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Abstract
Cited-works-lists in Humanities dissertations are typically the result of five years of work. However,
despite the long-standing tradition of reference mining, no research has systematically untapped the
bibliographic data of existing electronic thesis collections. One of the main reasons for this is the
difficulty of creating a tagged gold standard for the around 300 pages long theses. In this short paper,
we propose a page-based random forest (RF) prediction approach which uses a new corpus of Literary
Studies Dissertations from Germany. Moreover, we will explain the handcrafted but computationally
informed feature-selection process. The evaluation demonstrates that this method achieves an F1 score
of 0.88 on this new dataset. In addition, it has the advantage of being derived from an interpretable
model, where feature relevance for prediction is clear, and incorporates a simplified annotation process.
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1. Introduction

Citation analysis (CA) of dissertations, that is, the examination of cited works in theses, has
a long story within bibliometric studies but still no computational operationalization. Most
approaches address collection development needs in libraries and thus seek to ascertain what
types of documents are the most frequently used in the doctoral research stage [1, 2, 3, 4, 5]. To a
lesser degree, some studies have investigated other research behaviors such as interdisciplinarity
[6, 7], language use [8, 9, 10], and domain-specific trends in specific domains such as chemistry
[4, 2], library science [8, 6, 11], sociology/anthropology [10], atmospheric science [12], agricul-
ture/biology [13] and mathematics education [14]. Because of tedious manual extraction, so far,
only small-scale studies are to be found; the big picture of citation strategies in Ph.D. theses is,
however, yet to be painted. In this paper, we propose a computational approach to automatically
mine references from a large corpus of – mostly – German-language dissertations in the field
of literary studies. The ultimate goal of this endeavor is to investigate the epistemological
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foundations of this field by means of systematic, large-scale, citation analysis. While there are
a number of examples of citation analyses in the humanities [12] and even more specifically
in literary studies[15, 16, 17, 18, 19], each of those has only used monographs and journals
as their sources, but not dissertations. Only one study from the 1990s has tapped into the
richness of citations in literary studies dissertations, manually analyzing 26 theses defended
in one university in India [20]. The reasons for a gap in large-scale dissertations’ CA may be
threefold: First, the extension of the reference section of dissertations (which in our corpus
averages 25 pages in length) implies a great challenge for in-depth tagging, which is a necessary
step for machine learning approaches. Second, the assumed inconsistency of references in
the humanities[21] is particularly true for dissertations, which tend to lack conventionalized
editorial guidelines. Third, and related to the first two: while reference mining tools for the
automatic extraction of citations have become more sophisticated in recent years, they are all
trained on gold standards of English papers from the natural and applied sciences[22, 23, 24, 25].
The aftermath of this is that they are hardly applicable to other domains, languages, and doc-
ument types. To close this gap and address these challenges, we present ongoing work on a
page-based random forest prediction approach, which allows us to extract bibliography sections
(in various styles and formats) from a corpus of 1,330 literary studies dissertations. This task is
an important prerequisite for the later exploration of specific bibliographic information, which
will be used to reveal citation strategies and trends in this field.

2. Related work

As for related studies to our approach, the EXCITE project aims at extracting citations outside
the natural and applied sciences Anglosphere. Its purpose is to develop “a set of algorithms
for the extraction of citation and reference information” for the social sciences[26]. Yet, the
transparency with which they share their gold standard shows a heavy inclination towards
journal articles and the inclusion of fewer than five dissertations. The only large-scale precedent
on the dissertation parsing front is the “Opening Books and the National Corpus of Graduate
Research” project[27]. Their wide scope of tasks includes reference mining. However, so far,
the team has only released its code on DOI metadata retrieval and has expressed its intention to
identify “particular pieces of information within the citations such as the author names”[28].
There are no available pipelines yet for the first task in reference mining: detecting the reference
section[26]. Another interesting approach is a line-based conditional random field, which
showed to reduce model complexity of reference string extraction by detecting relevant strings
without first identifying the reference section[26]. Yet, this supervised learning algorithm
requires line-wise annotations that are hardly scalable for the ca. 12,000 lines long dissertations.
Especially considering that all dissertations have a bibliography section, unlike certain journals.

3. Methodology

Corpus: To test our approach, we gathered 1,330 electronic theses with their corresponding
metadata from the German National Library. The selection criteria were subject and tempo-
rality: Literary Studies dissertations, which were defended in German Universities after the



dates_sw pubplaces page_n bibtest
0.06211 0.01527 152 0
0.06338 0.00352 153 0
0.06609 0.00575 154 1
0.08397 0 155 1

Table 1
Example of tagged dataset to train RF model,
each line is one page of the same PDF file

feature MDA
pubplaces_sw 32.3184181
dates_sw 24.87243224
dates 22.39062468
position 22.08909718
pubplaces 20.99889236

Table 2
Top 5 features by mean decrease accuracy (MDA)

reunification (1990) until 2020. After cleaning duplicates and misclassified documents, we were
left with 1,116 electronic dissertations and their corresponding PDF files. Model, features, and
sample selection: The machine learning method we chose for its interpretable model is random
forests (RF). Breiman (2001) developed RF as a machine learning technique for classification and
regression[29]. An RF is a collection of “decision trees”. Each node in a tree (i.e., each decision)
is based on a random subset of the available features, automatically predicting the likelihood
that an item belongs to a specific class (in our case: if the page was part of the bibliography
section or not). We used the randomForest package implementation in R[30].

The selected features were the relative frequencies of bibliographic elements that appear in
other reference mining projects: 1) dates, both in a four numbers date and with special but
common formatting in bibliographies, namely between parenthesis; 2) publication places with a
consistent frequency (we selected fifteen); 3) different bibliography-section-headers in English,
Spanish, French, and German. Common abbreviations for references in these languages such
as: “Ed(s)”, “Hrsg.”, “Vol”, etc. were added as suggested by previous work on reference mining
German academic texts[26]. We also added typical abbreviations in the footnotes (such as
“vgl.”, “ebd.”, “ders.”). We added this last feature to push the label to a negative class (i.e. “not
bibliography section”). Finally, we considered page number (“n_pag”), the total number of pages
(“n_pags”), and position (i.e. n_pag/n_pags).

Furthermore, we used a sliding windows approach to these features. Since bibliographies are
a section, we wanted to get a feature measure that overcomes single pages as barriers. Sliding
windows are useful to compute a running average over adjacent pairs, this allows to catch the
presence of features across a range of pages rather than on singleton ones, which also contain
some selected features but are not part of the section. For instance, the sliding-window mean
for dates in the first three pages is 0.042 (that is: the average of 1/37 + 1/32 + 2/29) and it is
compared against those of the second window (0.054) and the third one 0.044 (see Figure 1). We
used this sliding windows approach for dates, publication places, abbreviations, page numbers,
positions, and section headings. In order to create a representative sample of different types of
dissertations’ bibliographies, we selected documents with the most varied distribution of these
features. We selected 11 different k-means clusters of differentiated features distribution and 5
different documents from each one of these clusters. We then proceeded to create a training
data frame. Each row represents while columns contain the relative frequency for each feature
except for the last one which is for the class to be predicted (“bibtest”). This last column contains
0’s for non-bibliography sections, and 1’s for positive cases (see Table 1).



Figure 1: Example of sliding windows calculation.

4. Results and future work

We trained the RF on 1,000 trees and followed a bootstrap strategy, which roughly contains
two-thirds of the observations[31]. The confusion matrix shows more errors in classifying
content text as part of the reference section (304 false positives (FP), class error 0.016) while only
9 out of 1,145 reference section pages got erroneous predictions (false negatives, FN). In other
numbers, we got a precision of 0.79, a recall of 0.99, and an overall F1 score of 0.87. Moreover,
we were able to identify the most relevant features by their mean decrease accuracy and observe
the relevance of both our proposed sliding windows method (’_sw’ features in Table 1 and 2)
and of the selected features.

Besides these extremely promising results, the problems of our approach are worth mention-
ing. As previously stated, we get a relevant amount of FPs. Looking at concrete examples of
this, we can identify pages which are quite similar to true bibliographies that get misclassified.
For instance, we found containing pages containing a single footnote with references or where
the author lists works that are not cited in the scholarly sense. Likewise, lists of figures and of
abbreviations are sources of errors, as they superficially appear very similar to the bibliogra-
phies. Furthermore, derived from our sliding windows approach, bibliography-like pages that
are nearby the reference section also get incorrect predictions. On the FN classification side,
the formatting and layout of the bibliographies is often very unusual, or they do not begin
on a new page. We can experimentally trace both observations back to the feature level and
show that the feature structure differs in these examples. The biggest difference is in position,
as FP are on a lower page number than true-positives. Also, the distribution of dates and
publication places is very different, as FP contain a lower number of both. We thus need to
complement heuristic plausibility checks for the application of the approach, which eliminate
possible misclassifications based on additional conditions, e.g., checking the position in the
text. In addition, we consider complementary Regular Expressions that can automate additional
plausibility checking of the result set. However, we realize that these additional corrections
would have to be adapted for dissertations from other fields.
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