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Abstract
Adversarial attacks (either norm bounded or patch-based) have received much attention from the computer vision community
over the last decade. The criticality of those attacks in the physical world, however, is questionable. Indeed, none of the
proposed attacks in the literature has been demonstrated in a realistic physical implementation verifying simultaneously
significant contextual effects, radiometric and geometrical robustness in either black or gray box settings. To advance this
issue, in this paper we propose an evaluation framework for patch attacks against object detectors. This framework focuses
on robustness and transferability properties by considering various image transformations and learning conditions. We
validate our framework on three state-of-the-art patch attacks using PASCAL VOC dataset, providing a more comprehensive
view of their criticality.
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1. Introduction
Deep neural networks (DNNs) achieve state-of-the-art
results in various computer vision tasks including image
classification [1], semantic segmentation [2], and object
detection [3, 4]. Due to their complexity, it has been
shown that they are vulnerable to small, adversarially-
chosen perturbations of their inputs [5, 6]. The existence
of this vulnerability has motivated works trying to make
DNNs empirically more robust [7] or proving that they
satisfy robustness properties [8], and works dedicated
to the design of more powerful attacks [9, 10]. Those
invisible attacks are mainly theoretical objects and
are not suited for real-world applications since they
consist of perturbing all the pixels in a very specific
way. In fact, considering self-driving cars as an example,
it is difficult to see how, physically, the image pix-
els captured by the embedded sensors could be perturbed.

A more realistic attack, named adversarial patch, has
been introduced in [11]. This type of attack is easily
visible in the image because it relies on adding a heavily
textured patch to the scene. Since such a patch can be
easily printed and positioned on an object or in the
environment, it can pose a serious threat. Placing a
patch on a stop sign or on the roadway may result in
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its misclassification [12] or in the missed detection of a
pedestrian crossing the road [13]: from a trustworthy
AI point of view, the instability due to a patch-based
adversarial attack is not acceptable. However, it is
unclear whether these attacks are truly robust to a wide
variety of observational conditions, such as radiometric
or geometric changes, and whether these patches can
be generated in a black-box setting, i.e., without having
access to the internal variables of the attacked algorithm.
Thus, it can be interesting for the community to rely on
a detailed evaluation framework that provides metrics
under multiples geometric, radiometric or model settings
in order to have a better understanding of the criticality
of patch attack threats.

In this paper, we propose a preliminary evaluation
framework which helps to evaluate the robustness of
patch attacks to both translation and model change, ap-
plied to three different attacks [14, 15, 13]. We conduct
experiments on YOLOv2 detector [16] and PASCAL-VOC
dataset [17]. The main contributions of this work can be
summarized as follows:

• definition of various categories of evaluation cri-
teria;

• proposition of an evaluation framework ranking
adversarial patch attacks;

• analysis of the spatial effect of state-of-the-art
patch based adversarial attacks;

• analysis of the internal mechanism of such at-
tacks.

The paper is organized as follows. In section 2, we give
a brief overview of adversarial patch attacks (APAs). In
section 3, we describe our methodology based on defining
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several criteria that evaluate the physical impact of the
attack. In section 4, using our methodology, we evaluate
three state-of-the-art APAs. Then, in section 5 we de-
velop perspectives about creating more powerful attacks.

2. Related works
In this section, we have classified the state-of-the-art
related works for adversarial patch attacks in three sub-
sections. First, we describe the beginning of APAs where
patches were applied to fool image classifier. Then, we
present works developing APAs aiming to fool object
detectors. Finally, we describe works exploring patches
contextual effects.

2.1. APAs for classification
Adversarial Patch Attacks (APAs) were introduced by
[11] for image classification. Instead of finding a small
additive perturbation, they confined the optimization to a
small part of the image but allowed it to be unconstrained
in magnitude. They produced a patch capable of fooling
multiple ImageNet classification models either in digital
or physical domain (just by printing the patch).

2.2. APAs for object detection
Attacking object detectors was explored in several works
working on different applications. In the beginning,
patches were directly applied on the struck object. The
first two works on patch-based attacks had targeted stop
signs. [18] used change-of-variable attack described in
[19] and the Expectation over Transformation technique
[20] to change the red background of stop signs to fool
Faster RCNN. Independently, [12] developed stickers
when applied on stop signs, can fool YOLOv2 and can
transfer to fool Faster RCNN. [21] were the first to create
a patch causing the disappearance of people when it was
applied on them. These works focused on designing a
patch that overlaps the targeting object to either change
its class or suppress detection.

Yet, depending on the context, suppressing detection
only on object close to the patch can be to restricted.
Currently, on video surveillance setting, it is an issue if
the hacker can become invisible thank to a patch. How-
ever, in autonomous driving, the hacker has no interest
in becoming invisible to the car. Yet, it is an issue if a
patch put on a wall suppresses pedestrian detection on
the street. In other words, in some contexts, the main
issue is the contextual effect of the patch.

2.3. Contextual adversarial patches
Contextual patch attacks were first explored by [14]. In-
stead of designing a new loss, they used the YOLOv2

loss but redefined the ground truths at the patch localiza-
tion. Their patches that do not overlap with the objects
of interest can blind the detector. They showed trans-
ferability over patch position, network architecture, and
dataset. However, patches are never clipped to the image
range, which is not suitable for real-world applications.
Following that, [15] studied the Dpatch attack in feasible
physical conditions and compared it to their new attack.
Considering a maximization problem of the YOLOv2 loss
over the ground truths, they outperformed the Dpatch
method and showed real-time attack success. The success
of these attacks consists of adding a salient patch in the
image producing false positives. This kind of effect can
be related to patch effects in classification. We directly
introduce ambiguity when we place a high-confidence ob-
ject which may look like in real at an out-of-distribution
object.

Another work similar to the previous ones is [13],
which develops attacks and defense for contextual ad-
versarial patches. They proposed a universal blindness
attack targeting one chosen class, an objectness attack,
and a targeted attack. In particular, [13] introduces the
idea of removing false positives on the patch. We will
consider this idea in our experiment as depending on the
use case, one may want to measure mainly the contextual
effect.

3. Methodology
This section presents the proposed methodology for rank-
ing the patch-based adversarial attacks and is organized
as follows: at the first place, we point out the motiva-
tions behind the proposition of such a pipeline, next, we
present the features which are at the core and on the
basis of which the ranking is obtained and finally the
adopted pipeline is described in greater details.

3.1. Motivation
Recently, there exists a vast and growing literature on
patch-based adversarial attacks. It is of utmost impor-
tance for concerned researchers and industries to be able
to unify and generalize the evaluation procedure. Ac-
cording to the application domain, we can divide the
adversarial patch attacks into synthetic attacks and real-
istic physical attacks. As an example of the first group of
attacks, we can cite the case where the patch is applied at
the same position of the attacked object in a digital image.
As a result, the attacker could pass through the detector
firewall with malicious content. However, the situation
is more complex in the case of second group attacks. As
an example, in the case of self-driving vehicles, the patch
should be placed at the receptive field of the sensors and
may be adapted with respect to various angles. It requires



Table 1
Evaluation settings by category and their brief description.

Category Setting Description

Radiometric
Varying weather conditions Brightness, snow, rain, ...

Filters JPEG transformation

Geometric
Rescaling * * *

Crop * * *
Affine transformations Rotations

Distance wrt. learning position Shift from learning position

Transferability
Detector sensitivity Sensitivity of a detector parameters to APA

Detector generalisation Generalisation of an APA through multiple detectors

that the patches shall be robust against geometric trans-
formations so that the attack takes place. In this regard,
our motivation is to design a set of settings to evaluate
and measure the effectiveness of the second group patch
attacks under various circumstances. In the following,
we use the context of self-driving vehicles to elaborate
our methodology and describe the set of settings at the
core of the proposed pipeline.

3.2. Evaluation settings
In our proposed pipeline, we consider three groups
of evaluation settings that help to better evaluate the
impact of adversarial patch attacks. Each of them
represents an essential feature of the attack. These
three categories are described in greater details in the
following using the context of autonomous vehicles:

Radiometric settings Radiometric settings catch
patch robustness against environmental changes like
luminosity, weather, and photometry change like
filters. They measure patch robustness when all image
transformations are applied. Regarding our example,
an attacker would design a patch resilient to the day’s
weather or luminosity on the patch.

Geometric settings Geometric settings are designed
to capture the robustness of a patch subject to geometric
transformations. Contrary to radiometric features,
geometric transformations are transformations of the
patch and not of all images. We can distinguish two
types of geometric transformation. The transformations
of the physics of the patch itself, such as the effect of
a zoom or an ablation of one of the parts of the patch,
and the transformations of the patch in its physical
environments, such as affine transformations, rotations,
and displacements with respect to its training position.
In our example, an attacker would create a patch efficient

regardless of his position in the image.

Transferability settings Transferability settings
measure patch robustness according to component
training changes like network parameters, learning
datasets, or architectural changes. Will an attack succeed
on one YOLO capable of attacking any YOLO? Or will
an attack fooling YOLO’s detector be able to sway a
Faster R-CNN [3]? Without direct access to the attacked
component, an attacker must design a patch robust to
reparametrization of the network. In other words, those
transferability settings measure how much the hacker
known the targeted model.

Table 1 summarizes and describes all the settings
present in a given category. Note that for radiometric
settings and geometric settings, certain transformations
can be applied only on the patch or on the image as a
whole.

3.3. Evaluation pipeline
In this section, we present the proposed pipeline for eval-
uation of patch-based adversarial attacks, and the corre-
sponding scheme is shown in Figure 1.

The proposed pipeline allows to compute evaluation
criteria based on the settings mentioned in the previ-
ous section (see Table 1 for a summary). The first step
consists in selecting an attack strategy, an object detec-
tor algorithm, and a dataset on which we may train the
patch using the selected attack strategy. The choices
of the dataset could be among those which provide the
bounding boxes required for object detection tasks (e.g.
PASCAL VOC [17], MS COCO [22], etc.). Once a patch is
designed and learned, we evaluate its performance when
placed at the same position during the training phase.
The reported evaluation criteria are mAP (mean average
precision) or AP (average precision), which are computed
before (clean) and after the application of the patch on



Figure 1: Structure of the proposed pipeline to evaluate APAs. Given a dataset, a network and a patch we evaluate multiple
settings or configurations. The resulting average precision (AP) or mean average precision (mAP) scores are used to rank
attacks for each setting. The overall rating measures the real impact in physical conditions of each APA.

the data (perturbed).
When the patch is placed at the same position that has

been considered during the training phase, it shows the
highest effectiveness. We can also measure the criticality
of the attack by measuring the difference in its effective-
ness performance between the case when the patch is
placed at the same position as during the training phase
and the case when one of the previously mentioned set-
tings is applied to it. For example, after rescaling the
patch or after changing the network parameters.

4. Experiments
This section presents the experimentation using the pro-
posed methodology. We start with a brief introduction of
patch attacks used for the experimentation. It is followed
by the description of the experimental settings used to
configure the pipeline for the evaluation. Next, a brief
explanation of the object detector based on which the
evaluation metrics are computed is provided. Finally, the
evaluation results are demonstrated and reported using
graphical tools and a comparison table.

4.1. Evaluated patches
The proposed pipeline is used to evaluate the effective-
ness of three state-of-the-art contextual adversarial patch
attacks, which are:

• Dpatch [14]: instead of maximizing the YOLO
loss, minimizing it but redefined the ground
truths boxes at the patch localization i.e. setting
the patch as the only object in images;

• Lee et al. [15]: maximizing the YOLO loss over
the ground truths;

• Saha et al. [13]: minimizing the probability of
one chosen class.

4.2. Evaluated detector
For the sake of the evaluation, we have used the You-
Only-Look-Once (YOLO) algorithm. YOLO is a one-stage
object detector that achieves state-of-the-art performance
and is faster than other detectors. YOLO takes a fixed-
sized image and divides it into a 𝑆×𝑆 grid. For each cell,
YOLO predicts 𝐵 bounding boxes and their confidence
scores, and for each bounding box predicts 𝐶 class proba-
bilities conditioned on being an object. In total, there are
𝐵𝑆2 possible bounding boxes. During inference, before
the non-maximum suppression, are kept only boxes that
the product of the confidence score and the conditional
class probability are over a threshold.

4.3. Experimental setup
Since we evaluate patch contextual effects, we ensure
that no object of interest intersects with the patch. Fol-
lowing [13], first, we fix the patch at a location in image,
e.g., at the top-left corner i.e. pixel (5, 5). Next, using the
PASCAL VOC [17] test dataset, we sample two subsets
of images that do not overlap with the patch. As so, a
universal patch attack can be designed by simply iter-
ating through training images. As we are interested in
evaluating the contextual effects of the patch, the detec-
tions overlapping the patch do not interest us. For the
sake of clarity we plot our results with and without false



Figure 2: Objectness map obtained by averaging over anchors in cells. Rows represent the evolution of the objectness map for
changing evaluation settings. At each column, a different APA is tested. The fourth column is the baseline. Training settings
correspond when evaluation is performed with training settings.

positives on the patch. For all our experiments, we use
YOLOv2 [16].

For each of the attacks mentioned above, we solve their
corresponding optimization problem and clip the patch
to [0, 1]. Clipping the patch ensures that we produce a
more realistic patch and do not produce inf values. Each
image is rescaled at size 416 × 416, and we fixed each
patch of size 100× 100 at the top-left corner. We launch
the optimization process with an all-zeros patch, and we
use the associate optimizer used in the corresponding
article. As in [15], we run the optimization for 100 steps
where 1 step corresponds to 1000 iterations. In evaluation
mode, we set the confidence threshold at 0.0005, the non-
maximum suppression at 0.45, and the IOU at 0.5.

Rather than evaluating each feature in each category,
we choose to evaluate the invariance of the attack by
network reparameterization and to measure the impact
of the attack when the patch is moved from the top-left
learning position to the opposite bottom-right position.
For the last one, as we need the patch to not intersect
with the object of interest, we extract matching images of
the corresponding top-left validation set and the bottom-
right validation set. As a baseline, we evaluate the differ-
ent attacks at the training position. To compare [13] with
other attacks, we report the AP score when attacking the

"person" class. Notice that, both [14] and [15] can affect
multiple classes.

4.4. Results
In this section, using our proposed pipeline, we evaluate
three state-of-the-art attacks; Dpatch [14], Lee et al. [15],
Saha et al. [13]. In clean mode (i.e. no patch placed
in the image) we report an AP of 76.13% for the top-
left extracted subset and 80.01% for bottom-right one.
Cleaned scores are different since the patch is placed at
another position. In fact, when we move the patch from
one position to another we need to create new subsets
extracted from PASCAL VOC test set since no ground
truths should intersect with the patch.

Table 2 shows the results of the three attacks in multi-
ple settings. In training settings, we see that the attack
proposed in [13] produces large contextual effects. AP
with and without false positives are similar. However,
it seems that both [14] and [15] produce patches trying
to be the salient object of images limiting their contex-
tual effects and producing false positives on them. When
we evaluate with another YOLO, contextual effects have
almost completely disappeared. And when we evaluate
from another position, patches can produce false nega-



Figure 3: "Person" class probability map obtained by averaging over anchors in cells. Rows represent the evolution of the
person probability map for changing evaluation settings. At each column, a different APA is tested. The fourth column is the
baseline. Training settings correspond when evaluation is performed with training settings.

tives but less than before (e.g for Saha et al. 59.47 % AP to
75.87 % AP). AP under radiometric change is not reported
due to discordant observations.

Table 2
Table of the evolution of the AP score, with and without false
positives on the patch, for different setting evaluation and for
different APA.

Setting Attack
Attacked AP (%) Cleaned

with f.p without f.p AP (%)

Training Dpatch 71.42 75.01

76.13

settings Lee et al. 10.56 74.36
Saha et al. 59.36 59.47

Network Dpatch 73.34 75.25
parameters Lee et al. 60.35 75.42

Saha et al. 75.55 75.55

Shift from Dpatch 70.61 77.87
80.01learning Lee et al. 53.02 78.73

position Saha et al. 74.28 75.87

4.4.1. Objectness map

Figure 2 plots the average objectness in cells for the test
set for changing evaluation settings and for different APA.
The color in cells of images represents the average value

of the objectness predicted by YOLO for a chosen evalua-
tion setting and a chosen APA. At each column, we plot
the average objectness map for the same attacking pro-
cedure but for different evaluation settings. And, at each
row, we plot the average objectness map for the same
setting but for different APAs. For example, in the first
row and first column, we plot the average objectness map
when attacking with Dpatch [14] and when the patch is
placed in training condition. The blue square represents
where the patch is placed. We clearly notice that Dpatch
[14] and Lee et al. [15] attacks try to attract the most of
region proposals. On the contrary, Saha et al. [13] tries
to decrease the objectness score around the patch.

4.4.2. Probability map

Figure 3 plots the average "person" class probability in
cells for the test set for changing evaluation settings and
for different APA. The color in cells of images represents
the average value of the "person" class probability pre-
dicted by YOLO for a chosen evaluation setting and a cho-
sen APA. At each column, we plot the average "person"
class probability map for the same attacking procedure
but for a different evaluation setting. And, at each row,
we plot the average "person" class probability map for



the same setting but for a different APA. For example,
in the first row and the first column, we plot the aver-
age "person" class probability map when attacking with
Dpatch [14] and when the patch is placed in training
condition. The blue square represents where the patch is
placed. Again, it illustrates the fact that Dpatch [14] and
Lee et al. [15] have low contextual effects. In training
settings, Saha et al. [13] shows interesting contextual
effects. Its attack can push the probability of the "person"
class toward zero, producing no detections of persons in
almost a quarter of the image. However, changing net-
work parameters or moving from the learning position
suppresses almost the entire effect of the patch.

5. Conclusion
In this paper, we define various categories of criteria:
namely geometric, radiometric, and transferability, for
the evaluation of Adversarial Patch Attacks and, using
these criteria, we propose an evaluation framework able
to rank them. The framework has been applied on three
state-of-the-art patch based adversarial attacks.

Typically, we noticed that the patches trained to be
top left have a little perturbation impact when placed
bottom right. The same resilience to patch attack is true
when changing learning conditions (other initial starting
weights, other architecture). What this first study reveals
is that the actual threat caused by the presence of state-
of-the-art adversarial patch attacks is low when deployed
in a realistic context. This first analysis does not claim,
however, that all possible patch attacks have low impact
on detection performance: the idea was rather to propose
an evaluation framework able to assess their potential
threat in a more physically realistic way, a framework
which, we hope, future patch attacks will use.

Future works will follow two directions: complement
the categories of evaluation criteria, typically with other
types of transferability features, and design patch attacks
resilient to a larger set of viewing and learning condi-
tions.
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