
Casual Creation of Tile Maps via Authorable Constraint-Based Generators

Dan Carpenter, John Thomas Bacher, Henry Crain, Chris Martens
Department of Computer Science, North Carolina State University
{dcarpen2, jtbacher, hrcrain}@ncsu.edu, martens@csc.nscu.edu

Abstract
Tile-based maps are used in a wide variety of games, includ-
ing Zelda: Link’s Awakening, Super Mario Bros, and many
tabletop role-playing games. They represent a relatively sim-
ple method for designing game worlds, which makes them a
great medium for casual users. However, creating tile maps
entirely by hand can be tedious, especially for large maps or
across several map generation tasks. There is potential for
generative systems to support users in more efficiently and
enjoyably creating tile maps, but a more streamlined con-
tent generation experience often comes at the cost of reduced
control over the generated content. In this paper, we present
a mixed-initiative map generation tool that supports users in
creating customized tile maps by providing complete control
over both the map being generated and the rules governing an
underlying Answer Set Programming-based generator. Using
a small palette of rules designed for tile map generation, users
define constraints on the types of maps the system will gener-
ate, view and edit generated maps, and selectively re-generate
sections of the map until they are satisfied. We discuss our
current progress on this tool and present several opportuni-
ties for future work, with a particular focus on expanding the
capabilities for authoring rule-based tile map generators.

Introduction
Tile-based maps are used in many video games, including
Zelda: Link’s Awakening and Super Mario Bros, and table-
top role-playing games like Dungeons and Dragons and
Pathfinder. There is extensive support for the creation of tile
maps and the use of tile maps for creating video games. For
example, the Tiled map editor (Thorbjørn Lindeijer 2008)
has been used in the creation of hundreds of indie games,
and the popular Unity game engine (Unity Technologies
2005) features native support for tile maps. For tabletop
role-playing games, map editors like Tiamat Tile Mapper
(RPGObjects.com 2010) and map generators like DunGen
(DungeonChannel.com 2019) are useful tools for creating
tile maps. Yet, despite the substantial support for the use of
tile maps in games, there is a lack of tools that leverage the
full capabilities of procedural content generation to support
the creation of tile maps. Often, tile map creation tools either
require users to manually edit every tile on the map or allow

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

them to configure a small set of parameters and then repeat-
edly generate new maps until they find something they like.
There is significant potential for a tool that combines the
benefits of both tile map editors and generators, allowing
users to directly edit the map while also enabling collabo-
ration between the user and a generative system to improve
efficiency and foster creativity.

Mixed Initiative Co-Creation (MI-CC) systems aim to
foster this type of productive human-computer collaboration
during creative tasks (Yannakakis, Liapis, and Alexopoulos
2014). By supporting interaction between a human initiative
and a computer initiative, with both the human and com-
puter proactively contributing to a creative task, MI-CC sys-
tems can lead to truly co-creative experiences. In an MI-CC
relationship, the human and computer are able to work in
harmony to complement each other’s weaknesses. For ex-
ample, the computer can act as an expert guide for a particu-
lar content creation task by providing suggestions based on
an existing body of work, thereby scaffolding a user’s initial
exploration of a new domain. The computer can also take on
the role of an additional worker providing suggestions for
parts of the generated content that the user is less interested
in focusing their time on.

MI-CC tools can be designed to embody the principles of
casual creators (Compton and Mateas 2015), which are ac-
cessible to users with varying levels of technical knowledge
and domain expertise and prioritize the experience that users
have while exploring a design space in collaboration with a
generative system. A casual creator is a tool that allows a
user to rapidly explore a range of possibilities and discover
unusual or novel results. They are meant to be enjoyable to
use; the user feels a sense of pride in what they have discov-
ered. People can engage with them casually in the sense that
they do not require any background knowledge or training.

In this paper, we present a mixed-initiative tile map cre-
ation tool that implements several casual creator patterns
(Compton and Mateas 2015) and provides users with a sim-
ple yet powerful set of controls over the generation of a
map and the underlying generative system. The tool is built
around an Answer Set Programming (ASP) constraint-based
generator that the user can modify through a set of natu-
ral language rules that define characteristics of the maps
that will be generated. ASP was used for constraint solv-
ing because of its extensive use in procedural content gen-



eration tasks, including puzzle and level generation (Smith
and Mateas 2011; Neufeld, Mostaghim, and Perez-Liebana
2015). Yet, ASP is not very approachable for non-technical
users, so we sought to provide some of the content gen-
eration power of ASP with a more approachable graphical
user interface. In our tool, users construct rules by select-
ing options from dropdown menus and typing values into
input fields, thus ensuring the syntactic validity of each rule.
These rules are then translated into ASP and used to gener-
ate tile maps that meet the desired specifications. Rulesets
can be saved and loaded, allowing users to design different
map generators that they can later refine to meet specific sce-
narios, as well as providing a mechanism for sharing map
generators between users. Additionally, users can directly
modify the map that is being created by adding specific tiles
or locking generated sections of the map that they want to
keep. This allows users to exercise as much control over the
map as they desire while supporting iterative refinement in
collaboration with the generator.

We discuss our progress on the tool’s design and develop-
ment, describing our initial goal of supporting the creation of
individual tile maps and our recent focus on supporting the
creation of rule-based tile map generators. We also present
promising directions for future work, especially opportuni-
ties for expanding the tool’s rule authoring capabilities.

Related Work
Mixed-initiative and casual creator tools have been devel-
oped to support a wide range of content generation tasks, in-
cluding the creation of game maps and levels with Tanagra
(Smith, Whitehead, and Mateas 2011), Evolutionary Dun-
geon Designer (Alvarez et al. 2018), and Sentient Sketch-
book (Liapis, Yannakakis, and Togelius 2013); entire games,
including entities, relationships, and mechanics with Ger-
minate (Kreminski et al. 2020); and characters and items
for tabletop role-playing games with Imaginarium (Horswill
2020). Tanagra, Evolutionary Dungeon Designer, and Sen-
tient Sketchbook present approachable interfaces that allow
users to interact directly with the content that is being gener-
ated and receive support or inspiration from a generative sys-
tem. For example, in the Evolutionary Dungeon Designer,
users manually edit tile-based dungeon maps, placing floor,
wall, enemy, and treasure tiles on a grid. At any time, users
can view suggested versions of the dungeon that an evolu-
tionary algorithm has generated based on the dungeon’s cur-
rent configuration. By taking inspiration from the suggested
dungeons, users are able to explore designs that they may
not have considered otherwise.

Germinate and Imaginarium differ from Tanagra, Evo-
lutionary Dungeon Designer, and Sentient Sketchbook be-
cause they support users not only in generating artifacts, but
more broadly in the creation of the PCG systems that gen-
erate those artifacts. These casual creators present novice-
friendly interfaces for declaring constraints on generated ar-
tifacts, thereby allowing users to create their own procedural
content generators.

Germinate, which is built on top of the Gemini game gen-
erator (Summerville et al. 2018), presents a domain-specific
visual programming language that allows users to declare

constraints on the types of games that the system will gen-
erate. These constraints include types of entities (i.e., graph-
ical objects, such as characters), resources (i.e., quantitative
values that define the goals of the game, such as happiness
or confidence), relationships between entities and resources,
and triggered gameplay events. Constraints in the visual pro-
gramming language are translated by Germinate into Gem-
ini intents, which are ASP programs. When users are done
declaring constraints, they ask Germinate to produce a batch
of games that attempt to satisfy the constraints specified by
the user while also introducing additional entities, resources,
relationships, or triggers. The generated games are presented
in a playable form, so users can immediately playtest what
was created based on their core design intent. Additionally,
the games are displayed in the same visual programming
language that is used to create the design intent for gener-
ating games. This allows users to clearly see where their
constraints were implemented or modified and to take in-
spiration from generated games by pulling new constraints
into their core design intent.

Imaginarium supports users in the development of pro-
cedural content generators for tabletop role-playing charac-
ters and items. Users provide structured natural language
descriptions of some rules that they want a set of entities
(e.g., characters and items) to follow and the system gen-
erates entities meeting these requirements. For example, by
enumerating sets of possible characteristics that cats could
have (e.g., “Cats are white, gray, black, or ginger”), fol-
lowed by asking Imaginarium to “Imagine 3 cats”, the sys-
tem will generate three cats that embody some combination
of the possible characteristics. This is done by translating the
structured natural language the user provides into an ASP
program, running the program, and translating the output
back into natural language. By doing so, users are able to
leverage some of the power of ASP without needing to be
proficient in logic programming. This allows the generative
tool to be approachable for users with many different back-
grounds, since the technical barrier to entry has been signif-
icantly reduced.

Beyond the work presented in Germinate and Imaginar-
ium, several other domain-specific languages have been de-
veloped to support the creation of generative systems, such
as the Grammatical Item Generation Language (GIGL; Chen
and Guy 2018), Ceptre (Martens 2015), and Tracery (Comp-
ton, Filstrup et al. 2014). While not necessarily designed to
provide casual users with access to PCG system creation
(e.g., GIGL creates generators that interface with C++),
GIGL and Ceptre significantly reduce the effort required to
implement generative systems. With these languages, users
can more rapidly prototype new procedural content genera-
tors or games that rely on these generative systems. Tracery,
on the other hand, was designed with casual users in mind
and supports the creation of grammar-based story genera-
tors. By writing a marked up story similar to a Mad Libs
(e.g., “The boy saw the #animal# at the zoo”) and a set of
replacement rules (e.g., animal → [giraffe, monkey, zebra]),
users are quickly able to create systems that can generate a
wide range of interesting stories.

The tool that we present in this paper was originally in-



spired most heavily by the MI-CC systems that are con-
cerned with generating individual game artifacts (i.e., Tana-
gra, Evolutionary Dungeon Designer, and Sentient Sketch-
book). These systems inspired the high level of interactivity
that our tool provides to users when they are generating a
tile map. However, we have recently identified the use of
ASP-based rules to design tile map generators as a particu-
larly interesting application of our tool. Thus, our focus has
begun to shift toward developing a system that has more in
common with Germinate, where the central interaction be-
ing supported is the use of a domain-specific programming
language to define procedural content generators.

Current Progress

We have made significant progress toward developing a
mixed-initiative casual creator tool that helps users make tile
maps. The tool, developed with the Unity game engine, fea-
tures a map generator based on Answer Set Programming
that can be configured by a set of natural language con-
straints. There is also an interactive representation of the
map that the user can edit at any time. By combining an
interactive map with a configurable constraint-based genera-
tor, users are able to manually add whatever they want to the
map and ask the generator to fill in all of the parts that they
are less concerned about. Once they see what the generator
creates, the user can pick and choose any parts that they like
and ask the generator to once again fill in the gaps. Through
this iterative process of co-creation between the user and the
generator, users have the benefits of complete control over
the generated map while also having a reduced workload
and the opportunity to be inspired by the generator.

The tool’s interface is broken up into five different areas,
which are shown in Figure 1. Area 1 displays the map that
is being collaboratively generated by the user and the ASP-
based map generator. The map is interactive, allowing users
to manually add tiles in specific locations and to lock certain
areas of the map to let the generator know what it is allowed
to overwrite. Area 2 allows users to start creating a new map
and to assign a name to the map. Clicking the button to cre-
ate a new map also brings up a window where users specify
the desired height and width of the map. Area 3 shows all
of the tiles that are available to the user and the generator.
Currently, users only have access to a small set of tiles, but
a future version of this tool will allow users to import their
own images as tiles. Users can click to select tiles in this area
and manually place them on the map. They can also right-
click tiles in this area to assign tags, which allow users to
provide metadata about tiles to group them together. For ex-
ample, house, palace, and temple tiles might all be grouped
together under a “building” tag. Area 4 is the rule creation
interface, which provides six rules (explained in detail in the
next section) that can be used to create tile map generators.
These rules can operate on both tile types and tags. Finally,
Area 5 has a “Generate new map” button that users can click
to ask the generator to create a new map or re-generate the
unlocked portions of the map that they are currently working
on.

Rules for Map Generation
The tool relies on Answer Set Programming (ASP), specifi-
cally using the Clingo language (Gebser et al. 2008). Answer
Set Programming allows users to specify atoms, constraints,
and rules which the solver abides by and tries to generate
a valid set of atoms that meet those constraints. However,
while ASP is a powerful tool for constraint-based generation
(Smith et al. 2012), the complexities of ASP and first-order
logic make it largely inaccessible to casual users. Therefore,
we sought to translate the complex syntax of ASP into sim-
ple natural language phrases that a user can use to craft tile
map generators.

Rules were created in two directions. First, we formu-
lated the kinds of constraints we would expect from a gen-
erator, which included things like specifying the types and
how many of each building should exist, the proximity of
buildings to other buildings, and the connections between
buildings. From those formulations, we implemented an ex-
ample of each in Clingo, our chosen ASP language, in order
to establish that it was possible to create the rule in a gen-
eralizable way. From there, the only remaining step was to
create an internal C# script that queries Clingo with a file
(or, as we came to call it, a rule set) and awaits the response
in the form of logic atoms which indicate the layout of the
map.

We chose to formulate rules as natural language sentences
where the user is able to adjust numbers and select opera-
tive words to form legal rules (see Figure 2 for some ex-
ample rules in the tool). Each rule has an associated C#
function which accepts the numbers and operative words as
parameters and returns all necessary Clingo code for that
specific rule as a string. When the user indicates they are
ready to generate a new map with their existing rules, the
proper function calls are made and all the Clingo code is
added to a base Clingo file which contains definitions about
the domain space. The result of solving the Clingo file pro-
duces the logic atoms which are parsed and displayed on the
screen.

Users construct rules by typing strings or numbers into
input fields or by selecting values using dropdown menus.
Rules are validated before being compiled into ASP code,
so individual rules that get passed to the generator are al-
ways error-free. In fact, the only way for the user to pro-
duce invalid rules is to leave some input fields blank, but
this does not affect the generator because incomplete rules
are ignored. However, it is not always true that the rules are
valid when taken together, since there could be contradic-
tory constraints. The tool notifies users when a map cannot
be generated given the rules and locked tiles on the map, but
it does not currently do anything to highlight the potential
problems.

Base Rules A base rule set contains all information that
Clingo needs to know about two-dimensional tile maps, such
that it is able to generate valid maps. The first element of the
base rule set is the set of dimension atoms. These define that
there are two dimensions, X and Y, which each take a nu-
meric input. The dimensions define the size of the map. The
second element is a choice rule which indicates to Clingo



Figure 1: The tool’s interface, with five distinct areas: (1) the interactive map, (2) a button for starting the creation of new
maps, (3) the tiles available to the user and the map generator, (4) the rules that define the map generator, and (5) a button for
generating new maps or re-generating the unlocked portions of the current map.

that there should be exactly one tile on each dimension pair.
Finally, the concept of adjacency is established by creating
atoms that define vectors of movement. These step rules are
expanded to arbitrarily large X and Y coordinates based on
the rules used during generation. The base rule set is never
exposed to the user, so they do not need to worry about creat-
ing valid maps and can focus on defining rules that generate
interesting maps.

Rules Presented to the User There are five main rules
available to the user for crafting a tile map generator: Ad-
jacency, Proximity, Connection, Count, and On. The natural
language and Clingo representations for these rules are laid
out below. A sixth rule (Tile Inclusion) allows users to spec-
ify which tiles the generator can use when creating a map,
thus providing a way to prevent irrelevant tiles from appear-
ing in certain maps (e.g., ocean tiles in a landlocked city).

The Count rule is the simplest of all the rules. It states
“There are (≥,≤,=) Count TileA”. The rule translates to
the following ASP code:

:- #count{X, Y : at(X, Y, house)}
(<, >, !=) Count.

A Count rule is satisfied if there exists a number of the spec-
ified building or tag to satisfy the rule. The count rule can be
used to indicate a specific number of buildings that should
exist, or to create a range for a certain type of building.

The Adjacency rule specifies that a certain tag or tile must
have a certain number of another tag or tile adjacent to it.
It states “There are (≤,≥,=) Count TileA adjacent to each
TileB.” The rule translates to the following ASP code:

:- at(X, Y, TileA),
#count{Z, N : at(Z, N, TileB),
steplong(DX, DY, 1),
Z = X + DX, N = Y + DY}

(<, >, !=) Count.

For example, the rule “There are at least four parks adjacent
to each palace,” indicates that wherever a palace is placed,
there should be four parks in the surrounding eight squares.

The Proximity rule is an extrapolation of the Adjacency
rule for a specified radius around the specific tile. It states
“There are (≤,≥,=) Count TileA within Dist spaces of each
TileB”. The rule translates to the following ASP code:

:- at(X, Y, TileA),
#count{Z, N : at(Z, N, TileB),
steplong(DX, DY, Dist),
Z = X + DX, N = Y + DY}

(<, >, !=) Count.

Using the Proximity rule instead of the Adjacency rule, our
previous example could be accomplished like this: “There



Figure 2: Examples of (1) a Proximity rule, (2) an Adjacency
rule, (3) a Connection rule, and (4) a Tile Inclusion rule in
the tool.

are at least four parks within one space of each palace.”
The On rule directly uses the dimensions in the base rule

set to specify whether a tile should or should not be on a spe-
cific coordinate. It states “All tiles in Row/Column Num are
TileA”. For specifying tiles in a certain row, the rule trans-
lates to the following ASP code:

:- not at(X, Num, TileA).

As an example, the maps shown in Figure 3 use an On rule
to ensure that only tiles with a Wall tag appear on the outer
edges of the map, thus creating a walled city.

The last rule, and the most complicated, is the Connection
rule, which states “All TileA are connected to all TileB by
TileC”. The rule translates to the following ASP code:

has_TileC.
1 {TileC_start(X,Y) : dimX(X), dimY(Y),

at(X, Y, TileC)} 1 :- has_TileC.
TileC_conn(X, Y) :- TileC_start(X, Y).
TileC_conn(NX, NY) :- TileC_conn(X, Y),

step(DX, DY), NX = X + DX, NY = Y + DY,
at(NX, NY, TileC).

:- at(X, Y, TileC), not TileC_conn(X, Y).
:- at(X, Y, TileA),

#count{Z, N : at(Z, N, TileC),
step(DX, DY),

Z = X + DX, N = Y + DY} < 1.
:- at(X, Y, TileB),
#count{Z, N : at(Z, N, TileC),
step(DX, DY),

Z = X + DX, N = Y + DY} < 1.

The Connection rule takes three tiles or tile tags as param-
eters and specifies that every instance of the first tile is con-
nected to every instance of the second tile by the third tile.
Take, for example, the road Connection rule which states
that “All Buildings are connected to all Buildings by Roads.”
This guarantees that there is a connected chain of roads that
links buildings to one another. It implies, as well, that, “All
roads are connected to all roads by roads.” The third tile in
the rule will always be connected to itself in order to achieve
the rule.

Intended Workflow
The workflow we intend to support with this tool consists
of two tasks: using rules to define a tile map generator, then
iteratively collaborating with the generator to create specific
map instances.

The creation of a tile map generator would proceed as fol-
lows:

1. Define constraints on the map generator by adding new
rules or by loading an existing rule set.

2. Ask the generator to create one or more new maps.
3. Inspect the generated maps and refine the set of rules that

make up the map generator to better reflect your design
goals.

4. Repeat from Step 2 until the generator consistently creates
maps that you are satisfied with.

Once the generator is more or less finalized, the user
would take the following steps to create a specific tile map
instance:

1. Specify the dimensions of a new map.
2. Ask the generator to create new maps until you find one

that interests you.
3. Manually edit the map by adding tiles or locking sections

of the generated map that you want to keep.
4. Ask the generator to re-generate the unlocked parts of the

map (see Figure 3 for an example).
5. Repeat from Step 3 until you have a map that you like.

Evaluation as a Casual Creator
Since the primary purpose of this tool is to support a wide
range of users in the creation of tile maps and tile map gener-
ators, it is important to evaluate it in relation to Compton and
Mateas’ (2015) eleven design patterns for casual creators.

Instant feedback. The tool features an interactive display
of the map being created, which is instantly generated when
the user asks for a new map. In our limited testing the gener-
ator has always returned a result instantly, but it is conceiv-
able that some rule sets could cause the generator to slow
down. To help mitigate any issues related to slow genera-
tion, we have configured the tool so an asynchronous call to
the Clingo generator is started whenever a rule is added or
changed. Thus, when users ask the tool to generate a new
map, the tool has already been working behind the scenes to
generate that map.



Figure 3: An example of two generated maps with the same locked section. The section to the right of the black line is locked;
the generator has filled in the rest with possible arrangements of tiles that satisfy the constraints given (not shown).

Chorus line. With a larger focus on supporting the cre-
ation of tile map generators, and not just individual tile
maps, we will want to support the chorus line pattern by al-
lowing users to simultaneously generate multiple maps with
the same generator. Thus, users will be able to get a feel for
the breadth of the design space their generator covers.

Simulation and approximating feedback. Since the tile
maps generated by the tool are not designed for any spe-
cific use case, such as a particular game, it is difficult to de-
termine what metrics might be generally useful to include.
Therefore, this design pattern is not addressed.

Entertaining evaluations. This is not applicable to the
current version of the tool because the tile maps being gen-
erated do not undergo any sort of evaluation.

No blank canvas. As a starting point for users, we de-
signed three base rule sets that create a city, a walled city,
and a port city. These rule sets can be used to generate rea-
sonably interesting city maps with the click of a button, and
both the map and the rule sets can be modified by the user to
start creating something new. Moreover, with the ability to
save and share rule sets, there is potential for users to have
community-sourced resources that prevent them from hav-
ing to deal with a blank canvas.

Limiting actions to encourage exploration. When mod-
ifying an individual map, users have access to just two core
actions - they can place tiles on the map and lock or unlock
tiles to tell the generator which parts of the map it is allowed
to overwrite. To define rules for a tile map generator, users
only have access to five different rules, which represents a
significant simplification compared to creating a generator
directly using ASP.

Mutant shopping. By allowing users to directly interact
with the tile map that is being generated and to lock or un-
lock parts of the map to tell the generator what it is allowed

to overwrite, users are able to iteratively keep newly gener-
ated sections of the map that they find interesting. There is
currently no equivalent feature for designing tile map gen-
erators, but in the future it may be possible to suggest new
rules, either randomly or in a data-driven manner.

Modifying the meaningful. The base rules that are used
to define a generic tile map generator, such as a rule for pop-
ulating each grid on the map with exactly one tile, are en-
tirely hidden from the user. The user only needs to worry
about high-level rules for generating different types of tile
maps.

Saving and sharing. All constraints for a map generator
can be saved to a JSON file, which can be loaded back into
the tool at a later time or shared with other creators. These
constraints include all rules as well as the types of tiles al-
lowed in the map and tags used to group tiles. In the future,
we also plan to allow users to export individual maps that
they have created as JSON files and images.

Hosted communities. We do not currently have hosted
communities, but the ability to export map generator rule
sets as JSON files would support this. There is a lot of po-
tential for users to share generators that reflect different map
archetypes, such as the walled city that we provide as a base
rule set, that users can download and immediately use or
modify to fit their needs.

Modding, hacking, teaching. We currently do not pro-
vide support for modding or hacking the tool, but it may be
interesting to provide advanced users with an interface for
defining their own rules templates that compile into ASP.

Future Work
Moving forward with this tool, we are most interested in
expanding the rule creation interface to provide users with



greater capabilities for creating tile map generators. How-
ever, as this is meant to be a casual creator tool, it will be
important for the tool to remain novice-friendly while also
allowing advanced users to create more complex and ex-
pressive generators. To this end, we are interested in reim-
plementing the rule creation interface using Blockly, which
has been used extensively in introductory programming en-
vironments (Fraser 2015). Specifically, it may be possible to
leverage existing work that has made preliminary progress
toward implementing Blockly in Unity-based applications
(Taylor et al. 2019). Among many potential benefits, this
will provide users with access to variables and arithmetic
operators, which introduces significant potential for much
more expressive tile map generators. For example, if a user
wants to write a generalizable rule that places walls around
the outside of a city, they need to know what the width and
height of the map are. Additionally, having the standard look
and feel of a popular visual programming language could al-
low users with some Blockly experience to immediately feel
comfortable with our tool.

It will also be helpful to introduce debugging support in
the form of static program analysis. For example, if a user
adds two rules that contradict each other, the system could
flag these rules and notify the user that they are not com-
patible. A meta analysis of the ASP program constructed
by the user, such as by using Gebser et al.’s spock sys-
tem (Gebser et al. 2007), is a promising direction for help-
ing users understand why the set of rules they have created
may be unable to generate valid maps. Compared to our cur-
rent approach, which only uses dynamic program analysis to
produce generic error messages based on the compiled ASP
program’s satisfiability (e.g., “A map could not be generated
using this ruleset. Please check for errors.”), providing more
immediate and localized feedback would likely be beneficial
to users.

Another interesting direction for future work is to inves-
tigate methods for inferring constraints from hand-authored
maps (De Raedt, Passerini, and Teso 2018) rather than re-
quiring users to manually generate every rule. Users who
are more comfortable interacting with the map than author-
ing rules would be able to provide examples of the types of
maps they wish to generate and could select rules inferred by
the system that reflect their design intent. Additionally, we
might want to allow users to ask the system to generate some
rules for them. These rules could be randomly generated to
encourage exploration in potentially novel design spaces, or
they could embody some machine learned intent based on
previous users’ interactions with the system. Thus, we could
make progress toward our original goal of having users spec-
ify only what they are interested in and allowing the compu-
tational system to fill in the gaps, only now this would be
done in the space of map generator rules, not tiles on an
individual map. Alternatively, it would be interesting to in-
vestigate the use of WaveFunctionCollapse (WFC) to allow
the system to learn from hand drawn examples of maps that
users want the system to emulate. WFC has demonstrated an
impressive ability to extrapolate from examples of tiled im-
ages (Karth and Smith 2021), which makes it very relevant
to this work. However, WFC only infers local constraints

that are similar to our system’s Adjacency and Proximity
rules. As a result, maps created by a WFC-based generator
would not be as expressive as our system allows (namely,
global constraints like Count and Connection would not be
natively supported). Perhaps a combination of WFC-based
map generation and machine learning-based constraint in-
ference could be implemented that takes advantage of both
of these promising directions for future work.

There are also several potential opportunities for expand-
ing the tool’s generative capabilities. First, we could allow
local rules that only apply to certain parts of the map, thus
allowing for finer control over the maps being generated. We
could achieve this by supporting the composition of maps
from multiple smaller maps, each with their own generators.
Using a similar approach, it would be interesting to allow
users to create rulesets for different layers of a map (similar
to layers in a program like Photoshop or Tiled). For exam-
ple, users could generate entire game levels by first creating
a map layer and then adding an entity layer on top of it that
generates gameplay elements like characters or items. Fi-
nally, we could add the ability to generate hex tile maps or
even abstract graph visualizations, not just square tile maps.
As a result, the tool could potentially be adapted for an en-
tirely different domain like narrative generation by introduc-
ing rules about temporal sequencing (e.g., X happens be-
fore/after Y), types of actions and states (e.g., Actors can do
Action, Actors can be State), and action preconditions and
effects (e.g., Doing Action makes an actor State). Providing
support for other domains would likely require substantial
work, but the potential to expand beyond tile maps is cer-
tainly interesting.

Regardless of which directions we choose to pursue, it
will be essential to conduct user studies with an updated ver-
sion of the tool. We will want to evaluate how easy it is for
novices to use the tool, the types of generators and artifacts
that users are able to make with the tool, and the extent to
which users find the tool engaging and rewarding.

Conclusion
We describe preliminary progress on a mixed-initiative tool
for the casual creation of tile maps. The tool features a small
palette of natural language rules specifically designed for tile
map generation tasks, thereby allowing users to design their
own tile map generators without requiring knowledge of the
underlying ASP code that the rules are compiled into. Users
are able to offload as much of the map generation task to the
system as they desire, presenting opportunities for increased
efficiency and inspiration, while support for direct editing of
the map provides users with the ability to override the gen-
erator at any time. We evaluate the tool in relation to Comp-
ton and Mateas’ (2015) design patterns for casual creators
and find that it aligns with many of the patterns, but it will
be important to conduct studies to better evaluate the tool’s
usability and usefulness. Moving forward, there are several
promising opportunities for future work, including greater
rule authoring capabilities using a Blockly implementation
of the rule interface, improved debugging support, and ex-
pansion into content generation tasks beyond tile maps.



References
Alvarez, A.; Dahlskog, S.; Font, J.; Holmberg, J.; Nolasco,
C.; and Österman, A. 2018. Fostering creativity in the
mixed-initiative evolutionary dungeon designer. In Proceed-
ings of the 13th International Conference on the Founda-
tions of Digital Games, 1–8.
Chen, T.; and Guy, S. J. 2018. GIGL: A domain specific
language for procedural content generation with grammati-
cal representations. In Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Compton, K.; Filstrup, B.; et al. 2014. Tracery: Approach-
able story grammar authoring for casual users. In Seventh
Intelligent Narrative Technologies Workshop.
Compton, K.; and Mateas, M. 2015. Casual Creators. In
ICCC, 228–235.
De Raedt, L.; Passerini, A.; and Teso, S. 2018. Learning
constraints from examples. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.
DungeonChannel.com. 2019. DunGen Dungeon Generator.
URL https://dungen.app/dungen/.
Fraser, N. 2015. Ten things we’ve learned from Blockly. In
2015 IEEE Blocks and Beyond Workshop (Blocks and Be-
yond), 49–50. IEEE.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008. A user’s guide to gringo,
clasp, clingo, and iclingo .
Gebser, M.; Pührer, J.; Schaub, T.; Tompits, H.; and Woltran,
S. 2007. spock: A debugging support tool for logic programs
under the answer-set semantics. In Applications of Declar-
ative Programming and Knowledge Management, 247–252.
Springer.
Horswill, I. 2020. A Declarative PCG Tool for Casual Users.
In Sixteenth Artificial Intelligence and Interactive Digital
Entertainment Conference, volume 16, 81–87.
Karth, I.; and Smith, A. M. 2021. WaveFunctionCollapse:
Content Generation via Constraint Solving and Machine
Learning. IEEE Transactions on Games .
Kreminski, M.; Dickinson, M.; Osborn, J.; Summerville, A.;
Mateas, M.; and Wardrip-Fruin, N. 2020. Germinate: A
Mixed-Initiative Casual Creator for Rhetorical Games. In
Sixteenth Artificial Intelligence and Interactive Digital En-
tertainment Conference, volume 16, 102–108.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: computer-assisted game level authoring .
Martens, C. 2015. Ceptre: A language for modeling gener-
ative interactive systems. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.
Neufeld, X.; Mostaghim, S.; and Perez-Liebana, D. 2015.
Procedural level generation with answer set programming
for general video game playing. In 2015 7th Computer Sci-
ence and Electronic Engineering Conference (CEEC), 207–
212. IEEE.
RPGObjects.com. 2010. Tiamat the Tile Mapper. URL http:
//www.rpgobjects.com/tiamat/.

Smith, A. M.; Andersen, E.; Mateas, M.; and Popović, Z.
2012. A case study of expressively constrainable level de-
sign automation tools for a puzzle game. In Proceedings of
the International Conference on the Foundations of Digital
Games, 156–163.
Smith, A. M.; and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-
proach. IEEE Transactions on Computational Intelligence
and AI in Games 3(3): 187–200.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3): 201–215.
Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.;
Wardrip-Fruin, N.; and Mateas, M. 2018. Gemini: Bidirec-
tional generation and analysis of games via asp. In Four-
teenth Artificial Intelligence and Interactive Digital Enter-
tainment Conference, volume 14.
Taylor, S.; Min, W.; Mott, B.; Emerson, A.; Smith, A.;
Wiebe, E.; and Lester, J. 2019. Position: IntelliBlox: A
toolkit for integrating block-based programming into game-
based learning environments. In 2019 IEEE Blocks and Be-
yond Workshop (Blocks and Beyond), 55–58. IEEE.
Thorbjørn Lindeijer. 2008. Tiled Map Editor. URL https:
//www.mapeditor.org/.
Unity Technologies. 2005. Unity Game Engine. URL https:
//www.unity.com.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity .


