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Abstract
Career path prediction aims to determine a potential employee’s next job, based on the jobs they have had until now. While
good performance on this task has been achieved in recent years, the models making career predictions often function as
black boxes. By integrating components of explainable artificial intelligence (XAI), this paper aims to make these predictions
explainable and understandable. To study the effects of explainability on performance, three non-explainable baselines were
compared to three similar, but explainable, alternatives. Furthermore, user testing was performed with recruiters in order
to determine the sensibility of the explanations generated by the models. Results show that the explainable alternatives
perform on-par with their non-explainable counterparts. In addition, the explainable models were determined to provide
understandable and useful explanations by recruiters.
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1. Introduction
With the rise of the modern gig economy, it has become
more difficult for job seekers to find stable positions of
employment [1]. In addition, due to the average educa-
tion level of the workforce having increased considerably
in recent years, potential employees are faced with more
opportunities than ever before [2]. This has made it sig-
nificantly more difficult for job seekers, and employment
agencies alike, to find positions that fit their needs. To
assist in this complex and challenging task, many em-
ployment agencies have started to make use of computer-
aided HR matchmaking (e.g., machine learning) to find
suitable positions for individuals, and capable employees
for companies [3]. This task is called career path predic-
tion, which aims to predict a person’s next position of
employment, given their career up until this point.

Previous research on automated career path prediction
tends to share a common flaw: a lack of explainability
[4, 5, 6, 7]. While deep learning tends to deliver good
performance, these models often function as a black box.
Although good results that are difficult to interpret are
acceptable in many use cases, choosing a new career is
such an impactful event in a person’s life that it is unre-
alistic to expect users to blindly trust the models. This
is why explainability is such a crucial requirement for
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career path prediction models. Through the use of ex-
plainable artificial intelligence (XAI) [8], individuals with
little knowledge of deep learning (e.g. recruiters or job
seekers themselves) are able to interpret to what extent,
and in what ways, each variable contributed to the final
outcome of the model. By being able to concretely de-
termine why a given position is ideal for a person, the
recommendation becomes considerably more transpar-
ent, understandable, and thus more trustworthy.

In this paper, career path prediction is performed
on a dataset provided by Randstad NV. As the world’s
largest employment agency [9], Randstad has an enor-
mous dataset containing the careers of hundreds of thou-
sands of individuals. Considering the large number of
same-job switches within this dataset (57% of all career
steps in the dataset consist of people working the same
job, just at a different company), only candidates that
actually made a job switch were considered. This was
done in order to prevent the machine learning models
from always predicting a candidate’s previous job, as that
would defeat the purpose of using such a model.

This paper attempts to answer the following research
question: To what degree can career path predictions done
by deep learning models be made explainable? This is
done by means of the following sub-questions:

• RQ1: How well do state-of-the-art deep learning
models perform career path prediction on Rand-
stad’s dataset?

• RQ2: How do different ways of making model
predictions explainable impact performance?

• RQ3: Which explainable model is the most useful
for recommending jobs to candidates?

This paper is structured as follows: first, an overview
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of the current state of the art in terms of model per-
formance and explainability is given. Then, Randstad’s
dataset is described in detail. Afterwards, the methods
used to answer the research questions are explained. Sub-
sequently, the research questions are answered, after
which their answers are discussed.

2. Related Work

2.1. Career path predictions
The goal of career path prediction is to determine what
position of employment is a logical next step given a job
seeker’s career [5]. Considering the number of different
career opportunities and factors which have an influ-
ence on the career steps (e.g., previous job experiences,
educational background, interests of a job seeker), the
career prediction problem is incredibly difficult to model
by hand.

In recent years a lot of progress has been achieved
within the field of career path prediction. The first no-
table paper to use machine learning for career path pre-
diction, was that by Liu et al. [5]. In this paper, Liu
et al. scraped individuals’ social media profiles to gen-
erate a dataset, after which they predict when an em-
ployee would be ready to move to a higher-paying posi-
tion within their current field (e.g. moving from junior
software developer to senior software developer). Meng
et al. [4] then extended this task by not just considering
within-field switches, but general job mobility. Their
custom LSTM, the hierarchical career-path-aware neural
network (HCPNN), was thus tasked to predict individ-
uals’ next employer, regardless of their current field of
employment. The HCPNN has shown impressive results,
outperforming every model that forewent it.

Similarly, He et al. [7] attempted to predict individu-
als’ next job based on features they extracted from their
resume. Unlike Meng et al., they made use of a convolu-
tional neural network (CNN) for the predictions. With
this CNN they tried to implement a multi-purpose model
that could not only predict talents’ next job position, but
also their salary and the size of the company they would
be working at. Out of those three tasks, their CNN proved
to perform the best on career path predictions.

At their core, Meng et al.’s LSTM and He et al.’s CNN
are simply feature extractors which feed their output into
a dense layer. While both perform well on their own, it
is common to combine these two architectures within
the field of sequence classification [10, 11, 12]. Although
such an architecture has not yet been used for career
path predictions specifically, they have been shown to
perform exceedingly well on other multivariate sequence
classification problems [13, 14, 15]. Especially Livieris
et al. [14] their CNN-LSTM has shown good results on

another multivariate sequence classification task (gold
price forecasting), outperforming every alternative archi-
tecture tested.

While the aforementioned models make up the current
state of the art for career path predictions, they all share
a common flaw: they function as black boxes. As a result,
their outputs are hard to interpret for both recruiters and
job seekers. Considering the impact a career change can
have on an individual’s life, this can make the models
difficult to use in real-world scenarios.

2.2. Explainability in deep learning
Explainability and performance are often considered in-
verses of each other in the field of AI. A simple, easy
to explain model is likely to perform mediocre at best,
while a complex, difficult to explain model is more likely
to perform well [8]. A common example of this inverse
relationship can be seen in the difference between deci-
sion trees and random forests: random forests are based
on decision trees, but with a higher degree of complex-
ity, which strongly increases performance at the cost of
explainability.

However, with the increasing interest in explainable AI,
more and more solutions have been brought up that can
make even the most complex deep learning models ex-
plainable to a degree [16]. Most commonly, this explain-
ability takes the shape of visualizations of the networks’
behaviour. Saliency maps and attention distributions
are capable of visualizing the importance of different
variables, usually through some type of colour scheme
indicating higher or lower feature importance. Initially,
Springenberg et al. [17] used guided backpropagation
to visualize the features learned by convolutional layers.
Extending past guided backpropagation, Selvaraju et al.
[18] created Grad-CAM, which could not only visualize
general learned features, but also determine which fea-
tures were important for a specific predicted class. Since
these post-hoc interpretability techniques merely look at
the behaviour of the model, they do not alter their perfor-
mance. However, it is often necessary to make alterations
to the models’ architecture to allow good explanations to
be generated (e.g., they only work on convolutional lay-
ers, and preferably only on the final convolutional layer
of a model) [18, 17]. As a result, such techniques either
do not change performance at all, or decrease it slightly.
In contrast, while both aforementioned methods were
created for computer vision, Vaswani et al. [19] proposed
‘attention mechanisms’ for natural language processing.
These attention mechanisms cause the models to predict
the importance of each feature per time step (or the im-
portance of a given time step in general) which can then
be visualized. As a result, Vaswani et al. made it possible
for different model architectures to become explainable,
while simultaneously improving their performance.



0 50 100 150 200 250 300 350
ISCO code

101

102

103

104

105

Nu
m

be
r o

f o
cc

ur
re

nc
es

Distribution of ISCO job types

(a) Distribution of ISCO job types

0 500 1000 1500 2000 2500 3000
Function ID

100

101

102

103

104

105

Nu
m

be
r o

f o
cc

ur
re

nc
es

Distribution of job functions

(b) Distribution of job functions

Figure 1: The distributions of ISCO job types and job functions (N = 1664565). Both use a logarithmic scale for the y-axis.

2.3. Explainability in sequence
classification

Sequence classification brings an additional factor into
the mix: the temporal dimension. Simply visualizing
which features garner the most attention thus becomes
insufficient in this scenario. While a given variable might
be highly important to the network initially, it could be-
come less relevant as time progresses. Thus, to make ex-
plainable sequence classifications, not only should there
be an explanation ofwhich variables contributed themost
to the final prediction, but also at what moment their
values were most decisive [20]. Nonetheless, saliency
maps are still useful in this scenario, as a multivariate se-
quence can be treated as a 2-dimensional image of shape
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ). However, these
saliency maps do not necessarily reach the level of finesse
required to generate understandable explanations for se-
quence. As a result, saliency maps are often combined
with attention mechanisms. By combining saliency maps
with attention distributions, it is possible to improve the
quality of the explanations [21].

3. Description of the Data
The data on which the models were trained, configured,
and tested, was provided by Randstad NV (Randstad).
Due to the nature of Randstad’s operations, they have an
exhaustive data lake consisting of temporal employee-
related data.

3.1. Overview of the datasets
Randstad’s dataset consists of over two million jobs re-
lating to more than 500 thousand individuals. These jobs
span over multiple decades, going back as far as the early
twentieth century. Although Randstad is a multinational

company, the used dataset only contains data pertaining
to candidates living in the Netherlands. For each job, the
dataset includes a number of relevant features, such as
the company for which the person worked, the period
within which they worked, ISCO1 classifications of the
job, and the specific function that was performed. While
job function and ISCO type both represent job positions,
the former is more granular as it takes over 3000 unique
values, while the latter takes a mere 355.

Additionally, Randstad stores structured and unstruc-
tured profile-specific data, which can be used to describe
the profile of a candidate. The structured data includes:

• education history, which includes education level,
completion status, the start and (if applicable) end
date;

• skills (e.g. ‘programming: Python’, ‘operating a
forklift’, ‘Microsoft Word’, etc.);

• languages;
• driving licenses;
• location.

The unstructured data is represented by curriculum vitaes
(CVs), which are user-generated documents.

3.2. Data imbalance
There is a huge imbalance in work experience and ed-
ucation levels of candidates present in the data. The
imbalance in work experience occurs in job positions,
which are represented by ISCO job types and job func-
tions (see Figure 1a and 1b respectively), and the number
of positions candidates have had (see Figure 2). We ad-
dressed the skew in the number of jobs a candidate had
by limiting the job history to the 25 most recent jobs.
The imbalance in education levels (see Figure 3) is less

1https://www.ilo.org/public/english/bureau/stat/isco/isco08/
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Figure 2: Distribution of different bins of total number of jobs
held by each candidate (N = 472647). Individuals in the [0, 1]
bin were removed from the dataset. For the full distribution,
see Figure 6.

impactful, as the education level of candidates is merely
a predictor, unlike the ISCO job types and job functions,
both of which could be used as the actual labels to be
predicted. To construct the final dataset we

• limited the job history of candidates to the 25
most recent jobs;

• dropped candidates with fewer than two jobs in
the dataset, due to the inability to convert their
careers to a sequence;

• balanced class labels distribution through
weighted sampling during training.

This resulted in our final dataset consisting of the ca-
reers of 113724 candidates, each being limited to the 25
most recent jobs they had. For each job, the (normalized2)
time spent working there, the ISCO function level of the
job, the highest education enjoyed up until then, the com-
pany for which the candidate worked, the specific job
function ID, the ISCO job type, and the most recent CV
were stored. Additionally, the zip code, obtained certifi-
cates, mastered languages, skills, and driving licenses
of candidates were stored as static variables, since they
rarely changed in between jobs.

4. Methodology
In order to make career path predictions, candidates’
profiles were turned into sequences which could be fed
into different (deep learning) models. For each candi-
date we used the last 25 jobs along with profile-specific
features as input for the models, after which the models
would predict their next job in the form of its ISCO job
type. Candidate profiles that consisted of fewer than 25

2Normalization was done through Z-transformation in order to main-
tain a common scale for all features.
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Figure 3: Distribution of highest education level obtained by
candidates (N = 1664565). In the Dutch education system,
MBO refers to intermediate vocational training, and HBO
refers to university of applied sciences.

jobs were zero-padded to prevent mismatched sequence
lengths. This section outlines how candidates’ careers
were converted into sequences, as well as how those
sequences were fed into different models.

Lastly, an overview of the models used is given. The
used models can be split into three separate categories:
non-neural baselines, non-explainable neural models3,
and explainable neural models. 80% of the data was used
as a training set, 10% of the data was used as a validation
set, on which the optimal hyperparameters were deter-
mined, and the last 10% of the data was used as a test
set to evaluate model performance on unseen data. We
used weighted sampling during training to address the
imbalance within the class labels distribution.

4.1. Data prepocessing
Due to the availability of temporal data, candidates’ ca-
reer paths were turned into sequences. For these se-
quences, each job held by a candidate was considered
to be one time step. The order of the time steps was
determined by the date at which the candidate started
the position. As a result, every career was turned into
a sequence, in which each time step was a candidate’s
current job, combined with their location and the skills,
certificates, languages, and education they had achieved
at the time of starting the position. To also include can-
didates’ curriculum vitaes (CVs) at each time step, the
most recent CV uploaded by a candidate at each time
step was converted to numerical features using averaged
Word2Vec [23] embeddings and combined with the other
features.

Candidates’ career paths were turned into sequences

3The neural models were created in PyTorch and trained on an
NVIDIA tesla K80 GPU [22].



x as follows:
x = [x(1), ...,x(T)], (1)

𝑤𝑖𝑡ℎ x(t) = [x(t)job;x
(t)
structured;x

(t)
CV] (2)

where the order of timesteps 𝑡 is determined by the date
at which the candidate started the job. Every element x(t)

of the sequence x consists of a feature vector x(t)job, which
represents candidate’s current job at a timestep 𝑡, feature
vector x(t)structured, which represents their location, skills,
certificates, languages, and education they had achieved
at the time of starting the position, and feature vector
x(t)CV, which represents the most recent CV uploaded by a
candidate at each time step (embedded using Word2Vec).

4.2. Baselines and Models
Considering the fact that careers do not necessarily fol-
low a logical trend, they can be rather difficult to model
properly. For example, a person might have a job for
a while not because they want to, but because they are
forced to do so in order to support themselves. A person
going from a position as a software engineer to a store
clerk does not constitute a logical progression, but can
obviously occur in the real world whenever someone
gets laid off and needs to work a temporary job while
they search for new alternatives. This makes career path
prediction a notoriously difficult problem for deep learn-
ing models [4]. To evaluate the added value of using
such models, and to allow for better contextualization,
baselines were set with three non-deep learning (but co-
incidentally highly explainable) models. The first one is
a simple majority class baseline, which always predicts
the most common job in the dataset. The second baseline
is the majority switch, which always predicts the most
common job following the current job of the candidate.
The last simple baseline is more sophisticated: k-nearest
neighbors based on the dynamic time warping distance
between candidates that had the same previous job (KNN-
DTW). This baseline uses dynamic time warping [24] to
determine which candidates have had the most similar
careers, and then uses k-nearest neighbors to make a
prediction based on these similarities. For each candi-
date, all candidates that had the same previous job were
compared in terms of DTW distance (i.e., the numerical
distance between the sequences); the k-nearest neighbors
algorithm was then used to find the closest neighbors for
each candidate, based on whom a prediction would be
made.

4.2.1. RQ1 - State of the art

To study the impact of explainability mechanisms on
model performance, three state-of-the-art models, each
with a unique architecture (Section 2.1), were trained and

tested on Randstad’s dataset. The performance of these
models will function as a non-explainable baseline, with
which the performance of the explainable alternatives
can be compared. The following models were used:

LSTM : The LSTM -based model used in this paper is
based on the HCPNN by Meng et al. [4]. While
the original HCPNN combines candidate-specific
data with company-specific data, its modular ar-
chitecture allows for the removal of some of the
model’s components. As a result, the HCPNN
was implemented using only candidate-specific
features. This results in a model that takes embed-
ded position features, feeds them into an LSTM,
runs the LSTM’s output through an attention
layer, and combines that output with a candi-
date’s embedded static features, after which a
fully-connected layer makes a prediction.

CNN : The CNN -based model used in this paper is
that of He et al. [7]. This architecture feeds the
input data into a 2D convolutional layer, followed
by a pooling layer. The output is then flattened
and ran through a drop-out layer. Lastly, a fully-
connected layer is used to do the final prediction.

CNN-LSTM : The CNN-LSTM -based model used in
this paper is based on the model created by
Livieris et al. [14]. It uses two sequential 2D
convolutional layers, followed by a pooling layer.
The pooled features then get fed into an LSTM,
after which a fully-connected layer is responsible
for the final predictions of the model.

To evaluate performance, accuracy @ 𝑘 (𝑘 ∈ {1, 5, 10})
was used, which shows how often the correct answer
was within the top 𝑘 predictions given by the model [25].
Considering the fact that candidates could not be inter-
ested in a specific job type (e.g. no open vacancies, not
interesting enough, it pays too little), it is expected of re-
cruiters that they can provide multiple recommendations
for the candidate, allowing them to choose and consider
multiple options. As a result, the models provide multiple
predictions, which can be evaluated using accuracy @ 𝑘.

4.2.2. RQ2 - Explainable models

Although the explainable models’ architectures differ
slightly from the aforementioned state-of-the-art models
to allow for improved explainability, they are largely
identical.

Explainable LSTM : The explainable LSTM -based
model (eLSTM) used in this paper is based on
the spatiotemporal attention LSTM (STA-LSTM)
by Ding et al. [26]. This architecture starts off by



determining spatial attention; it runs each individ-
ual time step through a linear layer, after which
the Hadamard product between the linear layer’s
output and the features per time step is taken to
determine the importance of each feature at each
time step. The output hereof is then fed into an
LSTM, after which the temporal attention is cal-
culated. This is done by flattening the output of
the LSTM and running it through another linear
layer. This calculates a normalized importance of
each time step, based on that step’s hidden values.
The dot product between the linear layer’s output
and the LSTM’s hidden output is then calculated,
which is fed into a fully-connected layer to make
the final predictions.

Explainable CNN : The explainable CNN -based
model (eCNN) used in this paper is based on the
explainable convolutional neural network for mul-
tivariate time series classification (XCM) by Fauvel
et al. [27]. It makes use of two stages which run
in parallel. The first stage (top) uses a 2D con-
volutional layer with kernel size (𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 × 1)
that generates 𝐹1 feature maps. A (1 × 1) 2D
convolutional layer is then used to summarize
those 𝐹1 feature maps into a single feature map.
The other stage (bottom), running independently,
uses a 1D convolutional layer with kernel size
(𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 × 𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) and also generates 𝐹1
feature maps, which are summarized by a (1 × 1)
1D convolutional layer. The two feature maps
generated by the two stages are then concate-
nated in the feature-dimension, after which a 1D
convolutional layer with kernel size (𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒×
(𝑁𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠+1)) generates 𝐹2 feature maps. These
feature maps are then ran through a pooling layer,
which is also responsible for the predictions. 𝐹1,
𝐹2, and 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 are three separate hyperpa-
rameters for this model.

Explainable CNN-LSTM : The explainable CNN-
LSTM -basedmodel (eCNN-LSTM) used in this pa-
per is based on that of Schockaert et al. [21]. This
model runs the input data through a 2D convolu-
tional layer with kernel size (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ × 1),
whose output gets concatenated to the original
sequential data. This combined output gets fed
into an LSTM. All but the last hidden state of the
LSTM get passed through a temporal attention
mechanism. This temporal attention mechanism
runs each hidden state through a fully-connected
layer which attributes it a given amount of atten-
tion. These attention values are then normalized,
after which the dot product of the attention vec-
tor and the hidden states is calculated to create
a context vector. This context vector is then con-

catenated to the last hidden state of the LSTM,
and fed into fully-connected layer, which makes
the final prediction.

4.2.3. RQ3 - Real-world utility

To measure the adequacy of the explanations generated
by the models, user testing was performed. Potential
users of the models (e.g. Randstad’s recruiters), were
tasked to determine which variables were most relevant
for a prediction made by the system. Six recruiters were
split into three groups based on their recruiting expertise
(finance, customer support, health care), and shown three
separate predictions within that industry (one per model).
For each predictions, they were tasked to distribute 100
‘relevance points’ over all of the features used by the
models (previous jobs, education, skills, etc.), after which
their distribution was compared to that of the models. In
order to determine the sensibility of the models’ explana-
tions, the Pearson’s correlation, root mean squared error
(RMSE), and mean absolute error (MAE) of each models’
distributions compared to the recruiters’ distributions
were calculated. Furthermore, the recruiters were pre-
sented with the explanations generated by each model,
and tasked to judge each part of the explanations (spa-
tial/feature attention, temporal attention, and spatiotem-
poral attention), as well as the general usefulness of the
explanations for finding a suitable position for a candi-
date. By averaging the scores given by the recruiters, the
real-world utility of each explanation was determined.

5. Results

5.1. RQ1 - State of the art
To better convey the performance gained by using deep
learning models, the score of each model will be directly
compared to that of the best-performing baseline. Of
the three simple baselines, the majority switch baseline
performed the best, reaching 19.1% accuracy @ 1, 46.6%
accuracy @ 5, and 61.3% accuracy @ 10. KNN-DTW
performed worse initially, but converged to the major-
ity switch baseline as the number of neighbors (𝐾) ap-
proached infinity. With low values of 𝐾, e.g. 5, it failed to
break even 10% accuracy @ 1. However, using a higher
value for 𝐾, e.g. 100, greatly improved this score, reach-
ing 18.1% accuracy @ 1, 46.4% accuracy @ 5, and 58.1%
accuracy @ 10, showing a sub-linear performance gain
as 𝐾 increased. The majority class baseline performed
significantly worse, only reaching 10.5% accuracy @ 1,
36.8% accuracy @ 5, and 49.1% accuracy @ 10. As a re-
sult, the performance of the deep learning models was
compared against the scores achieved by the majority
switch baseline.



Model Accuracy @ 1 ⇑ Accuracy @ 5 ⇑ Accuracy @ 10 ⇑

Baseline

Majority switch 19.1% ± 0.7% 46.6% ± 0.9% 61.3% ± 0.9%

Non-explainable models

LSTM 21.9% ± 0.8% 49.3% ± 0.9% 62.9% ± 0.9%

CNN 20.8% ± 0.7% 50.8% ± 0.9% 63.7% ± 0.9%

CNN-LSTM 26.4% ± 0.6% 56.5% ± 0.7% 68.6% ± 0.6%

Explainable models

eLSTM 22.2% ± 0.8% 47.6% ± 0.9% 60.8% ± 0.9%

eCNN 20.1% ± 0.7% 47.7% ± 0.9% 61.5% ± 0.9%

eCNN-LSTM 26.0% ± 0.8% 55.7% ± 0.9% 67.5% ± 0.9%

Table 1
Test set performance of each model at different values of 𝑘 (N = 11372). Different values of 𝑘 indicate how often the correct
answer was within the top 𝑘 predictions given by the model. Green text indicates scores higher than the majority switch
baseline, while red text indicates scores lower than the majority switch baseline.

.

While similar architectures were used for the explain-
able and non-explainable models, different hyperparam-
eter configurations led to different performance for each
architecture. The results shown in Table 1 only indicate
the performance given by the best hyperparameter con-
figuration found for each model. For a full overview of
hyperparameter configurations and their related perfor-
mance see Appendix B.

5.2. RQ2 - Explainable models
Out of all the models, the CNN-LSTMs performed the
best. Unlike what was hypothesized, the explainable
models were not inferior to their non-explainable coun-
terparts (Table 1). In fact, the eLSTM provides a higher
accuracy than the non-explainable LSTM by a slight mar-
gin, although this difference falls within the confidence
intervals of the scores, and is therefore not significant
(𝑝 > .05). The explainable CNN took a slight (but statisti-
cally significant) hit in performance in exchange for the
increase in explainability, especially suffering at higher
values of 𝑘.

5.3. RQ3 - Real-world utility
Each explainable model is able to generate three sepa-
rate explanations for a prediction: (i) the weight of each
feature, (ii) the weight of each time step, and (iii) a time
step/feature interaction map (spatiotemporal attention).
The way in which these explanations are generated dif-
fers per model, but the final visualizations are the same,
regardless of themethod used to generate them (Figure 10,
11, and 12 in Appendix E).

In order to verify the integrity of these explanations,

user research was done with Randstad’s recruiters. After
providing the recruiters with the predictions made by
the model, they were asked to estimate which variables
were most important. The averaged estimates made by
the recruiters and models can be seen in Figure 4 (for
the comparison per model see Appendix C). The results
indicate that the models’ explanations were positively
correlated with those made by the recruiters (Table 2. For
the eCNN-LSTM, this correlation was moderate, while
for the eCNN and eLSTM, it was quite weak. In general,
the models considered more ‘job-specific’ features such
as the previous functions, companies, ISCO job types,
and ISCO job levels to be highly important, while the
recruiters leaned more towards ‘general’ features such
as education and skills.

To measure the sensibility of each model’s explana-
tions, three metrics were calculated for each of them:

15 10 5 0 5 10 15
Feature importance

company
function id
isco code
education
isco level

CV
languages

skills
certificates

days worked
location
licenses

Models
Recruiters

Figure 4: Average distribution of feature importance of the
three explainable models compared to that of Randstad’s re-
cruiters (N = 18).



Pearson’s r ⇑ RMSE ⇓ MAE ⇓

eLSTM 0.142 4.661 4.094
eCNN-LSTM 0.436 6.014 4.847
eCNN 0.152 5.594 4.518

Table 2
The Pearson correlation, RMSE, and MAE of each model com-
pared to the scores given by the recruiters (N = 6). For each
feature, both the models and the recruiters gave a score; the
scores are calculated based on those two scores.

RMSE, MAE, and Pearson correlation. This was done
by calculating the difference between the average score
that recruiters gave to each feature and the attention put
towards that feature by the models (RMSE and MAE), as
well as the correlation between the models’ values and
the recruiters’ values (Pearson correlation). The results
can be seen in Table 2.

Additionally, the recruiters were asked how sensible
they found the models’ explanations, as well as how use-
ful they considered the models (including their explana-
tions) for helping candidates find a new job. The averaged
scores for each model is shown in Table 3.

In general, the recruiters showed a preference for the
feature explanations, and to a lesser extent the spatiotem-
poral explanations. The temporal explanations were con-
sidered the least sensible, failing to reach a sufficient
grade (i.e., above a 5.5/10 on average). While the eCNN
was judged to deliver the worst explanations, receiving
barely a 5/10 on average, the eCNN-LSTM’s and eLSTM’s
explanations were considered sufficient by the recruiters.
Out of these two, the eCNN-LSTM was determined to
provide the best explanations, scoring the highest aver-
age rating in each category. Regardless of the insufficient
grades reached by some explanations/models, all three
models were considered generally useful for recommend-
ing a job to a candidate.

6. Discussion and conclusion

6.1. Interpretation of the results
6.1.1. State of the art performance

Although career path prediction is a notoriously difficult
problem in deep learning, the state-of-the-art models
used on Randstad’s dataset ended up performing com-
mendably. All three models ended up achieving signifi-
cantly (𝑝 < .05) higher scores than the majority switch
baseline, which already performed well. However, this
improvement is relatively small for the CNN and LSTM.
This marginal increase over the baseline is largely in
line with the results found in previous research. Meng
et al. [4] found that the HCPNN outperformed non-neural
baselines by about 20% on their dataset; improving from

6.0% to 7.3% accuracy @ 1. Although this is a larger
improvement than that of the HCPNN compared to the
majority switch baseline presented in this paper (14.6%
increase in accuracy @ 1), this result can still be consid-
ered a confirmation of Meng et al. their findings. The
smaller relative improvement could in part be caused by
the fact that Randstad’s dataset includes data that has
been manually input by candidates themselves. This data,
as opposed to that input by Randstad’s recruiters, has
not been verified, and could therefore include errors, a
substantial amount of missing values, etc. While these
data points could have been removed from the dataset to
improve performance, a conscious decision was made not
to. Removing all data entered by candidates themselves
would get rid of more than half the dataset, in exchange
for a relatively minor improvement in performance (in
the neighborhood of 5-10%, absolute). Additionally, in
real-world use, providing candidates with the ability to
enter their own career into Randstad’s system and in-
stantly being able to receive job recommendations is very
valuable.

As opposed to the CNN and LSTM, the CNN-LSTM
showed a major improvement over the baseline. This
is in accordance with the results found by Livieris et al.
[14], who showed that their CNN-LSTM significantly
outperformed a bare LSTM baseline. Considering the
fact that both the convolutional layers and LSTM layers
are used as feature extractors, this result is expected. By
combining the two layer types, the model is able to learn
more abstract representations of the data, allowing it to
generalize better [28, 29, 30].

6.1.2. Explainability’s impact on performance

Though it was initially expected that the inclusion of
explainability mechanisms would impact model perfor-
mance to a degree [8], the experiments have shown that
this is not the case. While for Grad-CAM (CNN) this
result might seem obvious, considering this technique
does not alter the model, but merely looks at the model’s
gradients, this is still surprising. Despite the fact that the
technique itself is not intrusive, the model’s architecture
still needed to be altered in order to create sensible ex-
planations (e.g. the eCNN’s parallel design), as shown
by Fauvel et al. [27]. Regardless of this architectural
change, however, the explainable model still performed
on-par with its counterpart. Similarly, the explainable
CNN-LSTM, which uses not only guided backpropaga-
tion, but also an attention mechanism, showed roughly
equal performance to the non-explainable CNN-LSTM.
For the LSTM, the addition of explainability even im-
proved the model’s performance (in terms of accuracy
@ 1), although this improvement was not statistically
significant. Thus, the experiments show that explain-
ability mechanisms can be used in deep learning models



Feature explanation Temporal explanation Spatiotemporal explanation General usability

eLSTM 6.4 (SD=2.30) 5.4 (SD=2.30) 5.4 (SD=1.14) 6.0 (SD=0.71)
eCNN 5.2 (SD=1.79) 4.6 (SD=2.70) 5.4 (SD=2.07) 6.4 (SD=1.14)
eCNN-LSTM 6.6 (SD=2.51) 5.4 (SD=1.67) 6.4 (SD=2.41) 6.8 (SD=1.10)

Table 3
The average rating of each type of explanation for each model, as well as their general usability score, as determined by
Randstad’s recruiters (N = 5). 1-10 scale.

for career path prediction without hindering the mod-
els’ predictive powers. For the most part, this is in line
with the results of previous research on the topic [17, 18].
However, the fact that the attention mechanisms used
in the eCNN-LSTM and eLSTM did not improve model
accuracy in a statistically significant manner is in stride
with the results found by Schockaert et al. [21] and Ding
et al. [26]. This is likely caused by the differences be-
tween their datasets and the one provided by Randstad.
For example, the majority of candidates in Randstad’s
dataset only had one job on record. In such a scenario,
temporal attention adds no value, as all attention will be
directed towards that single time step.

6.1.3. Real-word utility

User testing showed that recruiters consider the explain-
able models usable in a real-world scenario. Although
they were quite critical, giving mostly sufficient (but not
outstanding) grades, they determined that each model
type would at least be helpful to a degree in finding a
job for a candidate. The individual explanation types
tended to score lower than the models as a whole, indi-
cating that the current implementation of the models’
explanations (i.e. the visualizations in Appendix E) might
require some tuning or extra clarification in order to be
used efficiently by recruiters. Regardless, the recruiters
did indicate that they considered the current implemen-
tation useful as is. Considering the environment for user
testing is quite bare-bones (Appendix D), this is a pos-
itive indication for the actual usability of the models’
explanations. Thus, to to allow further capitalization
of the explanations, a more user-friendly interface (e.g.
interactive explanations, clear textual descriptions of the
data) could be used. In doing so, the models might also
become usable by candidates themselves. Considering
the inference time of the models (less than a second), can-
didates could enter their careers into Randstad’s system,
and instantly be provided a list of job recommendations,
accompanied by explanations. However, more research
will need to be done to determine if this is preferable for
candidates over having recruiters interpret the models’
predictions.

6.2. Potential biases
While the models performed commendably, and the ex-
planations were determined to be satisfactory, it is impor-
tant to consider the impact of biases in the training data
on the predictions. Although protected features, such
as gender, race, and age were removed from the dataset,
correlation between such features and input features may
still have caused discrimination [31]. For example, while
age was not explicitly present in the data, the models
could still roughly determine a candidate’s age based
on their total number of days worked across all jobs (a
person with a few hundred total days worked is likely
to be in their twenties, while someone with over ten
thousand days worked is probably nearing retirement).
The models’ ability to ‘retrieve’ such protected features
may have negatively affected the recommendations for
specific candidates. Future research could look into the
extent to which this occurs, as well as methods to allevi-
ate this effect.

6.3. Limitations and expansion
Due to the lack of a publicly available dataset, determin-
ing state-of-the-art performance is complicated for career
path prediction. Even within Randstad’s own dataset,
performance could be increased by simply filtering out
data entered by candidates. To advance the field of career
path prediction, future research should focus on creating
a general dataset that can be used to directly compare
model performance within the field (in the same vein
as ImageNet for image classification4 and TREC for text
retrieval5). This benchmarking dataset should consist of
relatively clean, GDPR compliant, exhaustive career data
of a large variety of candidates. Using this dataset, future
research will be able to better gauge the performance of
different architectures used for career path prediction
(e.g. LSTMs, CNNs, temporal graphs) and draw direct
comparisons between models. Thus, having a clear and
definite state of the art will most certainly advance the
field as a whole.

Another limitation posed in this paper, is the lack of
hardware resources. The NVIDIA Tesla K80 used to train

4https://www.image-net.org/
5https://trec.nist.gov/data.html



the models fell short when training the CNN-based mod-
els. Because of the low CUDA core count of 2496, and
the limited 12 gigabytes of VRAM, the convolutional
models had to be limited in terms of kernel size, output
channels, embedding sizes, epochs, and batch sizes to
decrease VRAM usage and keep training time reasonable.
Consequently, not all possible hyperparameter config-
urations could be tested, possibly leaving better model
configurations unexplored.

Furthermore, the small sample size used for user test-
ing is an important limitation to acknowledge. Because
the participating recruiters were on payroll, it was diffi-
cult to get their managers’ approval, as well as to schedule
a moment to perform the tests. Subsequently, the results
gathered by the user testing are subject to high variance
and are therefore difficult to use as conclusive evidence.
Increasing the sample size by also performing user test-
ing on candidates themselves would have helped solve
this issue and might have provided additional insights.
Also, improving the clarity of the UI used for user testing
and the models’ explanations could have led to lower
variance, making the results more conclusive.

Additionally, while only including career switches in
the training data strongly improved the models’ usability,
it also hinders individuals who are looking for new work
within their current field from receiving recommenda-
tions. To account for such candidates, future work could
expand upon the current pipeline by including a recom-
mendation on whether a candidate should stay within
their current field, or pursue a position with a different
function. For individuals who get recommended to stay
within their profession, the models could, for example, be
altered to recommend a next employer within the field.

6.4. Conclusion
In the span of this paper, it was shown that career path
predictions made by deep learning models can be made
explainable to a high degree. While different types of
explanations made by the models can differ in terms
of how understandable they are to humans, all of them
turned out to be useful for recruiters nonetheless. Due to
the fact that these explainability mechanisms do not lead
to a decrease in performance, they form a good addition
to existing career path prediction models. This goes
especially for CNN-LSTMs, as those perform the best
as explainable and non-explainable models, while also
providing the best explanations according to recruiters.
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7. Appendix
All code used in the experiments can be found on https:
//github.com/Roan-Schellingerhout/MSc_thesis.

A. Encoding and indexing
With over 100 thousand careers, each spanning 25 time
steps, and over 1000 features per time step (embedding
values for skills, certificates, previous jobs, previous com-
panies, addresses, and spoken languages, as well as 300
w2v dimensions per CV), feeding the data into deep learn-
ing models as is, turned out to be infeasible. Making use
of sparse vectors to lower memory usage also was im-
possible, due to the incompatibility between CUDA and
sparse vectors/matrices [32]. However, considering the
large amount of duplicate data (a candidate’s skills/cer-
tificates/CVs do not change at every time step, and can
therefore often be repeated), use was made of indices
in order to lower memory usage, at the cost of a slight
time complexity increase. For each candidate, a loca-
tion within each index was created that contained their
unique attributes, and the time steps from which those
attributes became the most recent ones. By then retriev-
ing the relevant attributes for each candidate in a batch
during training, the required memory usage was lowered
drastically.

B. Hyperparameters
All hyperparameter tuning results can be found on
GitHub. For each configuration, the models were ran
for 3 epochs. Based on the results after those 3 epochs,
the best performing configuration was ran for 20 epochs
to find the optimal number of epochs. Not every intended
hyperparameter configuration could be tested due to
hardware/time constraints. For example, the CNN-based
models needed to be limited to small kernels and output
channels to prevent running out of VRAM. Additionally,
the eCNN was only trained for a total of 3 epochs, due
to time constraints (as each epoch took nearly 8 hours).

All models were optimized using the Adam optimizer
[33] (learning rate = 1 ∗ 10−3) with cross-entropy loss.
The hyperparameters used for the results of the non-
explainable models in Table 1 were the following:

LSTM : The HCPNN used a batch size of 512 and
reached optimal performance after 18 epochs. It
used a single LSTM layer with hidden size 1000.

CNN : The CNN used a batch size of 128 and reached
optimal performance after 11 epochs. The 2D
convolutional layer consisted of a (5 × 5) kernel,
with (1 × 1) padding and stride, and generated

64 feature maps. The 3D max-pooling used a
(64 × 1 × 1) kernel with (1 × 1 × 1) stride.

CNN-LSTM : The CNN-LSTM used a batch size of 128
and reached optimal performance after 20 epochs.
The first 2D convolutional layer used a (1 × 1)
kernel, with a (1 × 1) stride and half padding,
and generated 32 feature maps. The second 2D
convolutional layer made use of the same kernel
size, stride, and padding, but generated 64 feature
maps. The following 3D average-pooling layer
used a (64 × 1 × 1) kernel and a (1 × 1 × 1) stride.
Lastly, the model used a single LSTM layer with
hidden size 1000.

The optimal hyperparameters found for the explain-
able models are as follows:

eLSTM : The explainable LSTM used a batch size of 128
and reached optimal performance after 5 epochs.
It used a single LSTM layer with hidden size 1000.

eCNN : The explainable CNN used a batch size of 128
and reached optimal performance after 2 epochs.
The top part used a 2D convolutional layer with
a (5 × 1) kernel (thus, 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = 5), a (1 ×
1) stride, half padding, and generated 8 feature
maps (thus, 𝐹1 = 8). For the bottom part, the 1D
convolutional layer used a (5 ×𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) kernel,
a (1 × 1) stride, half padding, and also generated
8 feature maps. The final 1D convolutional layer
used a kernel size of (5 × (𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 1)), a (1 ×
1) stride, half padding, and generated 32 feature
maps (thus, 𝐹2 = 32). These 32 feature maps
were then ran through an 3D average-pooling
layer with kernel size (32 × 1 × 1) and a (1 × 1 × 1)
stride.

eCNN-LSTM : The explainable CNN-LSTM used a
batch size of 2048 and reached optimal perfor-
mance after 15 epochs. Its 2D convolutional layer
used a kernel of size (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ × 1) and half
padding, and was followed by a single LSTMwith
hidden size 1000.

C. Recruiter vs. model
distributions

The distributions of feature importance on which Table 2
is based can be seen in Figures 5a, 5b, and 5c. Each model
distribution is based on the average feature importance
determined by the models across the three categories
(finance, health care, and customer support). For the
recruiter distribution, the average is taken over the three
industries, as well as all recruiters within those industries
(as a result, 𝑁 = 6 for all recruiter distributions).

https://github.com/Roan-Schellingerhout/MSc_thesis
https://github.com/Roan-Schellingerhout/MSc_thesis
https://github.com/Roan-Schellingerhout/MSc_thesis/tree/main/hyperparameters
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(a) Distribution of feature importance of the CNN-LSTM.
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(b) Distribution of feature importance of the CNN.
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(c) Distribution of feature importance of the LSTM.

Figure 5: Distribution of feature importance of the different
models compared to that of Randstad’s recruiters. N = 6,
averaged over three categories.

D. User testing
User testing was conducted using a web environment
accessible by the recruiters. The web app was hosted
using Amazon ec2 in combination with Docker, and built
using Flask, JQuery, Jinja, and AJAX. The recruiters were
tasked to enter their e-mail address (to allow follow-up
questions if needed) and select their expertise (finance,
health care, customer support). Afterwards, they were
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Figure 6: The full distribution of the job sequence lengths
(number of jobs held per candidate). The longest single se-
quence consisted of 613 jobs. Both axis are in 𝑙𝑜𝑔2. Distributed
according to 𝑍𝑖𝑝𝑓 (𝛼 = 1.5, 𝑛 = 613).

redirected to the first example relevant to their expertise.
On this page, the recruiters were shown the data related
to the candidate in question (Figure 7), the prediction
made by the model, as well as one slider for each feature
which they could adjust (Figure 8). In total, 6 recruiters
participated in the experiment (although one of them
only submitted their slider ratings, and not their model
judgements).

By adjusting the sliders for each feature, they could dis-
tribute the ‘relevance points’ and thereby indicate which
features they considered most important for the given
prediction. After submitting their relevance distribution,
the recruiters were redirected to a page that again showed
the data of the user, the prediction made by the model,
this time accompanied by the model’s explanation, and
the four questions regarding the sensibility of the expla-
nations and the usability of the model (Figure 9). Once
the recruiters gave a rating to each explanation type, the
recruiters would be shown the second example and re-
peat the steps. Upon having completed the third example,
they were informed they were done, after which their
results were retrieved from the ec2 server and processed
using Python.

E. Explanation examples
The explanations provided by the three different models
for the same candidate can be found in Figures 10, 11,
and 12. The correct label for this candidate was Survey
and market research interviewer.



Figure 7: The interface for observing the users’ data. Time series data and static data are shown separately in the two different
tables to improve clarity. Below the tables, the label predicted by the model is displayed in bold.

Figure 8: The sliders used to determine feature importance. At the top, the total amount of ‘relevance points’ left to spent is
displayed in bold. Once this number reaches 0, the sliders can no longer be increased, unless another is decreased.



Figure 9: The interface for judging the models’ explanations. By scrolling up, the prediction made by the model, as well as
the users’ data can be observed (as in Figure 7). A brief explanation on how to interpret the explanations is also provided.
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Figure 10: Explanations provided by the explainable LSTM. Top left: attention per feature. Top right: attention per time step.
Bottom: Feature/time step interaction (spatiotemporal attention).



0.00 0.05 0.10 0.15 0.20
Gradient

skills
cv

certificates
isco level
isco code
function

company name
education

Time spent
location

languages
licenses

Attention per feature

1 2 3 4 5
Time step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

At
te

nt
io

n 
sc

or
e

Attention per time step

1 2 3 4 5
Time step

skills
cv

certificates
isco level
isco code
function

company name
education

Time spent
location

languages
licenses

Spatiotemporal attention

0.06

0.08

0.10

0.12

0.14

Gr
ad

ie
nt

Attention types

Figure 11: Explanations provided by the explainable CNN. Top left: gradient weight per feature. Top right: gradient weight
per time step. Bottom: Feature/time step interaction (grad-CAM)
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Figure 12: Explanations provided by the explainable CNN-LSTM. Top left: gradient weight per feature. Top right: attention
per time step. Bottom: Feature/time step interaction (guided backpropagation)


	1 Introduction
	2 Related Work
	2.1 Career path predictions
	2.2 Explainability in deep learning
	2.3 Explainability in sequence classification

	3 Description of the Data
	3.1 Overview of the datasets
	3.2 Data imbalance

	4 Methodology
	4.1 Data prepocessing
	4.2 Baselines and Models
	4.2.1 RQ1 - State of the art
	4.2.2 RQ2 - Explainable models
	4.2.3 RQ3 - Real-world utility


	5 Results
	5.1 RQ1 - State of the art
	5.2 RQ2 - Explainable models
	5.3 RQ3 - Real-world utility

	6 Discussion and conclusion
	6.1 Interpretation of the results
	6.1.1 State of the art performance
	6.1.2 Explainability's impact on performance
	6.1.3 Real-word utility

	6.2 Potential biases
	6.3 Limitations and expansion
	6.4 Conclusion

	7 Appendix
	A Encoding and indexing
	B Hyperparameters
	C Recruiter vs. model distributions
	D User testing
	E Explanation examples

