
Casual Creator Cursed Problems or:
How I Learned to Start Worrying And Love Designers

Adam Summerville1, Ben Samuel2, James Ryan3, Liz England
1 California State Polytechnic University, Pomona,

2 University of New Orleans,
3 Carleton College,

asummerville@cpp.edu, bsamuel@cs.uno.edu, jryan@carleton.edu, lizengland07@gmail.com

Abstract

A cursed problem is a problem that contains a contra-
dictory set of goals. In this discussion paper, we discuss
the trials and tribulations behind trying to create a lan-
guage for social simulation aimed at a casual (or at least
non-programmer) audience, while also still appealing to
ourselves and other more expert users.

Introduction
In his 2019 GDC talk (Jaffe 2019), Alex Jaffe defines a
cursed problem as a “problem with some inherent contradic-
tion in goals.” We propose that the construction of a casual
creator Domain Specific Language (DSL) for complex phe-
nomena is a cursed problem, and invite discussion towards
understanding how best to design a DSL that can be useful
and usable by designers – programming and non.

In her dissertation (Compton 2019), Kate Compton dis-
cusses Casual Creator (CC) programming languages and
discusses three components that CC programming lan-
guages might (should?) have:

• Scaffolded – The output of the program should be visible
during editing, to speed the ‘grok’ loop

• Unfoldable – The language should have a compact form
that beginners can use, with advanced features available
for power users

• Little – The language has a compact vocabulary useful
for a small domain (as opposed to a general purpose pro-
gramming language like C, Javascript, or Python)

The authors of this paper have been developing a CC-like
DSL capable of producing worlds for social simulation title
Kismet (Summerville and Samuel 2020). Previous attempts
at social simulations have either relied on bespoke code in
a general purpose programming language (Ryan et al. 2015;
Adams and Adams 2006) or DSL’s that are perhaps only ar-
guably human readable (the XML representation of Comme
il Faut (McCoy et al. 2014)). Taking inspiration from Inform
7 (Nelson 2006) the language in question uses natural lan-
guage like representation for constraints:

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

if Drinker is drunk and
Drinker and Target don’t like each other

or

if Gossiper heard GossipedAboutAction and
Gossipee didn’t do GossipedAboutAction

With the intention being the construction of a DSL that
hits the following design goals:

1. Free Text – Can be edited in anything that can edit text
(Word, Notepad, Atom, GMail, IRC, etc.) and does not
require a special editor

2. Natural Language – The act of writing rules is closer to
writing prose than a standard programming language

3. Simple Simulation – Instead of simulating the complete
richness of human (or inhuman) society, the language is
designed for “apophenia hacking” (Ryan 2018) wherein
humans use their innate pattern matching skills to read
more into it than there might be

These designs seemingly hit on some of the points set
forth by Compton

• Free Text → Little

• Natural Language → Unfoldable

• Simple Simulation → Scaffolded

but in practice, these designs do not necessarily hold up,
or at least not for all circumstances and users. The free text
nature does lend itself more to being a little language that
could exist inside of a more general purpose system, but it is
not enough for it to be little. The natural language aspect en-
hances readability, but it hurts writability (E.g., is “doesn’t
like” equivalent to “dislikes”?) in that natural language is
not a formal language (Graham Nelson notes in his 2019
Narrascope talk (Nelson) “that the benefits [of natural lan-
guage] are double-edged. But they are real.”). Finally, while
the simple simulation is closer to something that can be up-
dated and shown in real time to a user, in practice even the
simplest of simulations takes at least a few seconds to run for
long enough to show interesting emergent properties, which
is much slower than the fraction of a second for something
like procedural text generated by Tracery (Compton, Kybar-
tas, and Mateas 2015).



In looking to improve this language, we sought the feed-
back of a professional game designer. The designer notes
that “a good tool removes cognitive overhead from the de-
signer and puts that information directly in the tool, so that
the designer can keep more of their focus on high level de-
sign goals and not get bogged down with lower level con-
cerns like syntax or data setup, or even just remember what
the system can or cannot do.” In discussing syntax, the de-
signer states “My philosophy is that I don’t ever want to
have to worry about syntax. If I am spending time on syn-
tax, then I’m not spending time on design. If you think of
it like Maslow’s hierarchy of needs, syntax is the ’am I be-
ing fed and clothed?’ layer, and I want to work on the ’self-
actualization’ layer where all the interesting design is hap-
pening.” The designer has expressed an interest in the lan-
guage being entirely behind the scenes, with interaction be-
ing handled via its own one-off graphical editor (a la the
non-public editor for Comme il Faut). However, this goes in
contrast with the other goals – Free text explicitly and Natu-
ral Language implicitly (as there is no reason for natural lan-
guage when the language is hidden from the designer). This
also goes in contrast to the goals of other designers such as
Reed (Reed 2020) “Other tools were also unsuitable for var-
ious reasons, such as requiring IDEs rather than support for
text files.” or Compton “the structure editor was a perversion
of what casual creators ought to be” (Compton 2019). How-
ever, that is not to say that the idea of an editor is entirely
opposed, as Compton does go on to say “...but the constraint
of making JSON errors impossible was a necessary safety
support for a large percentage of my users.” I.e., the limita-
tions of a tool can be helpful if they also introduce useful
safety. Similarly, on the topic of simulation richness, an ex-
pert in Social Simulation expressed that the expressiveness
of the simulation was not rich enough and needed higher
order modeling (e.g., agents being able to reason over mem-
ories and form meta-memories where they reminisce about
those memories). The professional developer has noted that
the currently planned features are already too much: “I can
tell that once locations and more complex characters (with
roles, age, and other arbitrary defined information) are ready
to be implemented, I’m probably going to be lost.” But in
coming from a world of bespoke tooling for AAA games
they note, “I find that [the language] covers half my needs,
and the other half are a mix of missing functionality (now
that I have a specific use case) or extra functionality I don’t
need (because I can’t see what problems it solves).”

This brings us back to the idea of a cursed problem – a
problem (in this case design goals) that have opposing goals.
Different users (the language authors, the non-programming
game designer, and a social simulation expert) each have dif-
ferent features that are desirable (perhaps even necessary)
for them.

1. Free Text – Important for the authors and expert. Unim-
portant for the designer.

2. Natural Language – Important for the author. Useful for
the designer for readability, but a hindrance for writability.
Unimportant for the expert.

3. Simple Simulation – In some cases too complex for the

designer and in others not rich enough. Not rich enough
for the expert.

Perhaps there is some set of tooling and foldability that
makes this Gordian knot cuttable, such that it is usable and
interesting to both a non-(to-lite)-programmer and a social
simulation expert, and that is what we would like to discuss.

The Discussion
We now note questions that we the authors have that we
think can lead to good discussion:

• Is this a cursed problem?
• Is there a way to please all (most?) users across a wide

range of programming comfort? (text editor for program-
mers, Scratch-like GUI for beginners, drop-down boxes
for intermediate?)

• Is there a way to please all (most?) users across a wide
range of simulation desires?

• What human-in-the-loop accessible feedback can be pro-
vided in real(ish) time for something that could take 5-100
seconds to generate?

References
Adams, T., and Adams, Z. 2006. Dwarf fortress. Game
[Windows, Mac, Linux], Bay 12.
Compton, K.; Kybartas, B.; and Mateas, M. 2015. Trac-
ery: an author-focused generative text tool. In Interna-
tional Conference on Interactive Digital Storytelling, 154–
161. Springer.
Compton, K. 2019. Casual creators: Defining a genre of au-
totelic creativity support systems. University of California,
Santa Cruz.
Jaffe, A. 2019. Cursed problems in game design.
McCoy, J.; Treanor, M.; Samuel, B.; Reed, A. A.; Mateas,
M.; and Wardrip-Fruin, N. 2014. Social story worlds with
comme il faut. IEEE Transactions on Computational intel-
ligence and AI in Games 6(2):97–112.
Nelson, G. Opening inform.
Nelson, G. 2006. Natural language, semantic analysis, and
interactive fiction. IF Theory Reader 141:99–104.
Reed, A. A. 2020. A minimal syntax for quantum text.
Ryan, J. O.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2015. Toward characters who observe, tell, mis-
remember, and lie. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference.
Ryan, J. 2018. Curating simulated storyworlds. Ph.D. Dis-
sertation, UC Santa Cruz.
Summerville, A., and Samuel, B. 2020. Kismet: a small
social simulation language. In Summerville, A., & Samuel,
B.(2020, September). Kismet: a Small Social Simulation
Language. In 2020 International Conference on Computa-
tional Creativity (ICCC).(Casual Creator Workshop). ACC.


