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Abstract
Contextual bandits are widely used across the industry in many applications such as search engines, dialogue systems,
recommendation systems, etc. In such applications, it is often necessary to update the policy regularly as the data distribution
changes and new features are being on-boarded frequently. As any new policy deployment directly impacts the user experience,
safety in model updates is an important consideration in real-world bandit learning. In this study, we introduce a scalable
framework for policy update safety via user-defined constraints, supporting fine-grained exploration targets for individual
domains. For example, in a digital voice assistant, we may want to ensure fewer policy deviations in business-critical domains
such as shopping, while allocating more exploration budget to domains such as music. Furthermore, we present a novel
meta-gradient learning method that is scalable and practical to address this problem. The proposed method adjusts constraint
violation penalty terms adaptively through a meta objective that encourages balanced constraint satisfaction across domains.
We conduct extensive experiments using data from a real-world conversational AI system on a set of realistic constraint
benchmarks. Based on the experimental results, we demonstrate that the proposed approach is capable of achieving the best
balance between the policy value and constraint satisfaction rate.
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1. Introduction
Contextual bandits are important machine learning prob-
lems used in many real-world applications such as search
engines, advertisement systems, conversational systems,
etc. In a contextual bandit problem, the agent is tasked to
select the action that achieves the highest reward given
a context. In this setting, the environment is assumed
to have no memory, and the reward is a stochastic func-
tion of the current context, independent of past agent-
environment interactions [1, 2, 3].

For real-world bandits, ensuring safe policy updates
is a crucial consideration. Although there have been a
number of prior studies under safe bandit updates in
an online learning setting, online bandit learning is not
suitable for business-critical production systems where
an updated policy must go through extensive testing to
ensure reliable performance on critical use cases before
it gets deployed. This calls out for an approach for safe
policy updates in the offline bandit learning setting.

In a production system, it is crucial to not only estimate
but also control the changes of behavior a new policy
introduces when compared to the current production
policy. In the literature, this problem has been studied
under safe bandit updates [4, 5, 6] and budgeted bandit
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learning [7, 8], usually targeting exploration budgets or
encouraging a behavior resembling a baseline policy.

In the context of off-policy bandit updates, we define
exploration as any change in the model behavior result-
ing from replacing a current production policy with a
new updated policy. This definition is broad and encloses
stochastic exploration actions as well as any behavior
change when comparing the two consecutive policies.

Furthermore, we consider the scenario in which sam-
ples are naturally classified into a set of domains, each
representing a unique data segment. For example, when
dealing with product reviews, the product category (e.g.,
books, computers, etc.) would be the domain for each
review. In many real-world scenarios, it is desirable to
have fine-grained control on the rate of exploration for
each domain. For example, in a conversational system,
we may want to explore business-critical domains such
as shopping more conservatively, while aggressively ex-
ploring a domain such as entertainment. Note that solely
relying on a method such as Thompson sampling [9] or
epsilon-greedy [10] would neither be effective to meet
the requirements for individual domains nor optimal to
balance between the desired fine-grained exploration and
achieving the highest possible reward.

While previous studies considered different aspects of
constraining a bandit model, to the best of our knowledge
the problem of controlling off-policy bandit behavior
changes across subsequent model updates with a fine-
grained control on budgets for different data segments
(domains) remains unaddressed. This study is the first to
tackle the aforementioned issues by providing a scalable
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and practical approach. The main contributions of this
paper are as follows:

• Introducing a formulation for controlled explo-
ration in the context of off-policy contextual ban-
dit learning considering fine-grained control over
domains based on user-defined constraints.

• Presenting a solution based on the primal-dual
minimax constraint optimization method that is
effective but requires adjusting a few hyperpa-
rameters.

• Proposing a novel meta gradient algorithm to bal-
ance constraint satisfaction and reward maximiza-
tion that works out-of-the-box and outperforms
other methods with no need for hyperparameter
adjustment.

• Conducting extensive experiments on the skill
routing problem in a real-world conversational
AI agent using a set of realistic constraint bench-
marks.

2. Related Work

2.1. Constrained Bandit Learning
The majority of studies on controlled bandit learning con-
sider the case of simple multi-armed stochastic bandits
(i.e., without context) with practical applications in ex-
periment design [8] and automated machine learning [7].
Hoffman et al. [7] suggested a Bayesian approach to two-
phase exploration-exploitation bandit learning in which
there is a pre-specified budget for exploration arm eval-
uations. Another aspect is to ensure safe exploration
actions, which is especially useful for sensitive applica-
tions in industrial machine learning or healthcare. Amani
et al. [6] introduced a solution in which an initial set of
exploration actions is defined, then the exploration set
is gradually expanded to ensure minimal unexpected be-
havior.

For contextual bandits, safety has been an active re-
search topic. Safety can be defined in the action space or
in terms of model updates. For example, Daulton et al. [5]
solves a two-metric setting in which one of the metrics,
reward, is being maximized while enforcing a limit for
regression on an auxiliary metric compared to a baseline
status quo model. Balakrishnan et al. [11] attempts to
learn behavioral constraints by balancing between repli-
cation of the current baseline policy and making new ac-
tions that show promising rewards. In [4] authors define
safety in terms of user experience metrics and suggest de-
ciding on deploying a new model based on conservative
confidence bounds on the off-policy estimates of such
metrics.

2.2. Constrained Optimization
The general problem of constrained optimization has
been studied extensively in the literature. The type of
constraints and the optimization problem are important
aspects in the design of such algorithms. In the context
of constrained optimization of differentiable function
approximators (e.g., neural networks) the constraints can
be defined on the parameters [12], outputs [13], or based
on predefined functions of the model [14, 15].

Most relevant to this paper, penalty methods trans-
late constraints into penalty terms used to encourage
constraint satisfaction in the optimization process. The
quadratic penalty method adds the weighted square of vi-
olation metrics and adjusts the weight either by heuristics
or solving a sequence of problems with a monotonically
increasing penalty weight. The augmented Lagrangian
method leverages Lagrange multipliers to mitigate the
issue of ill-conditioning inherent in the quadratic penalty
method [16, 17]. More applicable to neural network mod-
els, Nandwani et al. [14] suggested a scalable approach to
defining constraints using hinge functions, then solving
the dual minimax problem. Theoretically, given an infi-
nite number of training iterations and a decaying update
rate for the max variables, it is known that the minimax
objective is guaranteed to converge to a local min-max
point [18]. Nonetheless, such a guarantee does not apply
to real-world settings in which a non-convex problem
is being solved in finite time using limited compute re-
sources.

2.3. Meta Learning
In the literature, meta-learning is defined as learning to
learn in which the model training itself is considered
an inner optimization process guided by an outer meta
objective. It is a broad topic spanning multiple areas
of research including reward function discovery in rein-
forcement learning [19, 20], life-long continual learning
[21], few-shot learning [22], and transfer learning [23]
to name a few.

Most relevant to this work is the meta-gradient idea
first suggested by Sutton [24]. In meta-gradient learn-
ing, we use online cross-validation on a meta objective
to compute derivatives with respect to meta parameters
through a differentiable inner optimization loop. Xu et al.
[25] demonstrated the effectiveness of this meta-gradient
idea in deep reinforcement learning to adapt the value
function as the agent is interacting with the environment.
However, in practice, the compute/memory requirement
for computing high-order gradients is a major challenge
for meta-reinforcement learning leading to low-order gra-
dient approximations [26, 25]. Also, while meta-gradient
learning enables adaptive adjustment of hyperparame-
ters, it still requires a carefully designed meta objective



that provides the best learning signal.

3. Constrained Bandit Exploration

3.1. Problem Formulation
We consider the general framework of off-policy con-
textual bandits in which a policy Π is used to select an
action 𝑎 ∈ 𝐴 given the observed context vector (x) to
maximize the scalar reward (𝑟) received from the envi-
ronment. Here, we assume stochastic policies of the form
Π𝜃(𝑎|x) in which a model parameterized by 𝜃 (e.g., a
neural network) is used to assign action selection proba-
bilities to each action given the context. Furthermore, we
assume that each sample belongs to a domain denoted
by 𝑘 ∈ 1 . . .𝑀 that is provided as a feature in x.

In the off-policy setting, the policy is refreshed after
collecting a dataset of samples from the current policy.
We adopt a definition of exploration which considers any
change in the agent behavior compared to the current
policy as an exploration action. Alternatively, we can
consider replication with respect to the current policy
as the rate at which the new policy makes similar de-
cisions to the current policy when both evaluated and
sampled stochastically. We define replication for Π𝜃 with
respect to Π0 based on the L1-distance of their action
propensities given a context x:

ℛ𝜃(x) = 1− |Π𝜃(x)−Π0(x)|1
2

. (1)

In a production system, it is desirable to precisely con-
trol the rate at which the new policy replicates the current
policy for each domain. This ensures safe model updates
for critical domains while enabling exploration for others
that may benefit from an extra exploration budget. Ac-
cordingly, we define constraints to encourage the desired
behavior for samples of each domain, while learning an
off-policy bandit:

argmin
𝜃

Ex,𝑎,𝑟,𝑘∼D 𝐿Π𝜃 ,

𝑠.𝑡. 𝑐𝑚𝑖𝑛
𝑘 ≤ ℛ𝜃(x) ≤ 𝑐𝑚𝑎𝑥

𝑘

(2)

where context, action, reward, and domain (x, 𝑎, 𝑟, 𝑘) are
sampled from a dataset collected from the current policy.
In (2), we use 𝑐𝑚𝑖𝑛

𝑘 and 𝑐𝑚𝑎𝑥
𝑘 to indicate user-defined

replication constraints for domain 𝑘.
𝐿Π𝜃 can be any differentiable off-policy bandit learn-

ing objective, for simplicity of discussion, we consider
the vanilla inverse propensity scoring (IPS) objective:

𝐿Π𝜃 (x, 𝑎, 𝑟) = −𝑟
Π𝜃(𝑎|x)
Π0(𝑎|x)

, (3)

where Π0 is the current policy and 𝑟 is the observed
reward for taking action 𝑎 collected in the dataset.

A common approach to optimize constrained prob-
lems such as (2) is to use the penalty method, translating
constraints into penalty terms that encourage constraint
satisfaction:

argmin
𝜃

Ex,𝑎,𝑟,𝑘∼D[𝐿Π𝜃 (x, 𝑎, 𝑟)+

𝑒u𝑘 max(0, 𝑐𝑚𝑖𝑛
𝑘 −ℛ𝜃(x))+ 𝑒v𝑘 max(0,ℛ𝜃(x)−𝑐𝑚𝑎𝑥

𝑘 )].
(4)

Here, penalty terms are always non-negative and in-
crease if the new policy assigns action probabilities that
deviate from the current policy outside the desired bound-
ary. u ∈ 𝑅𝑀 and v ∈ 𝑅𝑀 are variables that adjust the
weight of each constraint violation term. The exponenti-
ation improves the sensitivity to these parameters and
ensures having non-negative penalty terms. For (4) to
actually solve the original constrained problem of (2),
proper values for u and v need to be used that enable
the best balance between constraint satisfaction and the
policy value. In the constrained optimization literature,
various methods have been suggested to solve this form
of problem (see Section 2.2). In this paper, to solve this
problem, we use the primal-dual minimax method sug-
gested by Nandwani et al. [14] (Section 3.2) as well as a
novel meta-learning method (Section 3.3).

3.2. Minimax Primal-Dual Method
Nandwani et al. [14] suggested a formulation of the aug-
mented Lagrangian method that supports inequality con-
straints. They solve the dual problem which is optimizing
the dual maximin problem to improve the scalability:

min
𝜃

max
u,v

Ex,𝑎,𝑟,𝑘∼D[𝐿Π𝜃 (x, 𝑎, 𝑟)+

𝑒u𝑘 max(0, 𝑐𝑚𝑖𝑛
𝑘 −ℛ𝜃(x))+𝑒v𝑘 max(0,ℛ𝜃(x)−𝑐𝑚𝑎𝑥

𝑘 )].
(5)

Algorithm 1 shows an outline of the policy training us-
ing the minimax method. This method has four hyper-
parameters controlling the max player optimization via
adjusting the update frequency, learning rate, and decay
factors.

Intuitively, the min player is trying to update the policy
parameters while the max player is increasingly penaliz-
ing it for any constraint violation. A stable point of this
algorithm would be to gradually reduce the max player
update rate as the min player is getting better at satisfy-
ing the constraints, eventually satisfying all constraints
resulting in a zero loss for the max player due to the zero
hinge penalty terms.

3.3. Meta Gradient Method
Theoretically, the primal-dual minimax method is capa-
ble of achieving Pareto optimal solutions [18, 14]. How-
ever, in practice, it is infeasible to train for an infinite



Algorithm 1: Minimax constrained bandit opti-
mization algorithm
input :D (dataset), 𝜂 (max learning rate), 𝛾 (max

learning rate decay), 𝜏 (max update
frequency), 𝜉 (max update frequency
decay)

u,v, 𝑡← 0
Initialize(Π𝜃)
for x, 𝑎, 𝑟, 𝑘 ∼ 𝐷 do

/* use loss function of (5) */
𝐿← 𝐿𝑜𝑠𝑠(x, 𝑎, 𝑟, 𝑘, 𝜃,u,v)
if 𝑡%𝜏 is 0 then

/* gradient ascent, max player
*/
u← u+ 𝜂∇u𝐿
v← v + 𝜂∇v𝐿
/* lr/update decay, max player
*/
𝜂 ← 𝛾 × 𝜂
𝜏 ← 𝜉 × 𝜏

end
/* optimize Π𝜃, min player */
𝜃 ← 𝑓(𝜃,∇𝜃𝐿)
/* increment iteration counter */
𝑡← 𝑡+ 1

end

number of iterations, and therefore approximate inner op-
timization loops are being used. To find the right balance
between constraint satisfaction and policy improvement
for the minimax algorithm, it is necessary to carefully
adjust multiple hyperparameters. Note that an extensive
hyperparameter search is undesirable in many real-world
large-scale scenarios that require frequent model updates
as it entails not only significant compute costs associated
with the search but also increases the turn-around time
to deploy refreshed models. To mitigate this issue, we
suggest a meta-gradient optimization idea that adapts
u and v based on a meta objective within the training
process.

Specifically, we define the following meta objective:

𝐿𝑚𝑒𝑡𝑎 = Ex,𝑎,𝑟,𝑘∼D [(1− 𝜆)𝐿Π𝜃 (x, 𝑎, 𝑟) +

𝜆
max(0, 𝑐𝑚𝑖𝑛

𝑘 −ℛ𝜃(x)) + max(0,ℛ𝜃(x)− 𝑐𝑚𝑎𝑥
𝑘 )

𝑝(𝑘)
] ,

(6)

where 𝜆 is a hyperparameter to balance between the
bandit objective and the constraint penalty terms. The
second term is the macro average of constraint violation
terms, in which 𝑝(𝑘) is the prior probability of samples
belonging to domain 𝑘 that can be easily pre-computed
for a large batch of samples.

Note that (6) is not directly dependent on u and v,
instead we rely on online cross-validation [24, 25] to up-
date these variables. We define an inner objective the
same as the min optimization problem of (5), do a differ-
entiable optimization step, evaluate the meta objective
on another batch of data, then update u and v by taking
the derivative of the meta objective through the inner
optimization trace.

Algorithm 2 presents an outline of the meta gradient
optimization method. Due to practical issues of dealing
with high-order gradients, we only consider the imme-
diate impact of a single inner loop update on the meta
objective. We found that discarding the vanilla gradi-
ent descent used for the inner optimization and using
a more advanced optimizer (e.g., Adam) to update Π𝜃

works best. Regarding the 𝜆 hyperparameter, we found
that simply setting 𝜆 = 1 works well in practice. It ef-
fectively means that the meta-gradient solution does not
require any hyperparameter adjustments (experimental
evidence presented in Section 4.4).

Algorithm 2: Meta gradient constrained bandit
optimization algorithm
input :D (dataset), 𝜂 (learning rate), 𝜆 (penalty

weight)
u,v← 0
Initialize(Π𝜃)
for x, 𝑎, 𝑟, 𝑘 ∼ D and x′, 𝑎′, 𝑟′, 𝑘′ ∼ D do

/* clone policy parameters */
𝜃′ ← 𝑐𝑙𝑜𝑛𝑒(𝜃)
/* compute inner loss with 𝜃′ */
𝐿𝑖𝑛𝑛𝑒𝑟 ← 𝐿𝑜𝑠𝑠𝑖𝑛𝑛𝑒𝑟(x, 𝑎, 𝑟, 𝑘, 𝜃

′,u,v)
/* gradient descent on cloned
model */
𝜃′ ← 𝜃′ − 𝜂∇𝜃′𝐿𝑖𝑛𝑛𝑒𝑟

/* compute meta loss */
𝐿𝑚𝑒𝑡𝑎 ← 𝐿𝑜𝑠𝑠𝑚𝑒𝑡𝑎(x

′, 𝑎′, 𝑟′, 𝑘′, 𝜃′, 𝜆)
/* diff. through inner update */
Compute∇u𝐿𝑚𝑒𝑡𝑎 and∇v𝐿𝑚𝑒𝑡𝑎

/* optimize u,v using any
optimizer */
u← 𝑓(u,∇u𝐿𝑚𝑒𝑡𝑎)
v← 𝑓(v,∇v𝐿𝑚𝑒𝑡𝑎)
/* compute inner loss with 𝜃 */
𝐿← 𝐿𝑜𝑠𝑠𝑖𝑛𝑛𝑒𝑟(x, 𝑎, 𝑟, 𝑘, 𝜃,u,v)
/* optimize Π𝜃 using any
optimizer */
𝜃 ← 𝑓(𝜃,∇𝜃𝐿)

end

Intuitively, at each training iteration, the inner objec-
tive naturally minimizes the bandit loss that is penalized
by constraint violation terms proportional to the current
u/v. Then, the meta objective computes a validation loss



that measures the impact of the inner policy update and
u/v on the macro-averaged constraint violations. Finally,
by computing the meta-gradient of the meta objective
through the inner optimization loop, u and v are up-
dated to better encourage the constraint satisfaction for
the next policy update iteration.

4. Experiments

4.1. Setup
We conduct experiments on a bandit agent for the prob-
lem of skill routing in commercial conversational systems
such as Apple Siri, Amazon Alexa, Google Assistant, and
Microsoft Cortana. In these systems, skill routing is a
key component that takes the user’s utterance as well
as signals from automated speech recognition (ASR) and
natural language understanding (NLU), then it decides
which skill and NLU interpretation to be used to serve
the request [27].

The skill routing problem in a commercial dialogue
agent is a natural fit for this study as any policy change di-
rectly impacts the user experience, making safe and con-
trolled policy updates crucial. Additionally, constraints
can be defined based on the NLU domain to ensure pol-
icy safety for business-critical domains such as shopping,
while potentially exploring others such as entertainment
more aggressively.

Figure 1 shows an overview of the model architecture
used in our experiments. Input to the model is a set of
routing candidates i.e., a combination of embedded ASR,
NLU, and context vectors as well as skill embeddings. The
output is the softmax-normalized propensity of selecting
each candidate to handle the user request. The final
model has about 12M trainable parameters consisting of
a language model to encode utterance, embeddings for
contextual signals, and fully-connected layers. As our
architecture closely follows the design choices from Park
et al. [28], we refer readers to that paper for details.

To train and evaluate our models, we use logged policy
actions from a current production policy. The observed
reward is based on a curated function of user satisfaction
metrics (refer to [29] for an example). Our dataset con-
sists of about 40M samples divided into 85% training, 10%
validation, and 5% test sets covering 27 domains that are
imbalanced in the number of samples. All data used in
this work was deidentified to comply with our customer
privacy guidelines.

4.2. Benchmarks
In our experiments, we use three different benchmarks
for the constraint settings: global, critical, and
exploration. The global benchmark aims to con-
strain the new policy to be within an exploration limit

Figure 1: An overview of the network architecture: a set of
hypothesis are encoded as vectors and fed to a bi-directional
LSTM which is followed by a shared MLP and a softmax layer
to normalize the candidate selection probabilities.

Figure 2: The constraint configuration list for the
exploration benchmark.

for all domains. In addition to the global constraint,
critical assert stronger limits for a set of critical do-
mains defined based on the expert knowledge. The
exploration benchmark extends the critical bench-
mark by adding constraints to encourage exploration
for domains that may benefit from additional exploration.
Each benchmark is a list of constraints consisting of a
short description, applicable domain, and the desired
replication range. Figure 2 shows the exploration
benchmark as an example. We provide the exact con-
straint configurations in the appendix.

4.3. Baselines and Metrics
As the first baseline, we consider the vanilla IPS objec-
tive which disregards the constraints. Additionally, we
build on the IPS baseline to consider the constraints using
constraint optimization approaches: quadratic (uniform
constant penalty weight), minimax (Algorithm 1), and



meta-gradient (Algorithm 2). Unless expressed other-
wise, we use Adam optimizer with the default configura-
tion [30] (denoted by 𝑓 in Section 3).

Regarding hyperparameters, for the penalty
weight of the quadratic method we use values from
{0.1, 1, 10, 100, 1000}. For the minimax method
(Algorithm 1), we found that setting 𝜏 and 𝜉 to one
while adjusting 𝜂 and 𝛾 presents very similar results
to adjusting all four hyperparameters. Consequently,
we use a grid search of 𝜂 ∈ {1, 0.1, 0.01} and
𝛾 ∈ {1, 0.999, 0.995} to find the best settings for each
benchmark. For the meta-gradient method (Algorithm 2),
we found that simply using 𝜆 equal to one in the meta
objective (i.e., meta objective only focusing on the
constraints) outperforms other works (see evidence in
Section 4.4). As a result, it does not require adjusting
any hyperparameter and the same setting is used across
all benchmarks. We provide the hyperparameters used
for each benchmark and method in the appendix.

Regarding the evaluation metrics, we use the expected
off-policy reward as well as the rate of constraint vio-
lations averaged over all samples (micro-averaged) and
individual domains (macro-averaged). To comply with
our privacy and business guidelines, in all instances, we
only report relative and normalized results which do not
directly represent the actual scales or metric values.

We train each model until convergence or reaching 32
epochs and take the model best performing based on the
macro-averaged violation rate. Each experiment was run
four times using different random seeds for data sampling
and weight initialization to report the mean and standard
deviation of each result. We used a cluster of 32 NVIDIA
V100 GPUs to process a mini-batch size of 32K samples.
Each individual run took between 4 to 24 hours.

4.4. Results
Table 1 shows a comparison of results for the IPS,
quadratic, minimax, and meta-gradient methods on all
benchmarks. For each case, we report the expected re-
ward and the percentage of reduction in the rate of vio-
lations compared to the simple IPS objective. The meta-
gradient approach consistently shows the best results
across all benchmarks. The simple quadratic method
behaves very competitively to minimax, except for the
explore benchmark which requires a more fine-grained
control on multiple constraints (see Figure 2). The meta-
gradient method, while having the highest reduction in
constraints violations, also has very competitive perfor-
mance in terms of the reward metric.

To study the impact of hyperparameters, we con-
ducted an experiment using the critical benchmark
by training minimax and meta-gradient based mod-
els using different hyperparameter values. Specifi-
cally, we train minimax models (Algorithm 1) using
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Figure 3: Comparing the hyper-parameter sensitivity for
the minimax and meta-gradient methods on the critical
benchmark. For the minimax method: (a) reward and (b)
macro violation reduction wrt. different 𝜂 and 𝛾 settings. For
the meta-gradient method: (c) reward and (d) macro violation
reduction wrt. different 𝜆 settings.

𝜂 ∈ {1.0, 0.1, 0.01} and 𝛾 ∈ {1.0, 0.999, 0.995}. For
the meta-gradient method (Algorithm 2), we use 𝜆 ∈
{0.01, 0.05, 0.1, 0.5, 0.75, 0.95, 1.0}. Figure 3 shows
the results of such experiment. Based on this experiment,
the minimax approach shows a much higher sensitivity
to its two hyperparameters, showing a significant im-
pact on both the reward and violation reduction metrics.
However, the meta-gradient method shows much less
sensitivity to the 𝜆 hyperparameter. We found that sim-
ply setting 𝜆 = 1 works very well in practice. It can be
very desirable for real-world large-scale settings such as
conversational systems which require frequent model
updates as new features are on-boarded every day, and
having a dependency on an extensive hyperparameter
search is very costly, if not impractical.

To dive deeper into the reason behind the better per-
formance for the meta-gradient algorithm compared to
the minimax approach, we investigated the constraint
penalty weight value for the first 3,000 iterations of train-
ing using the global benchmark. From Figure 4, we
can see the minimax method is monotonically increas-
ing the penalty weight with each iteration which is a
behavior consistent with the gradient ascent update rule
in Algorithm 1. In other words, as long as there are any
constraint violations, minimax will keep increasing the
penalty, which in our opinion is the reason for high sen-
sitivity to the hyperparameters. On the other hand, the
meta-gradient approach is using a validation signal to
dynamically adjust the penalty weight. Consequently,
it may keep the penalty term near zero for an initial
phase, rapidly increase it, then decay when violations are
reduced and getting a higher reward is preferred.



Benchmark
global critical explore

Method reward violation reduction reward violation reduction reward violation reduction

(%) macro (%) micro (%) (%) macro (%) micro (%) (%) macro (%) micro (%)

IPS 89.45±0.01 0 0 89.45±0.01 0 0 89.45±0.01 0 0

Quadratic 88.95±0.01 63.67±0.46 63.67±0.46 88.94±0.01 50.13±0.90 69.29±0.67 88.36±0.04 28.37±4.62 65.24±2.30

Minimax 88.91±0.01 63.28±0.08 63.28±0.08 88.93±0.01 37.88±0.49 62.51±0.21 88.11±0.01 61.51±0.59 81.50±0.24

MetaGrad 88.94±0.01 75.91±0.49 75.91±0.49 88.94±0.01 60.63±0.95 79.69±0.85 88.41±0.01 78.23±0.17 89.95±0.20

Table 1
A comparison of the baseline IPS method with the quadratic, minimax, and meta-gradient constrained optimization methods
on different benchmarks. We report the normalized percentage of reduction in the number of constraint violations compared
to the IPS method.
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Figure 4: The constraint penalty weight values for the first
3,000 iterations of training using the global benchmark.

5. Conclusion
This work studied the problem of controlled exploration
for off-policy contextual bandit learning. We presented
a constraint optimization formulation that enables a hu-
man expert to define the boundary of the desired ex-
ploration rate for individual domains. We proposed a
scalable and practical solution based on meta-gradient
learning which provides the highest constraint satisfac-
tion rates without any need for an extensive hyperpa-
rameter adjustment. Finally, we conducted experiments
using data from a real-world conversation system for
the skill routing problem on a set of different realistic
constraint benchmarks. Based on the experimental re-
sults, we believe that the suggested controlled bandit
learning approach is very promising for application in
real-world bandits in which frequent safe policy updates
are of paramount importance.
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A. Appendix

A.1. Constraint Benchmarks
Figure 5 presents the definition of constraint benchmarks
used in this paper: global, critical, and explore.
The global benchmark sets a general minimum replica-
tion rate for all domains. The critical benchmark
defines a tighter minimum replication rate for three
business-critical domains (home automation, shopping,
and notifications) and a more relaxed default case for
all other domains. In the explore benchmark, we ex-
tend the critical benchmark to include exploration
encouragement for the knowledge and music domains.

(a) global benchmark

(b) critical benchmark

(c) explore benchmark

Figure 5: The constraint benchmarks used in this paper: (a)
global, (b) critical, and (c) explore.

A.2. Selected Hyperparameters
Table 2 shows the final selected hyperparameters for each
benchmark and method. The definition of each hyper-

Benchmark
Method global critical explore

Quadratic 𝑤 10 1000 1000

Minimax
𝜂 0.1 0.1 1

𝛾 1 0.999 1

Meta-Grad 𝜆 1 1 1

Table 2
The selected hyperparameters for each benchmark and
method.

parameter is presented in Algorithm 1 and 2.
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