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Abstract  
Organizational decisions have become more data-driven and collaborative, with the increasing 

utilization of artificial intelligence, machine learning, and analytics to support decision making. 

While humans and machines are each bounded in their own rationalities, their collaboration 

has enabled a new, collaborative rationality by augmenting the intelligence and capabilities of 

each. New research is required to explore the degree and mode of human-machine 

collaboration, with the aim of enhancing collaborative rationality, and its effect on decision 

making. Furthermore, the resulting decisions must be evaluated to enable learning, 

rationalization, and sensemaking from the decision outcomes. However, data-driven decisions 

are complex in nature, and current theoretical developments fall short in accommodating for 

their multi-faceted nature and changing context, and there is lack of theoretical support on how, 

when, and why to evaluate such decisions. Accordingly, we follow a design science research 

methodology to develop and evaluate a model for data-driven decision evaluation. This model 

depicts the relationship and role of the multiple elements involved in data-driven decision 

making, and provides a feedback loop which inputs the results of evaluating decision outcomes 

back into the process/system, thus enabling learning from the past through experience, and 

ultimately enhancing collaborative rationality and decision making.  
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1. Introduction 

For centuries, decisions have inevitably defined the future of organizations and societies, with 

decision makers constantly striving to understand and deliberate the complicated process of how to 

decide. In recent decades, the coexistence of artificial intelligence (AI), or machine learning (ML), 

systems with human decision makers has ignited an interest in machines augmenting human intelligence 

and capabilities, which has led to different, and unprecedented, dimensions of “intelligent” data analysis 

in order to support and enhance decision-making and learning [1–4]. This complex interaction between 

humans and machines in decision making leads to the creation of metahuman systems, or sociotechnical 

systems where machines that learn join human learning, consequently complementing and amplifying 

human capabilities [5]. Accordingly, decision making involves combining the intuition and experience 

of human decision makers with the analytics and processing capabilities of machines with access to 

vast and various amounts data, thus breaking beyond the boundaries of each’s limited rationality, and 

providing more rational choices which can lead to better results [6–8]. Consequently, enhanced 

collaborative rationality ensues, where humans and machines participate in bringing their various 

capabilities together to jointly solve problems and make decisions [9].  
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There are three main modes of collaboration between humans and machines in decision-making. 

The first category is full human to AI delegation, where the machine makes the algorithmic decisions, 

and the role of the human is simply supervisory. The second category is of a hybrid, sequential form. 

Either the machine provides suitable alternatives to the human, who then selects the most appropriate, 

or the human decision maker selects a set of alternatives and then passes them to the machine for 

evaluation. Here, the role of the machine is mainly to provide recommendations or insights. Finally, the 

third category is aggregated human-machine decision making where different aspects, or elements, of 

the decision are allocated to each of humans and machines based on their respective strengths, and then 

aggregated into a collective decision [10,11]. The focus of this research is mainly on the latter two modes 

of human-machine collaboration, rather than on purely machine decisions.  

We utilize the term data-driven decision making to define this collaboration and encompass the 

relationship between the human decision maker, machine, data, decision-making process, and decision 

outcome [9]. Data-driven decision making involves the analysis and interpretation of data, typically 

through human-machine collaboration and the utilization of analytics, algorithms, or ML methods and 

techniques, to support a collaborative rationality and quality decisions [1,9,12]. 

However, to argue that such decisions are indeed better, evaluation is necessary. Evaluation clarifies 

options, reduces uncertainties, and generates information and knowledge about the results within 

contextual boundaries to make more informed decisions in the future [13]. Moreover, evaluation of past 

decisions can help establish whether assumptions and analytical methods are reliable or require 

adjustments and corrective action [14]. 

In recent years, research has started perceiving the relationship between organizational learning and 

machine learning [3,10,15,16], showing that evaluation can potentially enhance machine learning as 

well, since training data can be updated with the results of the evaluation. Mutual learning between 

humans and machines over time and in the appropriate contexts is necessary for developing a 

systematic, continuous process of improvement in decision making and collaboration between both. 

However, there is little agreement in the literature on the role of evaluation, or what and how to evaluate 

[17,18].  

Due to the complexity of data-driven decisions and the interrelationship between the various 

elements involved, the evaluation and monitoring of the resulting decisions requires additional research 

of its own for building experiences [5,9,19]. Despite the vast amount of literature in various streams and 

disciplines (e.g. decision research, information systems (IS), behavioral sciences, AI, ML, information 

technology (IT), etc.), comprehensive, or holistic, solutions accommodating for the multifaceted nature 

of collaborative data-driven decisions are not found. The interaction between humans and machines 

and their roles in decision making is still not clear, and further research is necessary to evaluate the 

resulting decisions and determine the benefit, impact, and learning that consequently occur from this 

collaboration. Hence, we need new ways to measure and evaluate the impact of AI-enabled decisions 

from different perspectives in order to measure the benefits of human-machine collaboration and its 

role among various factors in data-driven decision making [5,9,19,20].  

Accordingly, the main research question we aim to study is:  

 

RQ 1: “How can we support data-driven decision making and enhance collaborative rationality 

between humans and machines through decision evaluation?” 

 

We intend not just to study collaborative rationality and data-driven decision evaluation, but also to 

design a solution which is theoretically sound and practically feasible. Accordingly, we adopt a design 

science research (DSR) methodology to develop and evaluate a model (artifact) which supports 

evaluating data-driven decision outcomes, enabling collaborative rationality, and creating a feedback 

loop to enhance human and machine learning from past decisions. Hence, we attempt to research the 

following sub-questions: 

 

RQ 1.1: “Why do organizations need to evaluate collaborative rationality-based decisions?” and 

“How can collaborative rationality-based decisions be evaluated?” 
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Here we research the theoretical underpinnings behind data-driven decision making and evaluation 

by reviewing the literature, in order to pave the road for developing more comprehensive evaluation 

solutions for human-machine collaborative rationality-based decisions.  

 

RQ 1.2: “What are the requirements and design objectives for ex-post evaluation of data-driven 

decisions in organizations?” 

 

Here we define the requirements and design objectives (DOs) for a data-driven decision evaluation 

solution, contributing to the first two stages of the DSR process (cf. [21]). First, we determine the 

relevant ex-post evaluation concepts from the literature. These concepts are then exemplified through 

an industrial case to foresee how ex-post evaluation of data-driven decisions could be done in practice, 

and accordingly outline the initial requirements for a design solution. 

 

RQ 1.3: “How can data-driven decisions be evaluated to enable feedback and learning loops, as 

well as enhance the quality of human-machine collaborative rationality-based decisions?” 

 

Here we develop and test a model, based on theory and practical case studies, as a design science 

artifact for evaluating data-driven decisions, thus completing stages 3-6 (design and development, 

demonstration, evaluation, and communication) of the DSR process (cf. [21]). This model 

accommodates for the multifaceted and changing nature of these decisions across contextual levels and 

provides a holistic perspective, which is currently lacking in literature. Moreover, the model depicts the 

relationship between the data-driven decision making elements, as well as the feedback and learning 

loops which ensue from ex-ante and ex-post decision evaluation. Accordingly, it provides a modular 

structure for the practical implementation of a data-driven decision evaluation solution, through which 

parts of the model can be adapted by organizations within their desired contexts.  

This paper is structured as follows. In Section 2, we elaborate the research methodology followed 

and explain what has been, or will be, done in each of the DSR stages. Finally, in Section 3 we describe 

the expected contribution of this research to knowledge and practice. 

2. Research methodology 

The research methodology applied is design science, which consists of a rigorous process to design 

new artifacts intended to solve observed problems, make research contributions, evaluate the designs 

of the artifacts, and communicate results to appropriate audiences [21]. This process is followed 

throughout the research to develop and evaluate a theoretically sound and practically feasible model, or 

an abstraction that uses constructs to represent a real-world situation, depicting the relationship between 

the constructs and elements of data-driven decision making, including collaborative rationality between 

human and machine decision makers, as well as the feedback and learning loops resulting from 

evaluating data-driven decisions and their outcomes. We chose design science in particular, since our 

aim is not merely to explain or predict human or organizational behavior as is the core of the behavioral 

science paradigm, but we also seek to extend the boundaries of human and organizational capabilities 

by creating new and innovative artifacts which can be implemented to solve a problem [21,22]. 

In addition to perusing the knowledge base and the available literature, we work closely with 

decision makers and practitioners in multiple organizations to gather the business needs from the 

environment, as well as develop, demonstrate, and evaluate the artifact, hence achieving research 

relevance and rigor [22]. Hence, an organizational case was used to define the DOs of a solution, and 

multiple organizational cases are applied to demonstrate the model in different contexts. 

Peffers et al.’s [21] DSR process is followed, of which a simplification is shown in Figure 1. The 

process is iterative, allowing moving back and forth between the stages, with iterative evaluations 

according to Sonnenberg and vom Brocke’s [23] design science research evaluation process in Figure 

2. The stages of our research are further elaborated in the following subsections. 
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Figure 2: Design science research evaluation process [26] 

2.1. Problem identification and motivation 

We start with a problem-centered initiation by identifying the problem and motivation. This is 

mainly done by analyzing the literature and related research. The defined problem and motivation for 

research were evaluated and supported in practice through the expert interviews conducted and 

explained in the following subsection. While human-machine collaboration can potentially enhance 

decision making [6,7], more research is needed. Haphazard implementations without clear guidelines, 

criteria, and theory-backed methods are usually short-lived and destined to fail. Several failures have 

already been seen in organizations and agencies which rushed to automate their data-driven decision 

processes [9].  

Moreover, it is perceived throughout research and practice that data-driven decision making can lead 

to the optimizing of decisions and result in more informed, quality decisions which could have 

otherwise been unattainable. Controversially, decision-making can also become more difficult when 

different combinations of data or analytics show different patterns, sometimes conflicting with the 

preferred choice of the decision-maker, and hence the decision-maker does not know how to proceed 

with the results [6].  

While classical decision-making research focuses on the decision-making process, the decision 

maker, and the decision itself, the emergence of big data analytics has led to an evolution of modern 

data-driven decision making. Consequently, two new elements, the (big) data and the analytics need to 

be incorporated and integrated with the classical decision-making elements [9], as shown in Figure 3. 
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• Literature review

• Interviews

Define 
Objectives of a 

Solution

• Literature

• Interviews

• Design objectives

Design and 
Development
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Figure 1: Design science research process (adapted from [20]) 
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Figure 3: The elements of data-driven decision making [6]  
 

However, a great deal of effort and research is required in order to meaningfully integrate these 

elements. Human and machine decision makers can coexist and collaborate to reach a higher level of 

rationality and maximize collaborative intelligence, unattainable by either one individually, which 

necessitates innovative models of decision making. Thus, the degree of collaboration between the 

human and the machine, the selection of quality (big) data, the appropriate use of analytics methods 

and tools, the definition of the decision-making process, and how to integrate all of these elements 

together, along with the resulting information and knowledge, are all imperative aspects to study for 

optimizing data-driven decisions and enhancing collaborative rationality between humans and 

machines.  

Several recent studies have elaborated different modes of collaboration between humans and 

machines in organizational decision making for combining human and machine intelligence and 

capabilities, according to the context and types of the decision [4,10,11]. However, to organize these 

metahuman systems, new organizational functions are needed to delegate human vs. machine decisions, 

monitor how these decisions are taken, cultivate criteria to evaluate such decisions, and reflect through 

double-loop learning for continuous development [5].  

This leads to collective intelligence, where future research on cognitive computing has been 

highlighted, with the goal of building a rational, combined, and collective mechanism motivated by the 

capability of the human mind and strengths of AI systems [24]. Accordingly, there is a synergy between 

the unique strengths of humans and machines, augmenting the intelligence of one another, however the 

level of collaboration differs according to the tasks and types of decisions on hand, which still requires 

future work [4].    

Nevertheless, no comprehensive, or holistic, solutions accommodating for the multifaceted nature 

of collaborative data-driven decisions were found in the literature. The interaction between humans and 

machines and their roles in decision making is still not clear, the concept of collaborative rationality 

between humans and machines and its effect on decision making requires thorough elaboration, and 

further research is necessary to evaluate the resulting decisions and determine the benefit, impact, and 

learning that consequently occur from this collaboration [19]. Such an evaluation would provide 

information about the results within contextual boundaries and support more informed decisions in the 

future [13]. Furthermore, it can enable organizational and experiential learning [25,26], rationalization 

[27], and sensemaking [28] from the decision outcomes and consequences, as well as allow for analysis, 

benchmarking, and comparison of the results [29]. Iterations can be performed based on the knowledge 

gained from the impact of the decision, consequently creating a feedback loop between actions and 

outcomes. 

Yet, with the various number of elements involved in complex, data-driven decisions, evaluation 

considering individual metrics or perspectives is insufficient. Accordingly, we can neither rely solely 

on the machine’s evaluation of its models, nor the human’s evaluation of their choices or judgements. 

Conversely, evaluation should consider the decision as a whole. However, many solutions focus on 

evaluating machine output rather than the entire decision, or evaluate with individual metrics, despite 

studies showing that even decisions with high accuracy are not necessarily correct and suffer in other 
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dimensions [30,31]. Moreover, limited evaluation metrics may be insufficient in considering multiple 

decision factors and are sometimes conflicting [32]. Hence, we need new ways to assess and evaluate 

the impact and benefits of data-driven decisions and human-machine collaboration from different 

perspectives [5,9,19,20]. Thus, novel theorizing in this area is crucial to provide a systematic 

understanding through an integrated conceptualization [20,33]. 

2.2. Defining the objectives of a solution 

The objectives of a solution were defined both from theory and practice in [34]. The knowledge base 

was first perused to extract the theoretical concepts and factors relevant to data-driven decision making 

and evaluation from the appropriate streams of literature. These concepts include: embedded contexts 

(environmental, organizational, and decision contexts) in which the decision is made and which affects 

the decision and its evaluation, time (when and how often evaluation is conducted since the outcomes 

of the decision may vary across time), data driven-decision elements (decision maker, decision-making 

process, data, analytics/machine, and the decision outcome which needs to be evaluated), impact and 

consequences of the decision, conformance of the decision to certain criteria, metrics used for 

evaluating the decision, and errors and biases (both human and machine) which may affect the decision. 

The concepts were then exemplified through an industrial example of a chemical production plant to 

foresee how ex-post evaluation of data-driven decisions could be done in practice and outline the initial 

requirements for a design solution. Two expert interviews were conducted to gather data on the plant’s 

data-driven decisions and discuss the needs and requirements for a data-driven decision solution, from 

the viewpoints of both the production planner and process operator roles.  

From the production planner’s perspective, the data-driven decision involves determining and 

planning the production targets and capacities for a specific time interval and to schedule production. 

The purpose is to optimize the production rate and product portfolio to meet market demand. While 

these operational decisions are made short-term, they have a long-term impact. The human determines 

the objectives and constraints, and the ML tool supports the decision by simulating scenarios and 

suggesting alternative schedules. However, the human selects the best schedule to meet the designated 

criteria and makes the final decision (mode of collaboration: AI-recommends, human decides). 

Commonly, the human overlooks the output of the ML tool and decides not to use it, due to lack of trust 

in the reliability of the results. 

From the process operator’s perspective, the decisions include choices on set points for the process 

(such as feed rates and temperature), steering the process, and avoiding/overcoming fault situations. 

The purpose is to optimize the process efficiency (energy, material), avoid faults, and solve possible 

problems. Decisions are continuous and may also be triggered whenever there is a new target for the 

process, or a disturbance occurs. The ML tool provides outputs, insights, and predictions based on the 

data and process parameters. However, the inference and final decision are made by the human, who 

may use their own knowledge and expertise, along with additional monitoring methods (mode of 

collaboration: AI recommends, human decides and AI generates insights, which human uses in decision 

process). 

The need for an ex-post evaluation solution was mainly to assess the reliability of the ML tool and 

increase trust, enhance both human and machine learning from evaluation feedback, evaluate decisions 

at different time intervals to indicate if the reliability of the tool increases, evaluate the monitoring 

methods, and evaluate uncertainties in the measurement data and their effect on the decision. 

By comparing the current and desired approaches for decision evaluation stated in the interviews, 

the results were summarized into a set of evaluation requirements for each of the theoretical evaluation 

concepts previously defined from the literature. According to their functional similarities, the 

requirements were further thematized and mapped to more abstract and implementable DOs for an 

evaluation solution. 

Accordingly, this study resulted in four DOs for a data-driven decision evaluation solution, shown 

in Table 1. The first DO for an implementable data-driven decision evaluation method is that it should 

be comprehensive and incorporate multi-faceted criteria ranging across different contextual levels. The 

second DO is that a processual evaluation is performed across different stages in time to accommodate 

changing contexts and consequences of the decision. The third DO suggests incorporating into the 
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evaluation the mode of collaboration between humans and machines and the consequent effect on 

decision making, the decision outcomes, and achieving collaborative rationality. Finally, the fourth DO 

would be to enable a potentially automated feedback loop which ensues from the evaluation. Decision 

makers then learn a new set of lessons from experiences and from evaluating the outcomes of their 

decision (link between actions and outcomes), which then leads to learning within the organization, as 

well as amongst other organizations [26]. This could potentially enhance machine learning as well since 

training data can be updated with the results of evaluation.  

 

Table 1 
Design objectives for ex-post evaluation of data-driven decisions [34] 

No. Design objective 

1 Incorporate multi-faceted (potentially conflicting) evaluation criteria across contextual 
levels.  

2 Perform processual evaluation across time. 
3 Define the applicable mode of collaboration between humans and machines and evaluate 

its effect on decision-making, decision outcomes, and collaborative rationality. 
4 Enable a (potentially automated) feedback loop for learning from the (discrete or 

continuous) evaluation of past decisions. 

2.3. Artifact design and development (current stage) 

The next stage in the research process is to design and develop an artifact based on the previous DOs. 

Our artifact, in this research, is a model providing a holistic, multifaceted, and multidisciplinary view 

for evaluating collaborative human-machine decisions. The essential constructs and attributes which 

are relevant to the model, as well as the underlying assumptions, were defined from the literature and 

previous theories.  

An additional expert interview was conducted in another organization, focusing on data-driven 

decisions for predicting and preventing customer churn. This interview helped externally validate the 

design objectives and add new perspectives from a different case and decision context. Utilizing the 

theoretical concepts, and the knowledge gained from the three expert interviews, an initial version of a 

structural model for evaluating data-driven, or human-AI centric decisions, shown in Figure 4, was 

developed. 

For structuring the model with a conceptual modeling grammar [35] we utilized the unified modeling 

language (UML) due to its demonstrated application for agent-based systems [36].  However, as 

controversial perspectives exist on the consistency, vagueness, and comprehensibility issues which 

plague UML notation and semantic representation [37], we have implemented our own minor 

adaptations as we saw fit to ensure simplicity and comprehension. Class diagrams are a type of 

structural diagram which describe the collection of declarative model elements and classes (in this case, 

our constructs), and their contents (their attributes) and relationships (association represented with solid 

lines, and feedback results represented with dashed lines) [36]. 

The model thus accommodates for the multifaceted and changing nature of data-driven decisions 

across contextual levels and provides a holistic perspective by depicting the relationship between the 

different concepts, such as the decision maker, machine agent, data, collaborative rationality, decision, 

criteria to which the decision should conform, ex-ante evaluation of the decision, ex-post evaluation of 

the decision, and the resulting feedback loop and types of learning enabled.  

We assume recurring data-driven decisions, taking place within an organizational context, further 

embedded within an external, environmental context. A human decision maker and artificial agent 

(machine, analytics, etc.) are informed by a set of available data, of a certain quality. Both are 

characterized by a level of rationality, have a particular role in the decision-making process, have 

perceived models of the environment under which they operate, and a set of reference points which 

serve as baseline criteria, or governing variables, to which their decisions must conform. They are also 

prone to errors and biases. The human is further driven by emotions, which is a crucial attribute which 

the machine lacks.  
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Figure 4: A model for data-driven decision evaluation 
 

Together, the decision maker and machine, within an organizational context, engage in collaborative 

rationality, which can be utilized within the context of the decision, and in other contexts as well. The 

collaborative rationality is defined by the mode of collaboration, its characteristics, and its supported 

models of rationality. This collaborative rationality facilitates, and is facilitated by, the ex-ante 

evaluation, as new insights are generated through the evaluation of choices and alternatives, and it 

further supports ex-post evaluation, from which it is supported through the feedback loop. The ex-ante 

evaluation, utilizing its own set of metrics to evaluate alternatives, and the perceived outcomes leads to 

a decision. This is defined by the time of the decision, its characteristics, and the actions involved for 

implementation.   

Subsequently, certain events resulting from the decision trigger an ex-post evaluation, utilizing 

another set of metrics and available data regarding the decision, at a specific time, to evaluate the actual 

outcomes and their impact and consequences. The ex-ante evaluation, the decision outcome, and the 

ex-post evaluation are within a particular decision context; however, they are governed by a set of 

conformance criteria spanning across multiple contexts. These criteria include reference values to which 

the entire decision should conform (e.g. benchmarks, KPIs, objectives, etc.).  

The ex-post evaluation provides different types of feedback to enable experiential and organizational 

learning, either pertaining to the context of the decision or providing information and knowledge to 

other contexts as well. Such feedback serves as input to the other constructs and processes. First of all, 

it supports single-loop learning by updating the actions to resolve any errors. The feedback also provides 

knowledge for updating the ex-ante evaluation, and the opportunity to compare predicted outcomes 

with actual outcomes, thus making sense of the consequences and learning through experience. This 

could enhance future evaluations and predictions, as well as provide insight for revisiting the evaluation 

metrics and assumptions. Furthermore, learning from the feedback could entail updating the models 

themselves with which the alternatives were evaluated, which could lead to double-loop learning. 

Double-loop learning can occur when the feedback results in human or machine agents updating their 

reference points or perceived models of the environment, and when it leads to updating the conformance 

criteria for the decision.  

 Furthermore, this feedback can provide knowledge of the data required, and help detect 

discrepancies which may need to be solved. It can support rationalization and result in retrospective 

sensemaking. Finally, the feedback resulting from ex-post evaluation can enhance collaborative 

rationality by contributing to deutero learning. Here the decision makers can reflect on their 
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collaborative, human-machine learning processes, and create new learning strategies for improving the 

collaborative rationality between them. 

This model was then presented to an expert panel of four practitioners in the second organization 

and validated. An example instantiation of the model was created for the chemical manufacturing plant 

case, and an instantiation of the model was created for the customer churn case, together with two of 

the experts, as a prototypical evaluation. Finally, the model was presented to four experts in a third 

organization, with which we still aim to implement the model on their data-driven decision making 

case, thus achieving additional validation and fulfilling the Eval 2 stage in Sonnenberg and vom 

Brocke’s [23] design science research evaluation process.  

Since the structural model is static, and data-driven decision making is dynamic and requiring 

processual evaluation due to constantly changing contexts and consequences, a behavioral model 

depicting the relationship between the elements and their resulting behavior is still necessary and is the 

next stage in future work. It is intended to develop the behavioral model through collaboration with the 

third organization implementing data-driven decision making in order to observe the processual nature 

of decision making and evaluation, collaborative rationality between humans and machines, and the 

interaction between the elements and their impact on the decision. 

2.4. Artifact demonstration and evaluation (future work) 

The models should then be demonstrated through a prototypical instantiation in the context of an 

organization and evaluated (ex-post) in the Eval 3 and Eval 4 stages of Sonnenberg and vom Brocke’s 

[23] design science research evaluation process. This is necessary to show that the models are applicable 

and useful in practice in various scenarios, can easily be integrated with the company’s data, systems, 

and processes, their impact on the organization, and how they support or enhance data-driven decision 

making within the organization.  

Future work thus includes practically implementing the model in a different case in the third 

organization and studying the relationship between the constructs. This will lead to developing the 

associated behavioral model to represent the dynamic aspects and the activities, sequences, flows, and 

implementable relationships between the elements and their resulting behavior, in addition to the 

behavior of collaborative rationality in each of the decision making stages through demonstration in a 

practical setting. By understanding these process, we can then influence their change in the desired 

directions [38].  

Consequently, methods may be developed as a set of steps for manipulating the constructs so that 

the solution statement models are realized. Instantiations can further be used to operationalize the model 

and method, as a realization of the working artifacts in the environment [39], enabling practical 

implementation (and possible automation) and in-depth evaluation of the model. Furthermore, as we 

are currently in the theorizing stage, future research could help develop a more elaborate theory on data-

driven decision systems and their evaluation, as well as on enhancing the collaboration between humans 

and machines. The results will be communicated and disseminated through publications.   

3. Expected contribution 

Gregor and Hevner [40] proposed that design science research is neither limited to a particular type 

of artifact, nor to developing and testing a single artifact; but could rather include several artifacts with 

different levels of abstraction to demonstrate a contribution to knowledge, as shown in Table 2.  

The design objectives contribute by guiding the development of a data-driven decision evaluation 

solution, based on knowledge gained from theory and practice. The static and behavioral models would 

serve as level 2 contributions, or nascent design theories. The instantiations of the models in 

organizations would serve as level 1 contributions. This would allow us to theorize and develop level 3 

theories on data-driven decision making and collaborative rationality between humans and machines.  
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Table 2 
Design science research contribution types  [40] 

 
 

Hence, the main expected contributions of the research are as follows: 

• Suggesting and elaborating the theoretical concept of collaborative rationality, as well as 

enhancing it through deutero learning which results from evaluating data-driven decisions. 

• Highlighting the importance of a holistic, multi-faceted, and processual ex-post evaluation, 

while considering the different contexts, changing nature of the environment, and constantly 

challenging the evaluation criteria. 

• Creating a feedback loop for enabling learning, rationalization, and sensemaking from data-

driven decisions to enhance future decisions. 

• Providing a modular structure for the practical implementation of the parts of the models 

and their relationship, resulting in a data-driven decision evaluation solution.  

If the scope of the research allows, future work may also include developing a method for performing 

data-driven decision evaluation and design principles for potentially automating evaluation. 

The contribution and benefit of this research in science and industry is a new approach to evaluating, 

and possibly automating the evaluation of, data-driven decisions, further supported by rigorous research 

methods. Accordingly, the impact of this research can help develop good practices in data-driven 

decision making, and enhance learning from previous data-driven decisions, both for the decision maker 

and the machine. It can aid decision makers and policy makers in utilizing analytics to extract insights, 

driving them to make better quality and more informed decisions, and helping them overcome the 

problems and challenges faced with current practices. Finally, it can provide a better understanding of 

the collaboration between humans and machines in decision-making across various levels and contexts, 

as well as enable a collaborative rationality between both. 
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