
First-Person Realtime Collaborative Metaprogramming Adventures

Riemer van Rozen1, Youri Reijne2, Clement Julia2 and Georgia Samaritaki2

1Centrum Wiskunde & Informatica 2University of Amsterdam
Amsterdam, The Netherlands Amsterdam, The Netherlands

rozen@cwi.nl {y.reijne, clement.julia13, samaritakigeorgia}@gmail.com

Abstract
Game developers strongly rely on programming languages
and tools for creating educative, adventurous, challenging,
humorous and playful interactive experiences. However, it
is not yet well-understood how to construct languages and
tools for improving games and play. In this position paper
we discuss how to leverage language workbenches and meta-
programming techniques for creating language-centric solu-
tions that help speed-up game design and development. We
present a research vision, followed by three illustrative exam-
ples that demonstrate how the available enabling technology
can be applied to tackle recurring challenges in language pro-
totyping. Finally, we reflect on threats to validity and discuss
challenges and opportunities for future collaboration.

Introduction
We are at the frontier of an emerging research area that ex-
plores what informs the design and construction of good
games. This field studies to what extent languages, nota-
tions, patterns and tools, can offer experts theoretical foun-
dations, systematic techniques and practical solutions they
need to raise their productivity and improve the quality
of games and play. We have conducted a systematic map-
ping study on ‘languages of games and play’ that maps the
breadth of related work (van Rozen 2021). This study gives
an overview of research areas and publication venues, sum-
marizes over 100 languages identified in more than 1400
publications, synthesizes a set of fourteen complementary
research perspectives, and relates challenges and approaches
to opportunities for automated game design.

Our findings indicate that languages play a central role in
an increasing number of publications. Languages are neces-
sary in distinct research areas for a variety of technical and
non-technical reasons. Here we discuss a brief selection. For
a more elaborate overview, we refer to the mapping study.

In practice, game developers rely on game engines, lan-
guages and tools for constructing high quality games. Au-
thors propose languages as development tools or design aids
aimed at communication, creativity, productivity or quality.
Automated Game Design (AGD) proposes mixed-initiative
or co-creative languages and authoring tools for helping
domain-experts contribute in expressing a game’s design.

Copyright © 2021by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY 4.0).

Procedural Content Generation (PCG) aims to deliver gener-
ators that express and produce game content such as behav-
iors, game mechanics, virtual worlds, dungeons, levels, nar-
ratives or stories. In AI, the study of general game playing
requires Game Description Languages (GDLs) as a testbed
for algorithms that play many games well. Education or
Game-Based Learning (GBL) proposes languages that help
educators express lessons and training material for helping
learners master a subject, such as programming or game de-
sign. Languages are needed for a myriad of reasons, and are
crucial components of research platforms, methodologies,
experimental setups and case studies.

Unfortunately, developing the necessary language pro-
totypes comes at a high cost. Researchers and developers
spend a considerable amount of time and effort on develop-
ing and maintaining languages, generators and tools. Several
recurring technical challenges present obstacles that pre-
vent them from rapidly creating high quality language proto-
types. It is not commonly known that this type programming
is called metaprogramming, and that language prototypes
for analyzing and transforming the source code of other pro-
grams are metaprograms. To alleviate and speed-up proto-
typing efforts, developers require appropriate meta-tooling.

In this position paper, we argue for collaborative multi-
disciplinary research and development of languages and
tools that tackle research challenges related to game de-
sign and development. In particular, we pose that language
workbenches and metaprogramming techniques may be key
to advancing multi-disciplinary research in this area. These
tools can be leveraged to support the practice of metapro-
gramming. Metaprogramming techniques can help develop-
ers speed-up the construction of language prototypes, raise
the quality, bridge technological spaces and combine the
state-of-the-art in novel language-centric solutions.

First, we detail our position in the context of, and based
on, a previously published research vision. Next, we discuss
three illustrative examples that apply the langue workbench
Rascal. Each example discusses the creation of a proof of
concept for an ongoing master project at the University of
Amsterdam in collaboration with Centrum Wiskunde & In-
formatica. We discuss selected challenges and demonstrate
how to leverage Rascal’s language features in creating rela-
tively small prototypes that serve our research needs.

1. First, we discuss studying PuzzleScript, an online script

language and game engine that offers a concise expressive
notation for designing a wide variety of puzzle games.
We demonstrate how to reverse engineer its JavaScript im-
plementation into a concise Rascal prototype for studying
its design space, analyzing the qualities of existing games,
and generating new ones using patterns and metrics.

2. Next, we discuss improving Ludoscope, a language and
tool for level generation that has been successfully applied
in the Unexplored series. We present ongoing work that
aims to add support for debugging, content orchestration
and improved quality assurance by combining constraints
with transformative grammars.

3. Finally, we present a live interactive visualization proto-
type, achieved by combining meta-programming in Ras-
cal with Unity 3D. We illustrate how the synthesis of these
domain specific workbenches, and how modular language
creation and analysis could support game play.

We conclude with reflections on threats to validity and
challenges and opportunities for future collaboration.

Research Vision
We reiterate a concise version of the research vision that ap-
pears as part of a systematic mapping study on languages of
games and play, which has been previously published as:

van Rozen, R. 2021. Languages of Games and Play: A System-
atic Mapping Study. ACM Computing Surveys 53(6).

The reader can navigate and explore the map’s interactive
website at the following url: https://vrozen.github.io/LoGaP/

Languages of Games and Play
Languages of games and play are language-centric ap-
proaches for tackling challenges and solving problems re-
lated to game design and development. We propose study-
ing existing languages and creating new ones. Two central
hypotheses drive this research. We formulate a general and
a specific hypothesis:

1. Languages, structured notations, patterns and tools can of-
fer designers and developers theoretical foundations, sys-
tematic techniques and practical solutions they need to
raise their productivity and improve the quality of games
and play.

2. “Software” languages (and specifically domain-specific
languages) can help automate and speed-up game design
processes.

Languages of games and play exist in many shapes and
forms. The next section describes a technical point of view
that we explore in more detail in this paper, and which also
details and motivates the second more specific hypothesis.

Domain-Specific Languages
We aim to deliver solutions that automate game design
and speed-up game development with so-called Domain-
Specific Languages (DSLs), an approach originating in the
field of Software Engineering. Van Deursen et al. define the
term as follows:

“A Domain-Specific Language is a programming language
or executable specification language that offers, through
appropriate abstractions and notations, expressive power
focused on, and usually restricted to, a particular problem
domain.” (van Deursen, Klint, and Visser 2000)
DSLs have several compelling benefits. They have been

successfully created and applied to boost the productivity of
domain-experts and raise the quality of software solutions.
For instance, in areas like file carving in digital forensics
(van den Bos and van der Storm 2011), engineering financial
products (van Deursen, Klint, and Visser 2000), and control-
ling lithography machines (Tikhonova et al. 2013).

DSLs divide work and separate concerns by offering
domain-experts ways to independently evolve and maintain
a system’s parts. Typically, DSLs raise the abstraction level
and incorporate domain-specific terminology that is more
recognizable to its users. Powerful language workbenches
enable analyses, optimizations, visualizations (Erdweg et al.
2013), and foreground important trade-offs, e.g., between
speed and accuracy in file carving.

Naturally, there are also costs. DSLs are no silver bullet
for reducing complexity. Time and effort go into develop-
ing the right language with features that are both necessary
and sufficient for its users. In addition, a DSL may have a
steep learning curve and users require training (van Deursen,
Klint, and Visser 2000). While DSLs help users maintain
products, DSLs themselves also demand maintenance and
must evolve to accommodate new requirements, usage sce-
narios, restrictions and laws, such as new legislation on fi-
nancial transparency or privacy.

Visual Programming Languages
Here we describe our position and motivation. We aim
to empower game designers with DSLs that automate and
speed-up the game design process. We wish to learn how to
facilitate the design space exploration and reduce design it-
eration times. We envision a set of complementary visual
languages, techniques and tools that help designers boost
their productivity and raise the quality of games and play.
Challenges include offering abstractions and affordances for:

1. expressing a game’s parts as source code artifacts, espe-
cially interaction-bound game elements, and modifying
these at any given moment.

2. evolving ‘games and play’ by steering changes in the
source code towards new gameplay goals for prototyping,
play testing, balancing, fine-tuning or polishing.

3. obtaining immediate and continuous (live) feedback on a
game’s quality by continuously play testing the effect of
changes on quantified gameplay hypotheses.

4. obtaining feed forward suggestions that focus creative ef-
forts and assist in exploring alternative design decisions
in a targeted way.

5. forming better mental models for learning to better predict
the outcome on play.

The mapping study on languages of games and play pro-
vides a good starting point for choosing areas, formulating
questions and charting research trajectories. Next, we dis-
cuss how the necessary language prototypes can be created.

Applying Language Workbenches
We propose an approach to Automated Game Design (AGD)
that leverages language workbenches and metaprogramming
techniques. Many languages exist that facilitate construct-
ing DSLs, compilers, generators, tools and visualizations.
Erdweg et al. describe the state of the art in language work-
benches (Erdweg et al. 2013). Examples of metaprogram-
ming languages and language workbenches include Epsilon,
GemocStudio, Meta-Edit+, MPS, Racket, Rascal, Spoofax
and Xtext. These tools and techniques are part of Program-
ming Language research and a subject of Software Lan-
guage Engineering (Lämmel 2018). We argue they provide
an indispensable means in prototyping languages, bridging
the gap between technological spaces and combining the
state-of-the-art in novel language-centric solutions.

Previously, several authors have advocated the use of
generic language technology, and demonstrated its power in
relatively small, illustrative and educational examples (van
Rozen 2021). For instance, Walter and Masuch (2011) dis-
cuss how to integrate DSLs into the game development pro-
cess. Maier and Volk (2008) report teaching experiences on
applying DiaMeta, an EMF-based language workbench for
creating visual DSLs, e.g., for level editors for classic games
such as PacMan and the platform game Pingus. Insights in-
clude that metamodeling has a steep learning curve and that
the proposed approach speeds-up game prototyping. Flatt
(2012) demonstrates in a tutorial-like manner how to cre-
ate languages in Racket, and describes an illustrative text-
adventure DSL for interactive fiction.

We present a more elaborate metaprogramming perspec-
tive that adds a vision on AGD. We discuss three larger lan-
guage prototypes, each with distinct goals and applications,
developed for case studies in collaboration with indie game
developers. We share our experiences on applying Rascal.

Applying the Rascal Metaprogramming Language
Rascal is a programming language that has been specifi-
cally designed by Klint, van der Storm and Vinju to facil-
itate metaprogramming (2009a), and to create programs for
source code analysis and manipulation (2009b)1.

Here we discuss how its features can help tackle recur-
ring technical challenges in language prototyping. For in-
stance, for parsing text, processing concrete syntax, defin-
ing abstract data types, transforming data, traversing trees,
tracking origins and generating code, to name a few.

Compiler Construction Keeping language designs sim-
ple and concise usually entails separating the translation into
phases, a common practice in compiler construction (Aho,
Sethi, and Ullman 1986). Therefore, developers have to con-
struct staged compilers using grammars, datatypes and visi-
tors that analyze and transform programs step by step, e.g.,
for parsing, checking contextual constraints, and optimiz-
ing and generating code. Rascal provides functions, pattern
matching and the visit expression for separating code into
cases, and traversing trees in a concise manner. In addition,
the builtin loc datatype provides an vital means for origin

1https://www.rascal-mpl.org

tracking (van Deursen, Klint, and Tip 1993), tracing source
locations over successive transformations.

Bridging the Gap between Technological Spaces Trans-
lations from one formalism to another are often needed for
bridging the gap between technological spaces, e.g., for ap-
plying model-checkers, SMT solvers and ASP for calculat-
ing results or proofs, or libraries or algorithms written in a
different formalism In addition, it may be necessary to sep-
arate games and tool ecosystems into modular components
across platforms for reusing game engines, visual simula-
tions, browsers, and other components.

Rascal provides the ‘glue’ we need to put these com-
ponents together. For instance, string templates provide a
means to write concise code generators. Rascal offers many
libraries, e.g., JSON and CSV, but others can be easily added,
either natively or by wrapping Java methods. We will dis-
cuss bridging the gap between Java-based Rascal and Unity
3D, which is Mono-based, in the context of code puzzles.

Formalizing Language Semantics Unfortunately, pre-
cise program analyses are impossible without formal lan-
guage semantics, e.g., for simulating the effects on dynamic
user interactions and play. Existing languages may lack for-
malizations altogether, which complicates efforts on reverse
engineering, and prevents reusing and extending tools in
successive case studies. In this paper, we study two exist-
ing languages PuzzleScript and LudoScope. The prototypes
we describe represents necessary steps for further study.

Creating Interactive User Interfaces Usually, intended
language users are creative experts whose focus is on game
design or content creation. These users need well-designed
interactive visual interfaces for authoring and debugging
programs, e.g., for mixed-initiative co-creative design and
procedural content generation. Visual debuggers may also
require embeddable game engines with APIs for remote ac-
cess. Rascal enables creating web-based interfaces using its
Salix framework2. The prototypes we will discuss currently
still have an Eclipse interface that obtains syntax highlight-
ing from the respective grammars, which is a quick way to
start. Next, we discuss three illustrative language prototypes,
and show that Rascal has many built-in features we need.

Analysis and Generation of PuzzleScript
A key challenge in Automated Game Design is defining
languages whose semantics directly describe playful affor-
dances. One way to approach this challenge is studying ex-
isting tiny online game engines (Warren 2019) for combina-
torial games such as card games and puzzle games.

Here, we discuss a study of PuzzleScript, identified as
Language 91 in (van Rozen 2021), an online game engine
that offers a concise expressive notation for defining a wide
variety of puzzle games. We reverse engineer its JavaScript
implementation (referred to here as the ‘original’) into a
concise Rascal prototype for studying its design space, an-
alyzing the qualities of existing games and generating new
ones using patterns and metrics.

2https://github.com/usethesource/salix

Language 91 LPuzzleScript genre-specific / engine / practice

PuzzleScript is an online textual puzzle game design language and interpreter created by Stephen Lavelle using JavaScript and
HTML5/CSS1. PuzzleScript game levels are tile maps populated by objects (named sprites of 5x5 pixels) that can move and collide,
and whose game logic is defined as a set of rewrite rules. Figure 1 shows an example where the objective is to push crates into place.
When the player collides with a crate, both directionally move if possible. The sources are released under the MIT license2. Lim and
Harell (2014) present an approach for automated evaluation and generation of PuzzleScript videogames and propose two heuristics.
The first, level state heuristics, determines how close the state of given level is to completion during gameplay. The second, ruleset
heuristics, evaluates rules defining a videogame’s mechanics and assesses them for playability. Naus and Jeuring (2016) propose the
heuristicHint an algorithm for optimized heuristics search, and create a DSL for expressing rule-based problems. They apply the al-
gorithm to PuzzleScript and solve Sokoban levels. Vermeulen (2018) creates a feature model of PuzzleScript mechanics and shows he
can use the model to analyze existing rules and generate new ones. Osborn et al. apply Playspecs (Language 57).

1https://www.puzzlescript.net (visited August 17th 2021)
2https://github.com/increpare/PuzzleScript (visited August 17th 2021)

publication query publication type research category note

(Lim and Harrell 2014) 110w conference paper validation research
(Naus and Jeuring 2016) gd conference paper validation research citation added in this paper
(Vermeulen 2018) –n Bachelor’s thesis solution proposal citation added in this paper

Summary adapted from (van Rozen 2021).

title Simple Block Pushing Game

author Stephen Lavelle

homepage www.puzzlescript.net
========

OBJECTS

========

Background

lightgreen green

11111

01111

11101

11111

10111

Target

darkblue

.....

.000.

.0.0.

.000.

.....

Wall

brown darkbrown

00010

11111

01000

11111

00010

Player

black orange white

blue

.000.

.111.

22222

.333.

.3.3.

Crate

orange

00000

0...0

0...0

0...0

00000

=======

LEGEND

=======

. = Background

= Wall

P = Player

* = Crate

@ = Crate and

Target

O = Target

=======

SOUNDS

=======

Crate MOVE 36772507

================

COLLISIONLAYERS

================

Background

Target

Player, Wall, Crate

======

RULES

======

[> Player |

Crate] -> [>

Player |>

Crate]

==============

WINCONDITIONS

==============

All Target on Crate

=======

LEVELS

=======

####..

#.O#..

#..###

#@P..#

#..*.#

#..###

####..

######

#....#

#.#P.#

#.*@.#

#.O@.#

#....#

######

(a) Source code with dynamic dynamic syntax highlighting of sprites

(b) First level

(c) Second level

Figure 1: PuzzleScript tutorial: “Simple Block Pushing Game” (from puzzlescript.net, figure appears in (van Rozen 2021))

Parsing PuzzleScript

We aim to study all existing PuzzleScript games and facili-
tate designing new ones. Therefore, we need a parser. The
original JavaScript parser is hand-crafted and line-based,
and comprises 1065 Lines of Code (LOC). We instead pro-
vide a grammar for PuzzleScript, composed of just 50 LOC

of Rascal code3. Figure 2 shows lexicals, symbols consisting
of sequences of characters that are not interrupted by layout
symbols. For conciseness we omit keywords here. Figure 3
shows the syntax, a literal description of game definitions
that consist of the following sections.

3https://github.com/ClementJ18/PS

1 layout LAYOUTLIST = LAYOUT* !>> [\t\r\] !>> ”(”;
2 lexical LAYOUT //layout consists of
3 = [\t\r\] //tab, carriage return and space (but not line break)
4 | ˆComment LBS //solitary comments
5 > Comment; //comments
6 lexical Comment = @category=”Comment” ”(” (![()]*|Comment)”)”;
7 lexical LB = [\n];
8 lexical LBS = LB+ !>> ”\n”;
9 lexical DELIM = [=]+;

10 lexical ID = [a−z0−9.A−Z]+ !>> [a−z0−9.A−Z] \ Kwds;
11 lexical KeyChar = [a−zA−Z.!@#$%&*];
12 lexical LegendKey = KeyChar+ !>> KeyChar \ Kwds;
13 lexical SpriteLine = ”\n” << [0−9.]+ !>> [0−9.] \ Kwds;
14 lexical Pixel = [a−zA−Z.!@#$%&*0−9];
15 lexical LevelLine = ”\n” << Pixel+ !>> Pixel \ Kwds;
16 lexical String = ![\n]+ >> [\n];
17 lexical SndIndex = [0−9]|”10” !>> [0−9]|”10”;
18 lexical Directional = [\>\<ˆv] !>> [a−z0−9.A−Z];

Figure 2: PuzzleScript layout and lexicals in RASCAL

Language 57 LPlayspecs generic / tool / practice

Osborn et al. introduce PlaySpecs, regular expressions for
specifying and analyzing desirable properties of game play
traces, sequences of player actions. PlaySpecs are validated
with the PuzzleScript engine, which is itself described as
Language 91, and Prom Week, a social simulation puzzle
game. The TypeScript sources of PlaySpecs are released
under the MIT license (visited August 17th 2021)1.

1https://github.com/JoeOsborn/playspecs-js

publication query publication type research category

(Osborn et al. 2015) 930w conference paper validation research
(Osborn 2018) –w PhD thesis validation research

Summary appears in (van Rozen 2021)

Objects describe named sprites. Legend enables users to
define short-hand symbols for expressing levels (rectangu-
lar tile maps) using the assigned characters. Sounds can be
added for special effects. Collision layers determine which
objects collide, enabling or disabling their movement. Rules
define how players can interact with the objects on the tile
map, and how events trigger object movement. These are
rewrite rules whose left hand side is a pattern that must
match on the game’s current state for the rule to trigger. The
right hand side specifies a result in case the rule succeeds.

Our grammar, which to the best of our knowledge is the
first complete syntax formalization, greatly simplifies con-
structing PuzzleScript prototypes. With the exception of a
few corner cases, it already passes a test suite composed of
83 existing games. Most importantly, it is more compact and
readable, and easier to maintain and reuse than the original.

Providing Errors and Warnings
Developers require feedback and warnings, ideally ‘live’
during coding, for improving their designs. The original
JavaScript implementation solely provides syntax coloring

1 start syntax Game = game: (Prelude LBS)* {Section LBS}* LBS?;
2
3 syntax Prelude = prelude: PreludeKwd String+;
4 syntax Section
5 = objects: (Delim LBS)? ’OBJECTS’ LBS Delim? (LBS Object)*
6 | legend: (Delim LBS)? ’LEGEND’ LBS Delim? (LBS Legend)*
7 | sounds: (Delim LBS)? ’SOUNDS’ LBS Delim? (LBS Sound)*
8 | layers: (Delim LBS)? ’COLLISIONLAYERS’ LBS Delim? (LBS Layer)*
9 | rules: (Delim LBS)? ’RULES’ LBS Delim? (LBS Rule)*

10 | conditions: (Delim LBS)? ’WINCONDITIONS’ LBS Delim? (LBS Cond)*
11 | levels: (Delim LBS)? ’LEVELS’ LBS Delim? (LBS Level)*;
12
13 syntax Object = object: ID LegendKey? LB ID+ (LB Sprite)?;
14 syntax Sprite = sprite:
15 SpriteLine LB SpriteLine LB SpriteLine LB SpriteLine LB SpriteLine LB;
16 syntax Legend = entry: LegendKey ’=’ ID (LegendKwd ID)*;
17 syntax Sound = sound: ID+;
18 syntax Layer = layer: {ID ’,’}+;
19
20 syntax Rule = rule: ID? RulePart+ ’−\>’ (Command|RulePart)* Message?;
21 syntax RulePart = part: ’[’ {RuleContent ’|’}+ ’]’;
22 syntax RuleContent = content: (ID | Directional)*;
23 syntax Message = message: ’message’ String+;
24 syntax Command = command: CommandKwd | play sound: ’sfx’ SndIndex;
25
26 syntax Cond = condition: ID+;
27 syntax Level = level: (LevelLine LB)+ | level progress: Message;

Figure 3: PuzzleScript grammar expressed in RASCAL

Player
black orange

white blue
.000.
.111.
2222222222
.333.
.3.3.

(a) Sprite not 5x5

####
#.O#..
#..###..
#@P..#
#..*
#..###
####..

(b) Uneven level rows

Crate
orange green
00000
0...0
0...0
0...0
00000

(c) Unused color

[Eyeball| ... |Player] -> [> Eyeball|Player]

(d) Missing ellipsis in right hand side of rule

[> Player|Crate] -> [> Player] [> Crate]

(e) Unexpected rule part in right hand side of rule

Figure 4: Errors and warnings detected by the checker

as feedback. Once the code is compiled, it provides more
explicit and comprehensive feedback. However, because of
the single phase parsing, errors tend to cascade forcing the
compilation to abort before the game is fully checked.

We introduce a static checker for improving live feed-
back, a contextual analysis phase that runs after every
change developers make to the code. On every change, it
parses the code, annotates the parse tree and visualizes errors
and warnings in the IDE. Developers obtain a wide variety
of messages, ranging from critical errors (invalid syntax, un-
defined references and duplicate definitions) to informative
feedback, e.g., as shown in Figure 4.

Language 36 LLudoscope generic / engine / practice

Lindenmayer systems (or L-systems) are generative grammars that were originally intended for describing plant growth patterns (Lin-
denmayer 1968) and are now also used for PCG. Dormans (2010) investigates strategies for generating levels for action adventure
games, and proposes mission and spaces as two separate structures. He analyzes a Zelda game level, and generates its missions and
spaces using transformative grammars. Ludoscope is a tool for designing procedurally generated game levels based on these princi-
ples. In Ludoscope, level transformation pipelines step-by-step transform level content, gradually adding detail, dungeons, enemies,
encounters, missions, etc. These pipelines consist of grammar rules that work on content represented as tile maps, graphs, Voronoi
Diagrams and Strings. Karavolos et al. (2015) explore applying Ludoscope in the design of two distinct pipelines that generate dun-
geons of a rogue like game and platform levels of a metroidvania game. Van Rozen and Heijn propose two techniques for analyzing
the quality of level generation grammars called MAD and SAnR (see Language 58).

publication query publication type research category note

(Dormans 2010) –w workshop paper proposal of solution grammars
(Dormans and Bakkes 2011) –w journal article proposal of solution grammars
(Dormans 2011) –w workshop paper proposal of solution grammars
(Dormans and Leijnen 2013) language workshop paper validation research Ludoscope
(Karavolos, Bouwer, and Bidarra 2015) language conference paper validation research Ludoscope
(van Rozen and Heijn 2018) –n workshop paper proposal of solution Ludoscope Lite
(Heijn 2018) –n workshop paper proposal of solution Ludoscope Lite

Summary adapted from (van Rozen 2021)

The analysis consists of sub-phases with progressively
stricter rules, starting with the parsing. This allows isolating
errors, and ensuring they do not affect subsequent phases.
Rascal’s functions can be overloaded with pattern signatures
to act like an extensible switch statement. We use these ‘par-
tial functions’ for easily adding new checker cases.

Preventing Bad Gameplay
Predicting the outcome of changing a game’s rules on play
is hard in general. In PuzzleScript, Victory Conditions and
Rules define how the player interacts with the game. Chang-
ing a rule can cause levels to become impossible to win or,
instead make them trivial to solve. Unfortunately, it is not
always possible to foresee how those changes impact levels.

As part of future work, we aim to enable making more
informed design decisions by adding a dynamic analyzer,
a process capable of playing games, solving trivial puzzles,
and analyzing potentially negative impact of changes.

Outlook and Ongoing Work
Our PuzzleScript prototype is more maintainable and exten-
sible than the original JavaScript implementation. In partic-
ular Rascal’s pattern matching and meta-programming ca-
pabilities proved useful in creating a concise prototype. We
continue to develop a tool that empowers game designers in
writing more robust code and creating better games.

A Ludoscope Debugger
Procedural level generation studies how to generate high
quality game levels populated with items, quests, enemies
for unlikely encounters, astonishing stories and epic adven-
tures. LudoScope, identified as Language 36 in (van Rozen
2021), is a grammar-based language and tool that offers
powerful capabilities for creating diverse generators.

Language 58 LMAD generic / engine / practice

Van Rozen and Heijn study Ludoscope (Language 36) and
address quality issues of grammar-based level generation.
They propose two techniques for improving grammars to
generate better game levels. The first, Metric of Added De-
tail (MAD), leverages the intuition that grammar rules grad-
ually add detail, and uses a detail hierarchy that indicates for
calculating the score of rule applications. The second, Spec-
ification Analysis Reporting (SAnR) proposes a language
for specifying level properties, and analyzes level generation
histories, showing how properties evolve over time. Ludo-
Scope Lite is a prototype that demonstrates the techniques1.

1https://github.com/visknut/LudoscopeLite

publication query publication type research category

(van Rozen and Heijn 2018) –n workshop paper solution proposal
(Heijn 2018) –n Master’s thesis solution proposal

Summary adapted from (van Rozen 2021)

Currently, due to the lack of research, the tool has very
limited debugging capabilities. As a result, level designers
have to spend a great deal of time ‘eyeballing’ generated
game levels. We aim to improve grammar-based generators
in general, and study LudoScope in particular. Here, we dis-
cuss ongoing work on LudoScope Lite, a prototype written
in Rascal for studying grammar-based generators.

Creating a Manageable Language Prototype
Instead of supporting every Ludoscope language feature, we
redesign a core portion of the language to study its prop-
erties in isolation. We focus on transforming tile maps and
graphs, and design an understandable textual syntax for cre-
ating pipelines for study, e.g., Figure 5. Therefore, we have

1 pipeline {

2 alphabet {

3 floor f #010101;

4 wall * #111111;

5 exit x #000000;

6 }

7 options {

8 size: 4x4;

9 tiletype: f;

10 }

11 module firstModule {

12 rules {

13 addWalls:

14 ffff,

15 ffff,

16 ffff,

17 ffff

18 ->

19 ****,

20 *ff*,

21 *ff*,

22 ****;

23 addExit:

24 f* -> fx;

25 }

26 recipe {

27 addWalls;

28 addExit;

29 }

30 resolvable constraint b: count(x) == 1;

31 }

32 }

Figure 5: Level transformation pipeline in Ludoscope Lite
that creates a 4x4 tilemap, and adds an exit.

no need for its visual interface and we only support the lan-
guage features relevant to our question. Our code base is not
yet feature-complete but has a manageable size of 1.3 KLOC
compared to Ludoscope’s 21 KLOC of C#.

Integrating ASP with Grammar-Based Approaches
Grammar-based approaches for level generation enable
great flexibility, but are notoriously hard to control. An-
swer Set Programming (ASP) on the other hand, guaran-
tees constraints are met. For instance, Smith and Mateas
(2011) demonstrate through the Chromatic Maze written in
ASP (called design space) how users can redefine the game
spaces by iteratively adding constraints to the AnsProlog
program. We want the best of both worlds. Even though the
current version of our prototype does not yet fully combine
the two, our study borrows concepts from ASP. We still con-
sider translating grammars to ASP using Rascal.

Adding Language Features for Error Handling
One crucial issue of LudoScope remains the lack of error
handling. When a level generation pipeline generates ‘use-
less’ content, e.g. a map that cannot be crossed by the player,
it is impossible to know how or where the error occurred.
We borrow the concept of constraints from ASP to guide the

generation and offer a way to trace back errors by logging
them when they happen.

This is achieved by the constraint seen in line 30 in Fig-
ure 5. This feature can not only stop the generation from
happening, but also alter it at times if the designer wishes
so. At the same time, the constraints act as a form of fail-safe
for when the generation derails in an unwanted direction.

Constraints that orchestrate content generation, are la-
belled as resolvable. We offer these along with their respec-
tive handlers as a way for the designer to bypass unexpect-
ed/unwanted content at run time. The constraints are period-
ically checked and whenever a module breaks one an error
is shown. The error logs are enhanced by Rascal’s capability
of storing source locations and look like this:

Error message: addWall in module firstModule at
[@location=|project://generatorv2/src/tests/test1/test.lm|
(934,1,<68,24>,<68,25>)] destoyed path:path

Outlook and Ongoing Work
LudoScope Lite’s new syntax, facilitated by Rascal’s capa-
bilities, paves the path to more accessible tools for content
generation and transformative grammars. The addition of
constraint-based checking gives the designer the control and
freedom to explore and create without the risk of acciden-
tally degrading quality or creating unplayable levels. These
constraints can make modules more composable and allow
for better content orchestration. Ultimately, our approach
can significantly improve the state-of-the-art in error han-
dling and debugging for grammar-based level generation.

A Framework for Educational Code
Visualizations and Game Mechanics

A key challenge in programming education is providing vi-
sualizations that assist learners in rapidly obtaining feed-
back, exploring alternatives, learning from mistakes, im-
proving code quality, and forming mental models. We hy-
pothesize that suitable interactive 3D visualizations of code
structures and execution can help novice programmers to
form these mental models more easily.

Here, we introduce the live interactive code puzzle vi-
sualization (linco-puvi) framework45, a research platform
that enables experimentation with novel methods for edu-
cation. The framework offers an introductory programming
language for describing code exercises It furthermore fea-
tures a language independent visualization format and edi-
tor, and live visualization application

Educators can use these formalisms to compose code
puzzles as a combination of code exercise and live in-
teractive visualization. Learners can play code puzzles as
games with fixed mechanics whose educational content can
be adjusted and varied for improving learning trajectories.

State-of-the-art in visual assistance
We briefly describe related work that uses visual compo-
nents in aiding programming. The first related area is learn-

4Textual Components: https://github.com/reijne/solvey
5Visual Components: https://github.com/reijne/codeVisuals

ing and teaching through game play and development. Find-
ings have shown that computer games can be used to acquire
certain cognitive abilities and improve understanding in pre-
sented topics (Tang, Hanneghan, and El Rhalibi 2009).

This is supported by mental model matching theory,
which states that humans develop mental models of games
through play, which can transfer to understandings of aca-
demic contexts (Boyan, McGloin, and Wasserman 2018).
Current approaches using game playing and/or designing
often utilize fully fletched general programming languages,
sometimes more than one per course (Leutenegger and Edg-
ington 2007), which are not tailored for introductory pro-
gramming (McIver and Conway 1996).

Another approach for visual assistance is augmenting de-
velopment environments by presenting the user with a visual
interface beside one for altering the program. Alice (Con-
way et al. 2000) and Kodu (MacLaurin 2011) offer a visual
aid in 3D, and utilize a set of possible methods to change
the current state of the visualization. Scratch (Maloney et al.
2010) is a visual programming language using a drag and
drop system. Its set of command blocks offers control over
2D-graphical objects in a separate view.

The state-of-the-art showcases the effect of code execu-
tion by coupling the execution of commands to static and/or
dynamic parts of the visualization. In contrast, our approach
also enables visualizing the structure of the code itself.

The live visualization is created directly from the abstract
syntax tree (AST), of the student’s written code.

Divide and Conquer
The approach is subdivided into (A) the textual component,
for which we have chosen the metaprogramming language
workbench Rascal, which allows the creation of modular-
ized domain specific languages, and offers tools for code ex-
traction, analysis and transformation (Klint, van der Storm,
and Vinju 2009b). These properties make for an approach
that enables maintaining and evolution of the presented
framework. (B) The visual component, for which we have
chosen the 3D game engine Unity. This well-documented,
performant, popular and free game engine allows for the cre-
ation of custom game worlds and in-game or editor-like in-
terfaces.

Bridging the gap between Rascal and Unity
In order to accurately visualize the live state of code we need
to bridge from Rascal over to Unity. This is accomplished by
employing clever extraction of data through Rascal metapro-
gramming, which is condensed into string format. The string
parameter is then used to create a JSON remote process call,
using the sophisticated JSON library. This call is sent over
TCP to the running application (see Figure 6).

1 @doc {Rascal: Create a Remote Process Call to send over the Socket,
using JSON rpc format.}

2 str remoteCall(str method, str param, bool close) {
3 rpc = (”method”: method,
4 ”param”: param,
5 ”close”: close);
6 return asJSON(rpc);
7 }

Rascal

Exec

Java UnitySocket SocketTCP
JSON RPC

Figure 6: Architectural diagram of connected components

Traverser

Solvey

Visualise

 SpawnErrorEnemies

 CreateFallingBranches

SceneyShowey

TypeCheck Abstract

Concrete

NodeExtractor GenerateTraverse

Evaluate

CreateVisualisation

Save Load Import

(a)

(b)

(c) (d)

Figure 7: Modular Solvey: Introductory programming DSL,
and the connections to Showey and Sceney.

Separation of Concerns
Separating the concerns into modules is where Rascal shines
(see Figure 7). We have designed a modular DSL for intro-
ductory programming, with the necessary modules to allow
for (a) the creation of custom visualizations. This requires
the recursive extraction of the components of the language
Algebraic Data Type, which is done using the visit expres-
sion6 in Rascal, that features built in traversals of a tree.

The (b) traverser of an AST is generated using Ras-
cal’s powerful string templating7 that allows for inclusion of
statements. In the (c) Type Checking module the errors are
gathered along with their (source) location8, which in turn
allows the game to be updated by spawning enemies where
the errors occur. And finally the (d) Evaluation module in-
terprets the code, and is used to gather which control flow
is taken. This information lets the branches in the visualiza-
tion fall when stepped on if that branch is not existent in the
executed path.

Full pipeline and Interaction
The puzzle solver is presented with the two before men-
tioned views, namely a textual editor and an interactive

6https://docs.rascal-mpl.org/unstable/Rascal/#Expressions-
Visit

7https://docs.rascal-mpl.org/unstable/Recipes/#Common-
StringTemplate

8https://docs.rascal-mpl.org/unstable/Rascal/#Values-Location

Figure 8: ShoweyBuilder, a visualization editor to create a
definition how the scene should look.

game. The Solvey language is used to code out (sim-
ple) exercises using in- and output of expressions. The
following snippet is used to demonstrate a simple ex-
ercise, where the solution contains an error. A modulo
operation will result in a number variable, which does
not fit the conditional expression of an if statement. The
solver will be presented with an error message along
with a source location, while at the same time having
the interactive game reflect the code by spawning the
visual representation based on the AST piped through
the Showey definition supplied by the puzzle creator.

1 // Output true if the received number is
an even number and false otherwise.

2 number received
3
4 received := input()
5
6 if (received % 2)
7 output(true)
8 else
9 output(false)

10 end if

A ShoweyDefinition determines what a scene looks like.
It contains general variables, a list of created 3D artifacts
(blockies) and the mapping from code to blockies. This def-
inition is created using the interface shown in Figure 8.

In this instance we have chosen to launch the shooter case
study. The game, built on top of the Showey visualization,
spawns Error Enemies at error locations. These enemies
break the code and attempt to hit the player, see Figure 9.

Outlook and Ongoing Work
We have described a novel, modular, extensible research
platform for static and dynamic code visualization that com-
bines Rascal and Unity. Educators can use its notation for
creating a wide variety of code exercises, study how ef-
fective adjustable visualizations are, and iteratively improve
learning trajectories.

We are opening the following possible paths into the fu-
ture: (a) Find effective visualizations and mechanics to aid
the programmer in understanding of underlying code con-
cepts. This would be possible by performing action research,

Figure 9: Sceney instance representing the code snippet
from the Modulo assignment, showcasing an Error Enemy
destroying the code and aiming at the player.

including this framework into the curriculum of an introduc-
tory programming course. (b) Creating entire games, where
the user gets to explore coding in a novel manner. And (c)
enable a bi-directional transformation such that the game
world can trigger source code transformations, effectively
making it a 3D visual programming language.

Discussion
Here we briefly reflect on threats to validity and on how to
obtain a roadmap to collaborative research and development.

Threats to Validity
Our position is based on an extensive mapping study. How-
ever, we have discussed just three examples that leverage
Rascal in language prototyping. We highlighted selected
challenges and design decisions for illustrating benefits.
Here, we reflect on costs and threats to validity.

Like other languages, Rascal has a learning curve, and
mastering its concepts can be challenging. Rascal is used in
research and education at several institutions, e.g., at Cen-
trum Wiskunde & Informatica, the University of Amster-
dam, the Open University, the University of Groningen and
the TU Eindhoven, to name a few.

In general, it is hard to choose the right tool for the job.
When programming in Rascal, finding the right language
feature can challenging, especially to novices. The built-in
Tutor, provides a language reference and recipes that help
choosing an approach to a particular challenge9. Rascal’s de-
velopers also actively answer questions on stack overflow.

In addition, Rascal itself is an academic language that
regularly undergoes overhauls and maintenance. Naturally,
this can break features and existing programs. Spin-off
SWAT.engineering uses Rascal in an industrial context.

Finally, it is not clear to what extent our experiences with
Rascal hold for language workbenches in general. Compar-
ing language workbenches has been an activity of the lan-
guage workbench challenge (Erdweg et al. 2013). Compar-
ing them on game languages could be an opportunity.

9The Tutor is also available online: https://docs.rascal-mpl.org

Of course, our argument can be further strengthened with
additional studies and comparisons that weigh costs and
benefits. Next, we discuss on how to approach this.

Challenges, Opportunities and Road Map
Here we reflect on obtaining a road map that brings together
researchers, developers and designers in multi-disciplinary
language-centric research that explores what informs the de-
sign and construction of good games.

Languages often represent months or years of research
and development. Unfortunately, an analysis of success fac-
tors in revealed a ‘grave yard’ of dead language prototypes
(van Rozen 2021). Key success factors include: 1) multiple
research angles and language reuse; 2) collaboration with
industry; 3) available language prototypes; 4) Wiki pages,
blogs, example materials, tutorials and workshops; 5) active
online user communities; and 6) mature evaluation research,
following solution proposals and validation research.

Opportunities for languages in AGD exist at the intersec-
tion of research areas (van Rozen 2021). Ontologies, typolo-
gies and game design patterns are sources on what games
are, and how they can be understood. Content-centric chal-
lenges include: 1) integrating subject matter knowledge; 2)
balancing and fine-tuning game mechanics; 3) generating
varied and interesting game levels; 4) authoring realistic
NPC behaviors; and 5) integrating narratives and story plot.

Finally, technical view points on how to develop lan-
guages and tools include 1) leveraging gameplay metrics
and analytics to relate content, player actions and game-
play; 2) devising understandable visual notations inspired by
educative languages; 3) leveraging AI, in particular general
game playing, for analysis and play testing; 5) applying and
reusing techniques from model-driven engineering; and 6)
leveraging language work benches, as we have also argued.

Each of these areas, subjects and approaches present op-
portunities for future research and development.

Conclusion
In this position paper, we have proposed studying what
informs the design and construction of good games by
means of metaprogramming techniques and language work
benches. We have argued that these tools can help lan-
guage developers speed-up the construction of language pro-
totypes, raise the quality, bridge technological spaces and
combine the state-of-the-art in novel language-centric so-
lutions. We have discussed tackling technical challenges in
three ongoing master projects that leverage Rascal for rapid
language prototyping. Finally, we have reflected on chal-
lenges and opportunities for embarking on first-person re-
altime collaborative metaprogramming adventures.

Acknowledgments
We thank the organizers for hosting the 1st PLIE workshop.
In addition, we thank the anonymous reviewers for their in-
sightful comments that helped improve our paper. Finally,
we thank the Master of Software Engineering of the Univer-
sity of Amsterdam for supporting our participation.

References
Aho, A. V.; Sethi, R.; and Ullman, J. D. 1986. Compilers:
Principles, Techniques, and Tools. Addison-Wesley. ISBN
0-201-10088-6.
Boyan, A.; McGloin, R.; and Wasserman, J. A. 2018. Model
matching theory: A framework for examining the align-
ment between game mechanics and mental models. Media
and Communication 6(2). doi:https://doi.org/10.17645/mac.
v6i2.1326.
Conway, M.; Audia, S.; Burnette, T.; Cosgrove, D.; and
Christiansen, K. 2000. Alice: lessons learned from build-
ing a 3D system for novices. In Proceedings of the SIGCHI
conference on Human factors in computing systems.
Dormans, J. 2010. Adventures in Level Design: Generating
Missions and Spaces for Action Adventure Games. In Pro-
ceedings of the 2010 Workshop on Procedural Content Gen-
eration in Games, PCG2010. ACM. doi:10.1145/1814256.
1814257.
Dormans, J. 2011. Level Design as Model Transformation:
A Strategy for Automated Content Generation. In Proceed-
ings of the 2nd Workshop on Procedural Content Generation
in Games, PCG 2011. ACM.
Dormans, J.; and Bakkes, S. 2011. Generating Missions and
Spaces for Adaptable Play Experiences. IEEE Transactions
on Computational Intelligence and AI in Games 3(3). doi:
10.1109/TCIAIG.2011.2149523.
Dormans, J.; and Leijnen, S. 2013. Combinatorial and Ex-
ploratory Creativity in Procedural Content Generation. In
Workshop Proceedings of the 8th International Conference
on the Foundations of Digital Games. SASDG.
Erdweg, S.; Van Der Storm, T.; Völter, M.; et al. 2013. The
State of the Art in Language Workbenches. In Software Lan-
guage Engineering, volume 8225 of LNCS. Springer. doi:
10.1007/978-3-319-02654-1 11.
Flatt, M. 2012. Creating Languages in Racket. Communi-
cations of the ACM 55(1). doi:10.1145/2063176.2063195.
Heijn, Q. 2018. Improving the Quality of Grammars for Pro-
cedural Level Generation: A Software Evolution Perspec-
tive. Master’s thesis, University of Amsterdam.
Karavolos, D.; Bouwer, A.; and Bidarra, R. 2015. Mixed-
Initiative Design of Game Levels: Integrating Mission and
Space into Level Generation. In Proceedings of the 10th
International Conference on the Foundations of Digital
Games, FDG 2015. SASDG.
Klint, P.; van der Storm, T.; and Vinju, J. J. 2009a. EASY
Meta-programming with Rascal. In Fernandes, J. M.;
Lämmel, R.; Visser, J.; and Saraiva, J., eds., Generative and
Transformational Techniques in Software Engineering III -
International Summer School, GTTSE 2009. Revised Papers,
volume 6491 of LNCS. Springer. doi:10.1007/978-3-642-
18023-1\ 6.
Klint, P.; van der Storm, T.; and Vinju, J. J. 2009b. RAS-
CAL: A Domain Specific Language for Source Code Anal-
ysis and Manipulation. In Ninth IEEE International Work-
ing Conference on Source Code Analysis and Manipulation,

SCAM 2009. IEEE Computer Society. doi:10.1109/SCAM.
2009.28.

Lämmel, R. 2018. Software Languages: Syntax, Seman-
tics, and Metaprogramming. Springer. ISBN 978-3-319-
90798-7. doi:10.1007/978-3-319-90800-7. URL http://
www.softlang.org/book.

Leutenegger, S.; and Edgington, J. 2007. A games first ap-
proach to teaching introductory programming. In Proceed-
ings of the 38th SIGCSE technical symposium on Computer
science education.

Lim, C.; and Harrell, D. F. 2014. An Approach to General
Videogame Evaluation and Automatic Generation using a
Description Language. In 2014 IEEE Conference on Com-
putational Intelligence and Games, CIG 2014. IEEE. doi:
10.1109/CIG.2014.6932896.

Lindenmayer, A. 1968. Mathematical Models for Cellular
Interactions in Development. Journal of Theoretical Biology
18(3). ISSN 0022-5193. doi:10.1016/0022-5193(68)90079-
9.

MacLaurin, M. B. 2011. The design of Kodu: A tiny vi-
sual programming language for children on the Xbox 360.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages.

Maloney, J.; Resnick, M.; Rusk, N.; Silverman, B.; and East-
mond, E. 2010. The scratch programming language and
environment. ACM Transactions on Computing Education
(TOCE) 10(4).

McIver, L.; and Conway, D. 1996. Seven deadly sins of in-
troductory programming language design. In Proceedings
1996 International Conference Software Engineering: Edu-
cation and Practice. IEEE.

Naus, N.; and Jeuring, J. 2016. Building a Generic Feedback
System for Rule-Based Problems. In International Sympo-
sium on Trends in Functional Programming, volume 10447
of LNCS. Springer. doi:10.1007/978-3-030-14805-8 10.

Osborn, J. C. 2018. Operationalizing Operational Logics.
Ph.D. thesis, UC Santa Cruz.

Osborn, J. C.; Samuel, B.; Mateas, M.; and Wardrip-Fruin,
N. 2015. Playspecs: Regular Expressions for Game Play
Traces. In Proceedings of Artificial Intelligence and Inter-
active Digital Entertainment, AIIDE 2015. AAAI Press.

Smith, A. M.; and Mateas, M. 2011. Answer Set Program-
ming for Procedural Content Generation: A Design Space
Approach. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3). doi:10.1109/TCIAIG.2011.
2158545.

Tang, S.; Hanneghan, M.; and El Rhalibi, A. 2009. Introduc-
tion to games-based learning. In Games-based learning ad-
vancements for multi-sensory human computer interfaces:
Techniques and effective practices. IGI Global.

Tikhonova, U.; Manders, M.; van den Brand, M.; Andova,
S.; and Verhoeff, T. 2013. Applying Model Transformation
and Event-B for Specifying an Industrial DSL. In Proceed-
ings of the 10th International Workshop on Model Driven

Engineering, Verification and Validation MoDeVVa 2013,
volume 1069. CEUR-WS.org.
van den Bos, J.; and van der Storm, T. 2011. Bring-
ing Domain-Specific Languages to Digital Forensics. In
Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE 2011. ACM. doi:10.1145/1985793.
1985887.
van Deursen, A.; Klint, P.; and Tip, F. 1993. Origin Tracking.
J. Symb. Comput. 15(5/6): 523–545. doi:10.1016/S0747-
7171(06)80004-0.
van Deursen, A.; Klint, P.; and Visser, J. 2000. Domain-
Specific Languages: An Annotated Bibliography. ACM SIG-
PLAN Notices 35(6). doi:10.1145/352029.352035.
van Rozen, R. 2021. Languages of Games and Play: A Sys-
tematic Mapping Study. ACM Computing Surveys 53(6).
doi:10.1145/3412843.
van Rozen, R.; and Heijn, Q. 2018. Measuring Quality of
Grammars for Procedural Level Generation. In Proceedings
of Foundations of Digital Games, FDG 2018. ACM. doi:
10.1145/3235765.3235821.
Vermeulen, M. 2018. Automated Game Generation
met Gebruik van Meta-Programming. Bachelor’s thesis,
Hogeschool van Amsterdam.
Walter, R.; and Masuch, M. 2011. How to Integrate Domain-
Specific Languages into the Game Development Process.
In Proceedings of the 8th International Conference on Ad-
vances in Computer Entertainment Technology. ACM. doi:
10.1145/2071423.2071475.
Warren, J. 2019. Tiny Online Game Engines. In Decision
and Game Theory for Security - 10th International Confer-
ence, GameSec 2019, volume 11836 of LNCS. Springer. doi:
10.1109/GEM.2019.8901975.

