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Abstract
We address in this work the question of identifying the failure conditions of a given image classifier. To do so, we exploit the
capacity of producing controllable distributions of high quality image data made available by recent Generative Adversarial
Networks (StyleGAN2): the failure conditions are expressed as directions of strong performance degradation in the generative
model latent space. This strategy of analysis is used to discover corner cases that combine multiple sources of corruption, and
to compare in more details the behavior of different classifiers. The directions of degradation can also be rendered visually by
generating data for better interpretability. Some degradations such as image quality can affect all classes, whereas other ones
such as shape are more class-specific. The approach is demonstrated on the MNIST dataset that has been completed by two
sources of corruption: noise and blur, and shows a promising way to better understand and control the risks of exploiting
Artificial Intelligence components for safety-critical applications.
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1. Introduction

Trustworthy AI
Artificial Intelligence (AI) is getting every year more ma-
ture with potential applications to real world problems,
and possibly to safety critical systems. Machine Learning
(ML) is one of the most prominent set of AI techniques
used to design predictive functions, especially for high
dimensional inputs such as image, video, text or sound
and generally involves Deep Neural Networks (DNN),

The exploitation of ML techniques introduces new is-
sues to ensure safety and trustworthiness when designing
or integrating AI based components: data quality assess-
ment, robustness to adversarial perturbations, formal
verification of DNNs, explainability, DNN calibration, etc.
These research actions are complemented by the produc-
tion of a large number of position papers and reports
produced by academic, industrial and government orga-
nizations or working groups (ISO, SAE, NHTSA, EASA,
HLEG of EU, DEEL, etc.); one of the main objectives
of which is to renew certification standards so that the
various phases of an industrial process (specification, de-
sign, validation & verification, deployment, integration,
operation, versioning, etc.) can accommodate AI.
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In spite of all this on-going activity, the available de-
sign tools have difficulty to master with an acceptable
level of trustworthiness the complexity of AI-ML com-
ponents for real-world safety-critical applications. The
work presented in this paper contributes to better un-
derstand the behavior of an AI-ML component, and to
identify the measurable and/or verifiable conditions in-
fluencing success or failure. Its long-term motivation is
to close the loop between the specification, design and
testing steps by providing more refined analytical tools.
The target application domain is computer vision where
AI-ML techniques are now ubiquitous.

Characterizing AI components
Knowing on what conditions, or with what probability,
a given component may fail is a key information for
designing reliable systems.

When it comes to AI-ML, a classical approach to an-
alyze a given algorithm is to build a test dataset, often
a split from a large dataset, and compute performance
indicators measuring the discrepancy between the ideal
and actual predictions (accuracy, precision/recall, area
under the ROC curve, etc.)

A pure data-driven strategy to characterize the in-
tended function and the good or undesired behaviors
of an AI-ML component raises several issues. (1) most of
the usual performance indicators are global statistics and
cannot express in a fine grained way the algorithm behav-
ior: they can be used to rank competing solutions – this
is currently done in academic benchmarks – but are not
able to identify what are their specific failure conditions,
i.e. on what kind of input an algorithm is good or bad
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Figure 1: An illustration of the approach. Starting from the latent space 𝒮 of StyleGAN, we generate a population of images.
The images are classified and the information on classification success is added in the space 𝒮 , where we find the dimensions
discriminating well-classified vs. mis-classified images. These dimensions can then be used to visually render the corresponding
influential attributes.

compared to others. (2) it is difficult to gather all the good
and bad operating conditions into one data set. There
have been some attempts to describe rather exhaustively
the possible hazards to families of algorithms [1], but
what these attempts in fact revealed was the complexity
to master. Test dataset replication experiences have also
shown that for high dimensional data, performance mea-
sures can have large variance [2, 3]. (3) typical causes
of performance degradation of AI-ML components such
as distributional shift [4] and instability to small per-
turbations [5, 6] are difficult to catch with a single test
dataset.

Another approach to characterize a given component,
inspired by software engineering practices, is to define
a testing strategy “designed to reveal machine learning
bugs” [7]. For instance, [8] exploits a concept of neuron
coverage inspired by test coverage in traditional software
testing, to detect erroneous inputs.

In our approach, we propose to combine these two dif-
ferent strategies, data-driven evaluation and testing, in
order to characterize the behavior of a given function: we
identify the influential causes of performance degrada-
tion by evaluating the performance on sets of generated
data that sample various data attributes, corruption or
nuisance.

Generative models to explore data space
Designing a probabilistic model in high dimensional data
space such as image, video or sound, able to faithfully
account for their diversity and informative features is a
difficult (impossible?) objective. Generative models such
as GANs [9] or generative invertible flows [10] is a series
of ML techniques that provides means to give access to
such a distribution by direct sampling. What is learned
is not the parameters of the probability density but the
parameters of a sampling process able to generate data

that mimic a given random distribution.
GANs exploit a representational latent space that can

be sampled from a known low-dimension distribution,
often Gaussian, that is expected to encode enough infor-
mation to generate complete images. Generation is then
produced by a decoding network that is learned from tar-
get data samples. Recent approaches [11, 12, 13] are now
able to generate high quality high dimension data, with
a photo realistic rendering when applied to images, and
with good diversity and fidelity levels. One possible ap-
plication of generative models for safety objectives is to
augment data for testing various operational conditions
as in [14].

The latent space can also be used as a way to con-
trol the generation process, for instance to edit images
[15, 16, 17]. When correctly disentangled, the latent space
can be interpreted as a representation space where each
dimension encodes some interpretable visual attribute
[16, 18]. In the case of face image generation, these at-
tributes could be hairstyle, head orientation, eye color,
glasses, etc. Navigating in the representational latent
space can also be used to identify the attributes that char-
acterize best a given class [19].

Main contributions
We show how to exploit generative models to finely an-
alyze the behavior of classifiers with high dimensional
input in order to:

• identify influential directions of performance
degradation that can be expressed both in the
data space and in a latent feature space of a gen-
erative model;

• discover corner cases by exploring the directions
of degradation in the latent feature space;

• compare classifier performance on influential
data features.



Figure 2: Samples of real corrupted data (top row) vs. gener-
ated data (bottom row)

We focus in this paper on image classification as one of
the paradigmatic decision problems of computer vision
with object detection and semantic segmentation, and il-
lustrate our method on a corrupted version of the MNIST
dataset [20] .

2. Proposed approach
The proposed approach is illustrated in Figure 1, where
we explore how the latent space of a generative model
differentiates between data that are well and poorly clas-
sified by a given classifier. In the following, we will briefly
describe the chosen generative model and its latent space
structure (Section 2.1); explain how to find the dimen-
sions of the latent space that differentiate well-classified
from mis-classified data (Section 2.2); describe how to
manipulate images to visualize the attributes (Section
2.3); and see how we can estimate the accuracy of the
classifier conditionally to the location of the data in the
latent space (Section 2.4).

2.1. Resources
The current work is mainly based on two resources and
objects that we present upstream in the two next subsec-
tions. They represent the theoretical and necessary tools
allow us to better detail our proposed approach.

2.1.1. Classifier and data

The first input to our approach is a learned image clas-
sifier to be analyzed. We assume that we have access
to its architecture and weights (“white box”). We also
overcome what is the domain of application (handwritten
digits, faces, indoor scenes, etc.), and have a correspond-
ing dataset available, not necessarily used for learning
the classifier.

2.1.2. Generative model

The second ingredient of our approach is a generative
model that can be controlled meaningfully. In our work,
we used the StyleGAN2 model [21] for a few reasons:
the quality of generated data, its scalability to complex

(a) t-SNE in 𝒵 (b) t-SNE in 𝒲 (c) t-SNE in 𝒮

Figure 3: t-SNE of generated samples in different latent
spaces. 𝒵 does not encode the class as class information
is concatenated to latent codes 𝑧 to form the input of the
conditional generator, and does not clearly differentiate well-
classified from mis-classified samples. 𝒲 and 𝒮 are able to
separate the classes (the 10 clusters) and well-classified from
mis-classified samples, 𝒮 doing it better than 𝒲 .

datasets, and the various levels of latent spaces. Indeed,
three different latent spaces can be considered. The first
latent space, 𝒵 , is typically normally distributed like
many GANs and is the initial input space of the gener-
ator. Samples z ∈ 𝒵 are forwarded to the intermediate
latent space 𝒲 using fully connected layers, resulting in
a more disentangled representation than 𝒵 [22]. Using
learned affine transformations, samples w ∈ 𝒲 are spe-
cialized into styles that scale the convolution weights for
each feature map for each layer of the generator. A gen-
erated image is the result of an initial learned constant
tensor that is up-sampled and transformed by residual
convolution layers that are modulated by the style vector.
Images are generated from the style vector s by the gen-
erator 𝐺(s). The space of styles, called StyleSpace, shows
a high degree of disentanglement [16]. This latent space
𝒮 encodes distinct visual attributes along its dimensions
and is typically used for image editing. To give an idea of
the complexity of the generative model, in the original
StyleGAN2 version that generates images of size 10242,
𝒵 and 𝒲 have 512 dimensions, 𝒮 has 9088 dimensions,
and the initial constant tensor has a size of 42 with 512
channels.

2.2. Finding influential dimensions in the
latent space

The dimensions of the latent StyleSpace 𝒮 are expected
to encode image attributes, such as shape, thickness, ori-
entation and noise, in a rather disentangled way. We
exploit this property to define a simple search method
able to identify the most influential dimensions regarding
the accuracy of a given classifier.

Gradient based approach The proposed strategy
ranks the dimensions according to the gradient of the
classifier output with respect to the StyleSpace input.
The idea is to score each dimension based on its ability



to lower the output score of the true class. More pre-
cisely, for each sample s in the StyleSpace, for which
we know the true class, we generate the corresponding
image x = 𝐺(s), and then classify it according to 𝐶(x).
Then we compute the gradient with respect to the di-
mension 𝑗 in the style space of the 𝑖-th classification
output: ∇𝑠𝑗 (𝐶𝑖(𝐺(s)), where 𝑖 is the index of the true
class encoded by s. The gradient can be computed exactly
by using an autograd algorithmic differentiation pro-
vided in standard Deep Learning software environments
– both the classifier and the generator being available
in such framework. We compute the average gradient
over a population of data as the score used to rank the
dimensions.

Global and class based analysis Not all classes be-
have similarly when corrupted. For instance, a 1 digit,
usually written as a single stroke, is more easily identified
than a 3, which can be mis-classified as an 8 when there
is noise. The impact of corruption potentially depends
on the class.

Our approach to compute influential directions rely
on an average over a population. This population can
be global or conditioned by the class, allowing a class
conditional or global discovery of influential directions.

2.3. Image manipulation and corner cases
Starting from an image where the latent space represen-
tation – the style vector – is known, we can modify this
representation to generate a modified image. In fact, once
the influential dimensions are computed (see Section 2.2
above) and if we change the values of the style vector
for those dimensions, then we modify the corresponding
visual attributes for the generated image. Generating
data that follow a high performance degradation is a sim-
ple heuristic: (1) we start from a given point s0 in the
StyleSpace, (2) we increment the influential dimension
by a given amount, and (3) we monitor the sign of the
increment being given by the sign of the gradient. Note
that the starting point s0 for exploration can be any point
in the StyleSpace: it can be a “true” style, computed by
mapping to 𝒮 a random z sampled in the input latent
space 𝒵 , or any other point directly sampled in 𝒮 , for
instance, an average of a given population of s data. We
will use in the experiments (section 3) an “average” digit
in the StyleSpace computed as the mean over a class
conditional population.

This data space exploration along influential dimen-
sions allows also the discovery of corner cases defined as
the smallest degradation that shifts the classifier output
from good to bad classification. The experiments in 3
will show several examples of corner cases discovered by
this approach.

(a) Top dimensions

(b) Random dimensions

Figure 4: (a) Histograms of values for the top 3 dimensions of
𝒮 that discriminate the most between well-classified and mis-
classified images after generation. For those top dimensions
it is clear that latent codes resulting in well-classified and
mis-classified images follow different distributions.
(b) Histogram of values for 3 random dimensions of 𝒮 . For
those dimensions, no difference is visible between the well-
classified and mis-classified distributions.

2.4. Accuracy conditioned by latent space
We can also use the latent space to understand better
the classifier accuracy. In Section 2.2 we described how
to find influential dimensions in the latent space. The
data along those dimensions thus potentially correlates
with the classifier accuracy. A classifier can be charac-
terized globally by its accuracy decrease when fed by
various amount of corruption produced by moving in the
StyleSpace along influential dimensions. The decreasing
slope characterizes globally the resilience to corruption
of a classifier and can be used for comparison.

3. Results

3.1. Implementation
We used the MNIST dataset [20] to evaluate our approach.
More precisely, we augmented the original data by intro-
ducing corruptions to simulate poor-quality data acquisi-
tion that may have an influence on class prediction. In
particular, we chose Gaussian Noise and Gaussian Blur
from [23] because they have a significant impact on clas-
sification accuracy for a classifier trained on clean data.
Data are corrupted in the following way: the first half
of the dataset remains clean, and the second half is first
blurred (with a severity level randomly chosen between 1,
2 and 3), and noise is added (with a severity level also ran-
domly chosen between 1, 2 and 3). It ensures that most
of the samples remain visually recognizable. Random
samples are shown in Figure 2.



Figure 5: Illustration of the degradation evolution starting
from the same original image for the ten most influential
dimensions. Each column represents one of the top ten influ-
ential dimensions; each line represents a different shift value
(which also varies per dimension). More specifically, a shift
reference value is defined for each dimension as the value that
makes the classifier output equal to 0.50 for the correspond-
ing generated image, and each line represents a fraction of the
dimension-specific shift reference value, written on the left
as progress. Above the images are displayed the StyleSpace
dimension index, an arrow representing the direction to follow
(augment or reduce the value), and the classifier output for
the true class.

The StyleGAN2 generative models contains three dif-
ferent latent spaces. It is generally admitted that the
so-called StyleSpace 𝒮 is a more disentangled represen-
tation space. We found that the well-classified and mis-
classified samples are better separated in this space, even
though the generation was not constrained in any way
by the classifier. We can visualize this in Figure 3 by
using t-SNE projection [24].

After training on corrupted data, the classifier (a sim-
ple Convolutional Neural Network) reaches an accuracy
of 97% on the test data. The metric used to quantify the
performance of the generative model is the Fréchet Incep-
tion Distance (FID) [25]. The generative model trained
on corrupted data reaches an FID of 1.63 (computed by
comparing 50𝑘 generated images, unfiltered and without
using truncation, to the 60𝑘 images of the whole training
dataset). This low value means a high generation quality.
A few samples are shown in Figure 2 demonstrating the
capacity of the generative model to encode various levels
and nature of corruption.

(a) Compare classifiers

(b) Compare classes

Figure 6: Classifier accuracy decreases when samples are far
from the well-classified center in the latent space.
(a) The classifier trained on clean data is less robust to corrup-
tions: its accuracy decreases faster than the classifier trained
on corrupted data.
(b) (Using the classifier trained on corrupted data.) The robust-
ness depends on the class. For instance, predicting correctly
3, or 9 is harder than 0 or 7. The lower start for the curve of
all classes can be explained by the fact that the well-classified
center cannot work as well for all classes that for one class (we
remind that the center and dimensions vary for each curve).

3.2. Influential dimensions
We apply the method described in 2.2 to rank dimen-
sions in the learned StyleSpace. In order to verify that
several dimensions have a bigger impact to performance
than others, we computed the histograms of the two pop-
ulations 𝑆𝑚𝑖𝑠 and 𝑆𝑤𝑒𝑙𝑙 on each dimension. Figure 4
depicts a selection of histograms. We see that the values
for the top dimensions follow different distributions for
well-classified vs. mis-classified images, whereas random
dimensions do not discriminate, meaning that the corre-
sponding style attribute does not influence performance.

Figure 5 shows the impact of manipulating the latent
codes by shifting values along the most influential di-
mensions. Each column represents one of the top ten
influential dimension and each line represents a different
shift value. We clearly observe various types of image
corruption that can be interpreted a posteriori when in-
creasing the shift value: the first three dimensions seem
to introduce more noise, dimensions 4, 5 and 10 deform
the original shape, dimension 9 lowers the intensity, di-



Figure 7: Illustration of corner cases found for each class.
By starting from the average image in StyleSpace for the
class, we manipulate its latent code in one of the top ten
influential dimensions until the classifier shifts its prediction
(softmax probability for the given class falls to 0.50). Above
the images are displayed the StyleSpace dimension index, an
arrow representing the direction to follow (augment or reduce
the value), and the classifier output for the true class.

mensions 6, 7 and 8 introduce partial occlusions. Using
a generative model allows a large corruption vocabu-
lary, and in particular allows shape deformation, a capac-
ity that is not available in filter-based frameworks like
Imagenet-C [23].

The last three lines of Figure 5 show images corre-
sponding to a steep decrease of the classifier output score
(from 1.0 to 0). This is where the class prediction shifts
and where the generated image can be considered as a
corner case (see section 3.4).

3.3. Accuracy in the latent space
As explained in Section 2.4, we can look at the classifier
accuracy evolution when fed with populations of various
corruption levels sampled in the StyleSpace. Figure 6
shows this evolution on two different classifiers. The ac-
curacy degradation is representative of the robustness to
corruptions of a classifier: the classifier trained on clean
data sees its accuracy decrease faster than the classifier

trained on corrupted data. It also shows that it depends
on the class: some classes are more difficult to predict
than others.

Using most or all dimensions of 𝒮 to compute the
distance makes the curve not monotonically decreasing.
It is better to use fewer dimensions, e.g. 100, as it makes
the accuracy curve decrease faster and monotonically.
To make the curve clearer, we filtered out samples at
too high distance values, where the generation quality
decreases and the lower number of samples degrades the
accuracy computation .

3.4. Identification of corner cases
The identification of corner cases, as described in section
2.3, is illustrated for the 10 classes in figure 7. For each
class, we illustrate the impact of the 10 most influential
dimensions separately, where the first column represents
the average image of each class, and the ten following
columns represent the result of corrupted image for one
single dimension. Dimensions are selected among the
most influential ones, by skipping those with no effect on
the classification. It can be seen from the figure that visual
results of corner cases are specific for each class. Then,
if we compare the digits 4 and 3, we can see that corner
cases of the digit 4 are built by noise adding or structure
deformation, whereas the construction of corner cases
of the digit 3 are characterized by class switching, into
digits 8, 1 and 5.

It is important to highlight that the obtained results
from figure 7 are showing the impact of each single di-
mension by keeping all other dimensions in their optimal
values (average image). The manipulation of a large set of
dimensions could combine several types of degradation
and allow the identification of new corner cases.

4. Conclusion and perspectives
The current work addresses a relationship between data
quality and model performance by exploring the latent
feature space of a generative model. Indeed, using our
approach, we are able to identify the influential direc-
tions which deteriorate the classifier performances and
discover corner cases in this space. The proposed ap-
proach is based on ranking the latent space dimensions
using the classifier output gradient with respect to the
StyleSpace input.

Our results show the impact and the influence of each
identified direction in terms of performance degradation
on the classifier. These identified directions, separately or
jointly, allow a visual account of the degradation which
could help in the interpretability and explainability of
deep learning classifiers.



Despite the first promising conclusions of this work,
our approach has been demonstrated only for generated
and synthetic images. Its application to real data requires
a capacity to encode – or invert – any data in the latent
space [26], to be able to apply the degradation encoded
by the influential directions.

Another perspective, is to evaluate our approach on
more complex data to identify other types of degradation
attributes. Recent works on image manipulation show
that visual attributes can be controlled for more complex
images [16, 18, 15, 17] and that generative models can be
applied to larger datasets such as ImageNet [27]. Those
two advances indicate the possibility of scaling-up our
approach.
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