AP AL AP AL AP AL

CIFAR10 (DenseNets) 88.67 (89.43) 88.88 (96.17) 40.69 54.23 3.03 7.40 16.69 18.07
FashionMNIST (ResNets) 94.49 (95.86) 94.58 (98.43) 20.20 28.00 1.98 4.11 8.36 9.32

the confidence and the higher the gap between accuracy
and average confidence. Here, the increase in the de-
gree of confidence caused by averaging logits instead of
probabilities further increases the gap between the ac-
curacy and average confidence and therefore, increases
the calibration error. For example, Table 3 shows that, on
CIFAR10, averaging logits of the ensemble increases the
gap between the accuracy and average confidence from
0.76(= |88.67−89.43|)% to 7.29(= |88.88−96.17|)%.

In Table 4, the average confidence on TPs and FPs is
shown for underconfident models using both averaging
approaches. The results show that averaging logits instead
of probabilities increases the confidence level on TPs and
FPs. The increase in the average confidence is sometimes
very large for FPs due to the noisy data. For example, for
MMCD evaluated on FashionMNIST, the average confi-
dence on the noisy data increases from 51.31% to 94.58%
when averaging logits. This is because noisy data can
increase the magnitude of logits and averaging logits is
more sensitive to changes in the magnitude of logits than
averaging probabilities (see Figure 2). The increase in the
degree of confidence caused by averaging logits can harm
the separability of TPs and FPs. For example, the increase
in the average confidence on the noisy data from 51.31%
to 94.58% causes the AUC-ROC obtained based on the
evaluation of the degree of confidence to decrease from

84.80% to 42.42%.

6. Discussion
The term ‘combination process’ encompasses how mul-
tiple networks are combined and the information type
combined. It was found in [23, 24, 22] that simple averag-
ing is more robust and captures uncertainty better than
voting approaches. This is because the simple averag-
ing equally weights all predictions, while voting ignores
uncertain predictions. In this work, we compared the
process of averaging logits instead of probabilities. We
empirically showed that averaging logits instead of prob-
abilities increases the confidence while preserving the
accuracy for underconfident or overconfident networks.
This might be because logit averaging preserves the po-
sition of the max element of individual logit vectors, but
is more sensitive to the magnitude of logit values than
probability averaging. Thus, logit values with a large
magnitude contribute the most to the average logit. In
this way, the magnitude of logit values induces a non-
uniform weighting (for logit averaging), which is lost
(for probability averaging). Furthermore, we provided
empirical evidence showing that for underconfident net-
works (trained using strong regularization), the increase
in the confidence caused by averaging logits instead of



Table 4
Comparison of average confidence[%] of different models using two approaches (average probabilities (AP) and average logits
(AL)) for averaging underconfident networks trained using strong regularization and evaluated on TPs and FPs: TPs were
obtained on subsets of the correctly classified test data, while FPs were obtained on swapped, noisy and out-of-domain (OOD)
data described in Section 5.3.

TP ↑ FP (OOD) ↓ FP (Swapped) ↓ FP (Noisy) ↓
AP AL AP AL AP AL AP AL

CIFAR10 (DenseNets)
Ensemble 93.94 96.63 35.39 40.08 51.84 56.03 39.42 58.69
MCD 81.39 88.45 31.61 33.27 40.39 44.69 44.83 69.53
MMCD 79.48 89.53 22.81 23.83 36.26 40.67 28.01 33.08
FashionMNIST (ResNets)
Ensemble 88.01 90.16 55.48 63.21 59.30 67.91 81.39 99.82
MCD 79.39 83.76 47.08 50.36 55.75 59.29 41.23 65.79
MMCD 76.40 83.76 42.76 49.09 45.73 52.70 51.31 94.58
MNIST (VGGNets)
Ensemble 99.09 99.55 57.16 80.45 51.96 62.01 69.58 88.84
MCD 95.12 97.11 64.36 69.17 58.92 62.84 97.95 99.53
MMCD 95.37 98.17 48.89 63.56 43.53 49.39 57.17 78.14

probabilities reduces the calibration error on the test data.
This is because the increase in the degree of confidence
reduces the gap between accuracy and average confi-
dence. However, the increase in confidence caused by
averaging logits instead of probabilities for overconfident
networks (trained using weak regularization) increases
the calibration error on the test data. This is because the
increase in the confidence further increases the gap be-
tween the accuracy and average confidence. This finding
suggests that for underconfident networks, we can aver-
age logits instead of probabilities to reduce the calibration
error. However, we should average probabilities instead
of logits for overconfident networks to avoid increasing
the calibration error. Although the increase in the confi-
dence caused by averaging logits reduces the calibration
error on the test data for underconfident networks, we
empirically showed that it can harm the separability of
TPs and FPs. This is because averaging logits increases
the confidence on both TPs and FPs. Therefore, FPs can
also be made with high confidence similar to TPs. These
findings suggest that reducing the calibration error on
the test data and improving the separability of TPs and
FPs can be two contradicting goals. Improving one may
be at the detriment of the other. Furthermore, for two
models 𝐴 and 𝐵, if 𝐴 is better calibrated than 𝐵, then 𝐴
does not necessarily separate TPs and FPs better than 𝐵.
This implies that calibration methods may be insufficient
for separating TPs and FPs and therefore, ensuring safe
decision-making. Additionally, existing methods for con-
fidence calibration may not help in separating TPs and
FPs. Subsequently, future work will evaluate the ability
of existing methods for confidence calibration to separate
TPs and FPs. We also recommend researchers to evaluate
both the calibration error of their proposed method for con-

fidence calibration and the ability of their proposed method
to separate TPs and FPs. Finally, for mission- and safety-
critical applications where the separability of TPs and FPs
is of paramount importance, we suggest to average prob-
abilities to avoid the negative impact of logits averaging
on the ability to separate TPs and FPs.

7. Conclusion
Due to averaging logits instead of averaging probabili-
ties of stochastic or deterministic networks, the degree
of confidence on TPs and FPs increased. This reduces
the calibration error on the test data for underconfident
networks but affects the separability of TPs and FPs. Our
empirical results show that there is a trade-off between
improving calibration on the test data and improving
the separability of TPs and FPs. Additionally, the in-
crease in the degree of confidence increases the calibra-
tion error on the test data for overconfident networks.
Therefore, averaging logits should only be applied when
combining underconfident networks. For example, we
can average logits instead of probabilities of an ensemble
of networks trained with mixup or other modern data
augmentation techniques to improve calibration on the
test data. Notwithstanding this, for mission- and safety-
critical applications where the separability of TPs and
FPs is essential, we suggest traditionally average prob-
abilities. However, it remains unclear if the findings of
this paper will change if the given networks or the aver-
age logit are calibrated, for example, with temperature
scaling [13]. This suggests a new research direction.
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