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Abstract
Although AI is developing rapidly, AI’s vulnerability under adversarial attacks remains an extraordinarily difficult problem. In
this paper we study the root cause of adversarial examples through studying the deep neural network’s (DNN) classification
boundary. The existing attack algorithms can generate from a handful to a few hundred adversarial examples given one
clean sample. We show there are a lot more adversarial examples given one clean sample, all within a small neighborhood
of the clean sample. We then define DNN uncertainty regions and show the transferability of adversarial examples is not
universal. The results lead to two conjectures regarding the size of the DNN uncertainty regions and where DNN function
becomes discontinuous. The conjectures offer a potential explanation for why the generalization error bound – the theoretical
guarantee established for DNN – cannot adequately capture the phenomenon of adversarial examples.
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1. Introduction
DNN is a powerful tool for complex tasks1. Soon af-
ter DNN gained popularity [1], researchers noticed that
targetedly adding minor perturbations to a clean image
can cause a DNN to misclassify the perturbed image [2].
Despite decades of theoretical research on DNN, there
are still many unanswered questions regarding DNN’s
properties. For example, we do not know the shape of
DNN classification boundary. There is also a discrepancy
between the established generalization error bounds for
DNN and the existence of adversarial examples.

We know the shape of the decision boundary of many
well known models, such as linear regression, general-
ized linear regression, non-parametric regression, sup-
port vector machine (SVM), to name a few. Despite
many work on building a robust DNN and to evalu-
ate DNN robustness, we are yet to know the shape of
DNN classification boundary. A lack of understanding
of DNN’s classification boundary naturally leads to the
fact that we do not know where are the regions con-
taining the adversarial examples. There are conflict-
ing conjectures about the regions containing the adver-
sarial examples. [2, 3] believed adversarial examples
lie in “dense pockets” in lower dimensional manifold,
caused by DNN’s non-linearity. On the other hand [4]
believed it is DNN’s linear nature and the very high
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dimensional inputs that lead to the adversarial exam-
ples. Furthermore [4] believed “adversarial examples
occur in contiguous regions of the 1-D subspace defined
by the fast gradient sign method, not in fine pockets.”

Figure 1: Popular
Description

Currently many papers show
DNN’s classification bound-
ary as a curve separating two
classes (e.g., [5]), similar to
Figure 1. And often it is
thought that the adversarial ex-
amples lie in the other side
of the boundary. Without the
knowledge of DNN classifica-
tion boundary, building a ro-
bust DNN model will remain an elusive task.
There are real world implications when using DNN

in critical applications without fully understanding its
basic properties, such as its classification boundary and
vulnerabilities. For example, DNN is used to process
the videos received from cameras, as described on the
webpage [6]. In a system where the algorithm used to
process sensor data has inherent vulnerabilities, they
become part of the security vulnerabilities the attackers
can explore.

DNN is a popular phrase sometimes meaning different
model structures. In this paper we focus on convolutional
neural network (CNN) and fully connected neural net-
work (multilayer perceptron (MLP)), and examine their
classification boundary. Through experiments, we show
the problem of adversarial examples is not as simple as
linear vs. non-linear. It is a far more complex structural
problem. The most significant contributions of this paper
are the following.

1. We show DNN classification boundary is highly
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fractured, unlike other classifiers. There are lower
dimensional regions containing adversarial exam-
ples within a small neighborhood surrounding
every clean image.

2. Our first conjecture is that the union of these
lower dimensional bounded regions containing
adversarial examples has zero probability mass.
Our second conjecture is that a DNN function
is discontinuous at the boundary of these lower
dimensional bounded regions, and may be dis-
continuous inside some of these bounded regions.
The two conjectures could be the reason that the
theoretical guarantees established for DNN, such
as the generalization error bounds, co-exist with
the adversarial examples. Hence new theory is
needed to evaluate DNN robustness.

3. We show that transferability of adversarial exam-
ples is not universal, contrary to [2, 4, 5], which
suggested that adversarial examples generated
against one DNN aremisclassified by other DNNs,
even if they have different model structures or are
trained on different subsets of the training data.
We show that adversarial examples against one
DNN can be correctly classified by some other
DNNmodels, simply by using different initial ran-
dom seeds in the training process. This leads to
our definition of DNN uncertainty regions.

Besides the three major contributions, additional con-
tributions of this paper are the following.

1. Given one clean image, existing attack algorithms
generate up to a few hundred adversarial exam-
ples. Sampling from the lower dimensional region
lead to a stronger attack, generating a lot more
adversarial examples given one clean image.

2. Far fewer pixels are perturbed to form these
hyper-rectangles compared to the existing attack
algorithms. Thereforewe reduce the total amount
of perturbations added to a clean image to create
adversarial examples.

The paper is organized as follows. Section 1.1 discusses
the related work. Section 2 conducts experiments to es-
tablish the shape of DNN classification boundary and
introduces the concept of DNN uncertainty regions. Sec-
tion 3 discusses the discrepancy between the theoretically
proven DNN large sample property, its generalization er-
ror bound, and the existence of adversarial examples.
Section 4 concludes this paper.

1.1. Related Work
There are two broad categories of attacks, poisoning at-
tacks and evasion attacks [7]. Poisoning attacks inject
malicious samples into the training data, to cause the

resulting learning model to make a mistake with certain
test samples. Assuming there is no easy access to the
training process, evasion attacks generate test samples
that the learning model cannot handle correctly. The
adversarial examples generated to attack DNN belong
to evasion attacks. Depending on adversaries’ knowl-
edge of a DNN model, there are white-box attacks and
black-box attacks. For white-box attacks, adversaries
know the true DNN model, including model structure
and parameter values. For black-box attacks, adversaries
don’t know the true model. Instead, adversaries query
the true model, build a local substitute model based on
the queries, and attack the local model. A targeted attack
generates adversarial examples that are misclassified into
a pre-determined class, while an untargeted attack simply
generates misclassified samples. Several survey papers
are published, introducing the current state and the time-
line of attacks and defenses, e.g., [8, 7]. In general, the
attack algorithms follow an optimization approach, i.e.,
generating adversarial examples through minimizing a
loss function.

Adversarial evasion attacks against DNN are the earli-
est attacks. Recently there are attacks designed to break
graph neural network (e.g., [9]), recurrent neural network
(e.g., [10]) etc. In this paper, we examine the classification
boundary and uncertainty regions of CNN and MLP. In
our experiments we use Foolbox [11], which implements
a large collection of adversarial attack algorithms.
Let 𝑊 be a clean image and 𝑊 𝑎 be an adversarial ex-

ample. Let 𝑀 be a trained DNN model that assigns a
class label to 𝑊. 𝑀(𝑊 𝑎) ≠ 𝑀(𝑊 ). 𝑊 is a matrix for a
gray-scale image, and a tensor for a color image. The
size of the matrix/tensor is determined by the image res-
olution. The individual elements (pixels) in 𝑊 represent
the light level, having integer values ranging from 0 (no
light) to 255 (maximum light). The pixels are rescaled
to [0, 1] by dividing the pixel value by 255. 𝑊 can be
vectorized. Assume a vectorized𝑊 is 𝑑−dimensional, i.e.,
𝑊 ∈ [0, 1]𝑑. Some attack algorithms generate a single𝑊 𝑎

or only a handful of𝑊 𝑎s are not used in our experiments,
because there are not enough adversarial examples to
locate the region containing these 𝑊 𝑎s. We also exclude
attack algorithms that need large perturbations to gener-
ate 𝑊 𝑎. Here are the attack algorithms that are used in
our experiments: (1) Pointwise (PW) Attack; (2) Carlini
& Wagner 𝐿2 (CW2) Attack; (3) NewtonFool (NF) Attack;
(4) Fast Gradient Sign Method (FGSM); (5) Basic Iterative
Method (BIM) 𝐿1, 𝐿2, 𝐿∞ attacks; (6) Moment Iterative
(MI) Attack.

2. DNN’s Uncertainty Regions
DNN function is described by 𝑀(𝑊) = 𝑐, where 𝑐 is the
object class assigned to image𝑊 by a trained DNNmodel



(a) (b)

Figure 2: Conceptual Plots of Uncertainty Regions

𝑀. In this paper we assume 𝑀 assigns hard labels. The
function is more complex when 𝑊 is a high resolution
color imagewith𝑀 assigning soft labels and classification
accuracy is assessed using top 5 classes. We leave it to
the future work.

The concept of uncertainty regions was first proposed
for SVM facing multi-class classification task. For one-
against-all SVM, multiple separating hyper-planes are
used to classify the samples. The areas within the mar-
gins of the binary hyper-planes are the SVM uncertainty
regions [12, 13]. If a data point is very close to several
binary decision boundaries, SVM is uncertain which class
it belongs to.

We propose a different definition of DNN uncertainty
regions. Given a training dataset 𝐷𝑛 with 𝑛 samples, let
ℳ = {𝑀1, 𝑀2, ...} be the set of DNNmodels trained on 𝐷𝑛
with identical model structure, i.e., same number of lay-
ers, same activation, etc, while varying the initial random
seed. Since DNN training is a non-convex optimization
problem, the training process converges to different lo-
cal optima using different initial seed. Thus the training
process produces multiple DNN models (𝑀𝑖s) based on
one training data 𝐷𝑛. For 𝑖 ≠ 𝑗, 𝑀𝑖 and 𝑀𝑗 have different
parameter values, i.e., different weights and biases. We
define a DNN uncertainty region as a set of points (𝑊s)
in a bounded region in [0, 1]𝑑 that cannot be separated
into disjoint regions, where at least two DNN models 𝑀𝑖
and 𝑀𝑗 disagree on the hard label of 𝑊.

Definition 1. An uncertainty region is defined as

𝑈 ∶= {𝑊 ∶ ∃ 𝑀𝑖, 𝑀𝑗 ∈ ℳ, 𝑠.𝑡 . 𝑀𝑖(𝑊 ) ≠ 𝑀𝑗(𝑊 )} ,

where 𝑈 cannot be separated into disjoint regions in [0, 1]𝑑.

We use the 𝐿2 distance between a clean image 𝑊 and
an adversarial image 𝑊 𝑎, 𝑑(𝑊 ,𝑊 𝑎) = ||𝑊 − 𝑊 𝑎||2. Let
𝛿 be the radius of a 𝛿−ball with the clean image 𝑊
at the center, 𝛿 > 0. Denote the 𝛿−ball by 𝐵(𝛿,𝑊 ).
𝐵(𝛿,𝑊 ) ∶= {𝑊 ∶ 𝑑(𝑊 𝑎, 𝑊 ) ≤ 𝛿}. When 𝛿 is sufficiently
small, the points in 𝐵(𝛿,𝑊 ) are noisy versions of 𝑊 and
should be labeled to the same object class as 𝑊. Given
a clean image 𝑊, we can determine the value of 𝛿 based
on the amount of adversarial perturbations. We choose 𝛿
to be slightly larger than the minimum amount of adver-
sarial perturbations calculated from a number of attack
algorithms. Figure 2 (b) conceptually shows two separate

uncertainty regions while Figure 2 (a) is one region. We
discover there exists multiple uncertainty regions inside
a 𝐵(𝛿,𝑊 ).

DNNmodel structure: Because we focus on studying
the classification boundary of DNN, here the DNN model
structure must strictly remain the same. We discover
that even a minor change to the model structure, such
as adding or removing a batch normalization layer, will
lead to a different classification boundary.

Clean natural sample: We consider a clean natu-
ral image as the result of taking a photo using a cam-
era. Regarding how many clean images we can have,
let’s consider the volume of a 𝑑−dimensional 𝐵(𝛿,𝑊 ),
|𝐵(𝛿, 𝑊 )| = 𝜋𝑑/2

Γ(1+𝑑/2) 𝛿
𝑑. The volume of the feature space

[0, 1]𝑑 is 1. Let 𝛿 be sufficiently small, hence the images
in 𝐵(𝛿,𝑊 ) are noisy versions of 𝑊. For a fixed 𝛿 and 𝑑,
there are only a finite number of non-overlapping 𝛿 balls
in the feature space [0, 1]𝑑. However, as 𝑑 ⟶ ∞, we
have |𝐵(𝛿, 𝑊 )| ⟶ 0. Hence the feature space for higher
resolution color images can contain increasingly more
clean images.

Uncertainty Region Construction: We compare an
adversarial example 𝑊 𝑎 with the corresponding clean 𝑊.
If a pixel value in 𝑊 𝑎 is different than that in 𝑊, it is per-
turbed by the attack. Given a clean 𝑊, we use one attack
algorithm and generate a sufficient amount of adversarial
examples that are all mis-classified into the same wrong
object class. We examine how many pixels are perturbed
by the attack. Then we compute the interval for each
perturbed pixel (the original𝑊 has a single value for this
pixel). The perturbed pixels are ordered by the interval
sizes from the largest to the smallest. We then construct
a hyper-rectangle starting from the largest interval, and
stop at where the subsequent intervals can be considered
as nearly a constant (which may not equal to the origi-
nal pixel value for clean 𝑊). The detailed procedure is
described as follows.
Assume 𝑀1 is the model under attack. For a given

attack algorithm and a object class 𝑡, 𝑡 ≠ 𝑐 where 𝑐 is the
true object class of 𝑊, we combine the adversarial exam-
ples𝑊 𝑎 from both the targeted attack and the untargeted
attack, s.t. 𝑀1(𝑊 𝑎) = 𝑡. We then construct the subspace
spanned by 𝑊 𝑎s. This step requires an attack algorithm
to generate sufficient amount of perturbed images 𝑊 𝑎,
at least 80-100 images, given one clean image. We notice
that different attack algorithms discover different regions
containing the adversarial examples for one clean image.
Only a handful of adversarial examples is not enough
to locate a region containing these adversarial examples.
The more adversarial examples an attack algorithm can



Table 1
Re-Trained LeNet Mis-classification Rates

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5
0.033 0.035 0.025 0.019 0.017

𝑀6 𝑀7 𝑀8 𝑀9 𝑀10
0.015 0.013 0.012 0.012 0.012

generate for a clean image, the easier to locate the region
containing these adversarial examples.
Although there are a large collection of attacks al-

gorithms in Foolbox, most of them cannot satisfy this
requirement, including several famous attacks – Deep-
Fool attack, L-BFGS attack, PGD attack (on MNIST). Fur-
thermore we only consider adversarial examples 𝑊 𝑎 in
𝐵(𝛿,𝑊 ) with a small 𝛿. Some attacks generate large per-
turbations that are barely recognizable, such as Spatial
Transform Attack, Additive Gaussian Noise Attack, and
Additive Uniform Noise Attack. They are also excluded
from the experiments. We only use the attack algorithms
listed in Sec. 1.1 in the experiments.
Let 𝐼𝑘(𝑡) ∶= {𝑊 𝑎

𝑘 = (𝑊 𝑎
𝑘,𝑖) ∶ 𝑀1(𝑊 𝑎

𝑘 ) = 𝑡, 𝑡 ≠ 𝑐}. 𝐼𝑘(𝑡)
is the set of adversarial images misclassified to class 𝑡 by
attack algorithm 𝑘. If ∃𝑊 𝑎

𝑘,𝑖 ≠ 𝑊𝑖, i.e., attack 𝑘 adds pertur-
bation to the 𝑖th pixel, we compute the interval size of the
𝑖th pixel as the difference between the maximum and the
minimum values on the 𝑖th pixel from the group of adver-
sarial images. Let 𝑠𝑡 ,𝑘𝑖 = 𝑚𝑎𝑥𝐼𝑘(𝑡)(𝑊

𝑎
𝑘,𝑖) −𝑚𝑖𝑛𝐼𝑘(𝑡)(𝑊

𝑎
𝑘,𝑖). As-

sume 𝑚 pixels are perturbed by attack 𝑘, 𝑚 ≤ 𝑑. Then the
intervals are ranked by interval size as 𝑠𝑡 ,𝑘(1) ≥ 𝑠𝑡 ,𝑘(2) ≥ ⋯ 𝑠𝑡 ,𝑘(𝑚).
We construct a hyper-rectangle 𝑅𝑘(𝑡) using 𝑏 largest in-
tervals with 𝑏 ≤ 𝑚 as

𝑅𝑘(𝑡) = ⊗𝑏
𝑖=1 [𝑚𝑖𝑛𝐼𝑘(𝑡)(𝑊

𝑎
𝑘,(𝑖)), 𝑚𝑎𝑥𝐼𝑘(𝑡)(𝑊

𝑎
𝑘,(𝑖))].

𝑅𝑘(𝑡) is the subspace based on the adversarial examples
generated by attack 𝑘 and misclassified to class 𝑡. We
choose the number of intervals 𝑏 that the remaining in-
terval sizes are very small and the perturbations added
can be considered as approximately constant.
We use Pytorch 1.5.0 and Cuda 10.2 to run all the ex-

periments. CPU is Intel Xeon Silver 4114 and the GPU is
Nvidia Tesla P100. The code is posted on GitHub. 2

2.1. MNIST CNN Experiment
Here we conduct an experiment with the task to clas-
sify MNIST dataset of 10 handwritten digit. MNIST has
60,000 training images and 10,000 test images. Each im-
age has 28x28 gray-scale pixels. Our model structure is

2https://github.com/juanshu30/Understanding-Adversarial-
Examples-Through-DNNs-Classification-Boundary-and-
Uncertainty-Regions

Figure 3: Lower Dimensional Projection of MNIST data

the PyTorch implementation [14] of LeNet [15], which
has two convolutional layers. The model structure has
been published previously. We re-train LeNet on MNIST
to optimize the parameter values. The optimizer is SGD
with learning rate 0.01. 𝑊 is a vectorized MNIST image
with pixels rescaled to [0, 1] in PyTorch implementation.
We have 𝑊 ∈ [0, 1]784. Table 1 shows the accuracy of 10
re-trained LeNet models on the MNIST test data using dif-
ferent initial seeds. 𝑀1 to 𝑀10 have similar performance
on clean test data.

Intuitively, the ten handwritten digits have distinct fea-
tures that facilitate the classification task. Hence LeNet
can achieve nearly 99% accuracy. We visualize the dig-
its using t-Distributed Stochastic Neighbor Embedding
(t-SNE) technique [16], a nonlinear dimension reduction
technique. Figure 3 provides a 2D projection of the ten
digits, based on 2000 sampled images. We observe 10 clus-
ters of digits though some clusters overlap slightly. We
would expect a classifier to divide up the feature space,
and allow a digit class to occupy a portion of the fea-
ture space. Then the points away from the classification
boundary and their surrounding neighborhoods would
all belong to the same object class. Unfortunately this
is not what we see from DNN. We need to draw DNN’s
classification boundary around every clean image, not
along the border between two object classes.

We choose a clean image 𝑊, and generate adversarial
examples using the attack algorithms listed in Section 1.1.
We then construct the hyper-rectangles 𝑅𝑘(𝑡). We have
studied many test images and training images, and have
obtained similar results. Due to the limited space, here
we show the results for a digit 1 from the test data. We
run the attacks against 𝑀1. Table 2 shows the following
information.

1. The number of intervals used to construct the
hyper-rectangles. For example, CW2 1 → 6
means the digit 1 is mis-classified as 6. 150d
means 𝑅𝐶𝑊2(6) is spanned by the largest 150 in-
tervals.

2. The smallest interval size in 𝑅𝑘(𝑡), shown in col-
umn 𝑠(𝑖). For PW attack, we use [0,1] for the



Table 2
Re-Trained LeNet Misclassification Rates in Hyper-Rectangles

𝑠(𝑖) 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 𝑀9 𝑀10
NF 1 → 2 60d 0.030 0 0 0 0.001 0.004 0.925 1 0.58 0.991 1
FGSM 1 → 2 375d 0.012 0.915 0 0 0 0 0 0 0 0 0
CW2 1 → 6 150d 0.013 0 0.099 0 0.993 0.007 0.945 0.807 0.042 1 0.652
BIM 𝐿∞ 1 → 7 380d 0.002 0.782 0 0 0 0 0 0 0 0 0
PW 1 → 8 35d 1 0.809 0.818 0.48 0.856 0.896 0.974 0.932 0.754 0.92 0.937
MI 1 → 0 230d 0.032 0.996 1 0 0.235 0 0 0 0 0 1

Table 3
10 Re-Trained LeNet Misclassification Rates Under Different Attacks

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8 𝑀9 𝑀10
NF 1 → 2 403d 1 0.82 0.62 0.92 0.96 1 1 0.95 1 1
FGSM 1 → 2 403d 1 0 0 0 0 0 0 0 0 0
CW2 1 → 6 318d 1 0 0 0 0 0 0 0 0 0
BIM 𝐿∞ 1 → 7 491d 1 0 0 0 0 0 0 0 0 0
PW 1 → 8 40d 1 0.04 0.01 0.15 0.16 0.55 0.37 0.41 0.33 0.48
MI 1 → 0 462d 1 1 0.95 1 0.87 0.85 0.82 0.62 0.63 0.67

(a) PW 1 → 8 (b) PW Sampled 1 → 8

Figure 4: MNIST CNN Experiment 1 → 8

selected pixels, since the measured interval sizes
are all close to 1. For all other attacks, the interval
size is measured from the added perturbations.

3. We sample 1000 images from each 𝑅𝑘(𝑡), and re-
port the misclassification rates by 𝑀1 to 𝑀10.

Figure 5: Clean Image 1

Table 3 shows the 10
re-trained LeNet models’
mis-classification rates
against the original ad-
versarial images gener-
ated by the attacks, and
the number of perturbed
pixels. The left three
columns in Table 4 show
the minimum amount of
perturbations (𝑚𝑖𝑛(||𝑊 𝑎−𝑊 ||2)), the maximum amount of
perturbations (𝑚𝑎𝑥(||𝑊 𝑎−𝑊 ||2)), and the average amount
of perturbations (𝑚𝑒𝑎𝑛(||𝑊 𝑎 −𝑊 ||2)) of the 1000 sampled
images in each hyper-rectangle 𝑅𝑘(𝑡). The right three
columns in Table 4 show the same information for the
adversarial examples generated by the corresponding
attacks.

Figure 4 shows the adversarial examples generated by

Table 4
𝐿2 Distance

𝐿𝑚𝑖𝑛2 𝐿𝑚𝑎𝑥2 ̄𝐿2 𝐿𝑚𝑖𝑛2 Attack 𝐿𝑚𝑎𝑥2 Attack ̄𝐿2 Attack
NF 1 → 2 4.881 5.729 5.305 4.986 8.803 6.806
FGSM 1 → 2 14.259 14.41 14.335 14.413 15.213 14.784
CW2 1 → 6 7.285 8.435 7.86 7.485 12.687 9.719
BIM 𝐿∞ 1 → 7 8.197 9.124 8.661 13.118 15.11 14.855
PW 1 → 8 5.205 14.84 10.023 12.526 26.526 17.329
MI 1 → 0 21.261 22.607 21.852 43.76 43.297 38.818



Table 5
MLP Mis-classification Rates on Clean MNIST Test Data

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5
0.0177 0.0178 0.0183 0.0177 0.0176

the attacks, and the adversarial images generated through
sampling in the hyper-rectangles 𝑅𝑘(𝑡). Figure 5 is the
corresponding clean image 1. Except for PointWise at-
tack, which changes a pixel value to 0 or 1, the rest of
𝑠(𝑖) has the maximum value 0.032, as shown in Table 2.
This translates to 8 consecutive integer values on the
original 0 – 255 scale. They are very similar light lev-
els, and can be considered as approximately constant.
If we add more dimensions to 𝑅𝑘(𝑡), the additional di-
mensions can be considered as moving the additional
pixels to different values. Adding more dimensions do
not change the shape and size of𝑅𝑘(𝑡). Instead that moves
a hyper-rectangle to a different location, increasing the
amount of perturbation and away from the clean image
𝑊. The hyper-rectangles 𝑅𝑘(𝑡) in Table 2 perturbed far
fewer pixels than the original attacks. From Table 4, we
see that leads to smaller perturbations to create adver-
sarial examples. There are more such hyper-rectangles
with the same shape and size, as we add more pixels
identified by the attacks. Adding more pixels does not
necessarily increase the mis-classification rates by all
DNNs. For Carlini & Wagner 𝐿2 attack and FGSM, even-
tually the hyper-rectangle is moved to a place where 𝑀1
mis-classification rate is close to 100% and 𝑀2 to 𝑀10
see near 0% mis-classification rate. This is the effect of
the optimization approach used in the attack algorithms
against 𝑀1. We observe three types of 𝑅𝑘(𝑡) in Table 2.

1. The target DNN mis-classifies most of the adver-
sarial examples while there exists another DNN
which correctly classifies the adversarial exam-
ples;

2. The target model correctly classifies the adver-
sarial examples while another DNN mis-classifies
most of the adversarial examples;

3. The transferable adversarial regions where all
DNNs mis-classify a significant proportion of the
adversarial examples.

This phenomenon occurs to attacks adding both small
and large perturbations. The first two types of 𝑅𝑘(𝑡) be-
long to DNN uncertainty regions. The existence of DNN
uncertainty regions shows transferability of adversarial
examples is not universal, contrary to [2, 4, 5].

2.2. MNIST MLP Experiment
Here we conduct experiment with a MLP trained on
MNIST. It is a fully connected network with 3 layers,

Table 6
MLP CW2 Mis-classification Rates in Hyper-Rectangles

𝑠(𝑖) 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5
5 → 6 230d 0.005 0.94 0 0 0 0
7 → 2 440d 0.01 0.82 0 0.78 0 0

(a) CW2 5 → 6 (b) CW2 Sampled 5 → 6

Figure 6: Images for MLP experiment

3x512 hidden neurons and ReLU activation. We vary the
initial seeds and train 5 MLPs. The optimizer is SGD
with learning rate 0.01. Table 5 shows the MLP mis-
classification rates on the clean MNIST test data. In the
interest of space, here we show two examples, a digit
5 and a digit 7, under Carlini & Wagner 𝐿2 attack. Ta-
ble 6 shows the 5 MLPs’ mis-classification rates in the
hyper-rectangles. Table 7 shows mis-classification rates
against the original adversarial images generated by the
attack. Figure 6 shows an adversarial example gener-
ated by Carlini & Wagner 𝐿2 attack, and an adversarial
example generated through sampling from the hyper-
rectangle, based on the same clean image 5. Figure 9 (a)
is the corresponding clean image 5. The hyper-rectangle
for 7 → 2 lie in one DNN uncertainty region. Again
Carlini & Wagner 𝐿2 attack has great success with the
target model 𝑀1 but can be correctly classified by some
other MLPs.

2.3. CIFAR10 MobileNet Experiment
CIFAR10 [17] has 60,000 32x32 color images in 10 classes,
with 50,000 as training images and 10,000 as test images.
A vectorized CIFAR10 image is in [0, 1]3072, combining
three color channels. The dimensionality of a CIFAR10

Table 7
MLP Mis-classification Rates Under the Original Attack

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5
CW2 5 → 6 380d 1 0 0 0 0
CW2 7 → 2 491d 1 0 0.28 0 0



Figure 7: MobileNet misclassification rates in hyper-
rectangles

Table 8
Re-Trained MobileNet Mis-classification Rates on Clean CI-
FAR10 Test Data

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5
0.0767 0.0728 0.0734 0.0727 0.0744

Table 9
Five Re-Trained MobileNet Misclassification Rates Under BIM
𝐿2 Attack – Airplane Misclassified as Deer

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5
BIM 𝐿2 3017d 1 0 0.88 0 0

image is almost 4 times of a MNIST image. We use the
MobileNet in this experiment. Similar to Section 2.1, the
MobileNet model structure has been published previously
[18], which has an initial convolution layers followed by
19 residual bottleneck layers. We re-train the MobileNet
on CIFAR10 to optimize the parameters values. The opti-
mizer is SGD with learning rate 0.01; momentum is 0.9;
weight decaying is 5e-4. The mis-classification rates of
five re-trained MobileNet models on the clean CIFAR10
test data by varying initial seeds are in Table 8. For the
interest of space, here we show an example with an air-
plane image under BIM 𝐿2 attack. The attack success
on the five re-trained MobileNet models are in Table 9.
Note BIM 𝐿2 attack perturbed 3071 dimensions and left 1
dimension untouched. The images are shown in Figure 8
and Figure 9 (b).
Figure 7 shows the mis-classification rates as we in-

crease the dimensions of the hyper-rectangle. The largest
interval size is 0.2 and the 2000th largest interval size
is 0.017. 𝑀1 misclassifies all the sampled images start-
ing from around 200 perturbed dimensions. 𝑀5 cor-
rectly classifies all the sampled images. We see 𝑀2 and
𝑀4 misclassification rates increase as more effective di-
mensions are included, then decrease as we include ad-
ditional irrelevant dimensions. The 2000-dimensional

(a) BIM 𝐿2 airplane→deer (b) BIM Sampled airplane→deer

Figure 8: Images for MobileNet experiment

(a) Clean Image 5 (b) Clean Airplane

Figure 9: Clean Images

hyper-rectangle lies in one MobileNet uncertainty region.
As noted in [4], the direction of adversarial perturbation
is important. Adversarial examples cannot be generated
by randomly sampling in 3072 dimensional ball 𝐵(𝛿,𝑊 ).
The lower dimensional hyper-rectangles 𝑅𝑘(𝑡) contain-
ing infinitely many adversarial examples are discovered
through the attack algorithms. Table 10 shows that the
sampled adversarial images from the hyper-rectangle
have much smaller perturbations than the original attack
on CIFAR10.

2.4. Uncertainty Regions vs. Transferable
Adversarial Regions

Due to the nature of the uncertainty regions, we have to
train multiple models. However the classification bound-
ary is established for one model – the model under attack
– not the ensemble of all the trained models. The output
of a DNN ensemble is either based on the majority vote,
or we take the average of the softmax layer outputs from
the DNN models in the ensemble. Hence a DNN ensem-
ble has a different classification boundary compared with
that of a single model used in the ensemble.
For the MNIST CNN experiment, we use Figure 10 as

a conceptual plot to show the classification boundary
for 𝑀1. 𝑀1 is the model under attack. Let 𝑊 be the
digit 1 used in Section 2.1. Let 𝛿 = 6. Hence the hyper-
rectangles with larger perturbations are excluded from
𝐵(𝛿,𝑊 ).
The blue dot in the center is the clean image. Inside

the black circle, the solid line segments are part of the



Table 10
𝐿2 Distance for MLP and Re-Trained MobileNet Experiments

𝐿𝑚𝑖𝑛2 𝐿𝑚𝑎𝑥2 ̄𝐿2 𝐿𝑚𝑖𝑛2 Attack 𝐿𝑚𝑎𝑥2 Attack ̄𝐿2 Attack
CW2 MLP 5 → 6 230d 10.47 10.72 10.61 11.06 11.51 11.26
CW2 MLP 7 → 2 440d 11.18 11.41 11.30 11.51 11.89 11.68
BIM 𝐿2 airplane→deer 2000d 64.49 67.05 65.88 225 288.32 256.01

Figure 10: Conceptual Plot of 𝑀1 Classification Boundary
Around A Clean Sample

classification boundary for 𝑀1. There are two types,
illustrated using two different colors. Type 1 regions are
where 𝑊 𝑎s are misclassified by 𝑀1 but can be correctly
classified by some other model 𝑀𝑗; type 2 regions are
where 𝑊 𝑎s are misclassified by all the models, 𝑀1 to
𝑀10.
The dashed lines inside the black circle are not part

of 𝑀1’s classification boundary, but they are model 𝑀1’s
uncertainty regions, because inside these regions 𝑊 𝑎s
are correctly classified by 𝑀1 but misclassified by some
other model 𝑀𝑗. We call them the type 3 regions.
Type 1 and 3 are the uncertainty regions. Type 2 are

the transferable adversarial regions which are more dif-
ficult to handle. Both the uncertainty regions and the
transferable adversarial regions are lower dimensional
small “cracks” inside the small neighborhood of a clean
image. Only type 1 and type 2 regions where𝑀1 misclas-
sifies the samples in the 𝛿−ball 𝐵(𝛿,𝑊 ) are part of model
𝑀1’s classification boundary around the clean image 𝑊.

The Shape and Size of Uncertainty Regions: In Ta-
ble 10 we see a significant reduction of perturbation for
BIM 𝐿2 attack and the airplane image, because our hyper-
rectangle perturbed far less pixels than the original attack
(2000d vs. 3017d). On the other hand, in Table 3, we see
only minor reduction for FGSM and the digit 1 because
the dimension of the hyper-rectangle is close to the origi-
nal attack (375d vs 403d). For NF and the digit 1, although
our hyper-rectangle used 60d compared with 403d for
the original attack, there is only a minor reduction in
the total amount of perturbation. Since our approach
relies on the existing attacking algorithms to locate the
regions, the dimensionality of the regions is related to
the original attacks and the clean image itself. Further-
more, although we construct hyper-rectangles, the exact

shape of an uncertainty/transferable region may not be
a hyper-rectangle. It is important to further investigate
how many uncertainty regions and transferable adver-
sarial regions exist in the feature space [0, 1]𝑑, and the
exact shape and dimensionality of such regions.

Strategy for Robust Classification: If at least one
DNN assigns a label that is different from another DNN,
the image triggers an alert and requires additional screen-
ing, either involving a human operator or alternative
classifiers. This strategy will improve the accuracy over
the adversarial examples in DNN uncertainty regions,
but won’t solve the problem for transferable adversar-
ial examples. Notice although an ensemble can achieve
high predictive performance [19], a DNN ensemble can
be attacked too. Meanwhile there is no guarantee about
the number of DNNs that can make correct decision over
each uncertainty region. We also need to understand
how to measure the size of DNN uncertainty regions vs.
DNN transferable adversarial regions. We leave it to the
future work.

3. Generalization Error Bound and
Adversarial Examples

The accuracy on clean test data is often used to measure
a classifier’s performance. However, in [20], the authors
argued the test data accuracy is not the most appropri-
ate performance measure, because the variability due to
the randomness of the training data needs to be taken
into consideration besides those due to the test data. Let
𝑍 = (𝑊 , 𝑌 ) denote a sample, where 𝑊 ∈ [0, 1]𝑑 is a 𝑑−di-
mensional vectorized image and 𝑌 ∈ {1, ⋯ , 𝑐} is the true
object class. 𝑍 is generated independently and identically
from a distribution 𝐹 over [0, 1]𝑑. We denote a training
dataset with 𝑛 sample points by 𝐷𝑛 = (𝑍1, ⋯ , 𝑍𝑛). [20]
defined generalization error as 𝐸(𝑙𝑜𝑠𝑠𝑀(𝐷𝑛, 𝑍𝑛+1)), where
𝑍𝑛+1 is a test sample, and 𝑙𝑜𝑠𝑠𝑀() is the loss of applying a
classifier 𝑀 trained on 𝐷𝑛 to 𝑍𝑛+1. If 𝑙𝑜𝑠𝑠𝑀() is a 0-1 loss,
the generalization error is defined as the error probability
𝑃(𝑀(𝑊 ) ≠ 𝑌 ) as in [21].

There is an extensive literature on the theoretical gen-
eralization error bound for different type of classifiers
including DNN. Generalization error bound for DNN



is proven to be 𝑂( 𝑐(𝑑𝑒𝑝𝑡ℎ,𝑤𝑖𝑑𝑡ℎ)
√𝑛

), where 𝑐(𝑑𝑒𝑝𝑡ℎ, 𝑤𝑖𝑑𝑡ℎ)
refers to a constant based on the width and depth of
a DNN model, e.g., [22, 23].
We observe there is a discrepancy between the the-

oretically proven generalization error bound for DNN
and the existence of adversarial examples. Following
the theory, the generalization error on test data should
decrease to 0 at a rate proportional to 𝑛−1/2 where 𝑛 is
the training sample size. However for every clean image
we show there exists a large number of adversarial im-
ages in its neighborhood 𝐵(𝛿,𝑊 ), for different network
structures and datasets. Adversarial examples also exist
for large DNN models trained on ImageNet with millions
of training data, where the theoretical asymptotic behav-
ior of DNN should already kick in. Here we have two
conjectures.

Conjecture 1: The union of these lower dimensional
bounded uncertainty regions and transferable adversarial
regions has zero probability mass.

Conjecture 2: A DNN function is discontinuous at the
boundary of these lower dimensional bounded regions,
and may be discontinuous inside some of these bounded
regions. Note Lipschitz continuity is an important as-
sumption for proving the generalization error bound.

The two conjectures with Theorem 1 offer a potential
explanation for why such a discrepancy exists. Let 𝐿𝑟 be
a 𝑟−dimensional region in [0, 1]𝑑 with 𝑟 < 𝑑. Let ℒ =
∪∞𝑖=1𝐿𝑟𝑖 be the union of countably infinite non-overlapping
lower dimensional regions 𝐿𝑟𝑖 in [0, 1]𝑑 with all 𝑟𝑖 < 𝑑.

Theorem 1. Let 𝑀1 and 𝑀2 be two DNN models trained
on 𝐷𝑛. Assume ∀ 𝑊 ∈ [0, 1]𝑑 −ℒ, 𝑀1(𝑊 ) = 𝑀2(𝑊 ). And
assume ∃ 𝑊 ∈ ℒ, s.t. 𝑀1(𝑊 ) ≠ 𝑀2(𝑊 ). We have

𝐸(𝑙𝑜𝑠𝑠𝑀1(𝐷𝑛, 𝑍𝑛+1)) = 𝐸(𝑙𝑜𝑠𝑠𝑀2(𝐷𝑛, 𝑍𝑛+1)).

Proof: For any continuous distribution 𝐹 on [0, 1]𝑑,
𝐹(ℒ) = 0, i.e., the lower dimensionalℒ has 0 probability
mass. For two functions that differ only on 0 probability
region, we have

𝐸(𝑙𝑜𝑠𝑠𝑀1(𝐷𝑛, 𝑍𝑛+1)) = 𝐸(𝑙𝑜𝑠𝑠𝑀2(𝐷𝑛, 𝑍𝑛+1)). ■

Remark 1: Theorem 1 means the definition of general-
ization error cannot tell the difference between a trained
classifier that assign correct labels to all the points in
[0, 1]𝑑 and a different classifier that assign wrong labels
only to countably infinite lower dimensional bounded
regions. For example, let 𝑤𝑖, 𝑖 = 1, 2, ..., s.t. 𝑤𝑖 ≠ 𝑤𝑗 if
𝑖 ≠ 𝑗. Assume 𝐿 = ∪∞𝑖=1[0, 1]𝑑−1 ⊗ 𝑤𝑖, be the union of
countably infinite non-overlapping [0, 1]𝑑−1 regions. A
classifier can assign wrong labels to 𝐿without any impact

on its generalization error. So far we see adversarial ex-
amples exist in much lower dimensional regions, leading
to Conjecture 1.

Remark 2: Another definition of generalization er-
ror involves the empirical error on the training data.
Let ̂𝑙𝑜𝑠𝑠𝑀(𝐷𝑛) =

1
𝑛 ∑

𝑛
1 𝑙𝑜𝑠𝑠(𝑍𝑖) be the empirical risk esti-

mated from the training data 𝐷𝑛. [24] defined generaliza-
tion error as 𝐺𝐸∗(𝑀) = 𝐸(𝑙𝑜𝑠𝑠𝑀(𝐷𝑛, 𝑍𝑛+1)) − ̂𝑙𝑜𝑠𝑠𝑀(𝐷𝑛),
which is also used in some recent papers to establish
DNN theoretical guarantees. Corollary 1 in [24] states
there exists neural networks with ReLU activation, depth
𝑔, width 𝑂(𝑛/𝑔) and weights 𝑂(𝑛 + ℎ), that can fit ex-
actly any function on 𝐷𝑛 in 𝑑−dimensional space. As-
sume 𝑀1 and 𝑀2 are such models trained on 𝐷𝑛. Hence
̂𝑙𝑜𝑠𝑠𝑀1(𝐷𝑛) = ̂𝑙𝑜𝑠𝑠𝑀2(𝐷𝑛) = 0. Consequently we have

𝐺𝐸∗(𝑀1) = 𝐺𝐸∗(𝑀2).

4. Conclusion
A limitation of our work is that we rely on the existing
attack algorithms to locate these hyper-rectangles. Also
our approach works with low resolution images. Again
we leave it to the future work to capture the shape of the
DNN classification boundary in very high dimensional
feature space.
We gain important insights from this study. A DNN

model draws the classification boundary around every
image instead of along the border between the object
classes. This helps a DNNmodel to achieve high accuracy
and low generalization error for complex tasks but leaves
space for it to be attacked. How to seal these small cracks
surrounding every image is a very difficult problem, as
we witness the success of the adaptive attacks [25]. The
insights gained from this study points to the problem
where a robust DNN model should work on.

Understanding the shape of DNN’s classification
boundary also provides insights to defend against the
backdoor attacks [26]. As with many other classifiers,
we need to understand how the change in the training
data moves the classification boundary, in order to firmly
close the backdoor.

We conclude that the adversarial examples stem from
a structural problem of DNN. DNN’s classification bound-
ary is unlike that of any other classifier. Current defense
strategies do not address this structural problem. We also
need new theory to describe the phenomenon of adver-
sarial examples and measure the robustness of DNN.
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