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Abstract

The design of efficient yet robust methods for real-time image classification belongs to scorching topics in contemporary
Al particularly in the case of mobile and edge devices. Various types of convolutional neural networks seem to contribute
to solving this task. Especially those architectures proposed explicitly for mobile devices, e.g., MobileNet, and EfficientNet,
are classified to the least time-consuming ones. This paper thoroughly reviews the structure, performance, and main
characteristics of the considered network types. Based on the obtained results, we introduce a mobile-phone application to
classify cars we might see on the street and search for nearby car dealerships, e.g., to buy a car similar to that one of interest.
The developed application involves the TensorFlow EfficientNet Lite model. Finally, we provide an outlook for a possible

enhancement of the application with federated learning.
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1. Introduction

Modern convolutional neural networks (CNNs) are
known to beat human performance in many tasks. How-
ever, their state-of-the-art architectures require substan-
tial computational resources. A pretty natural question
thus arises if we can also benefit from CNN image pro-
cessing capabilities when implemented on mobile devices.
Recent Android products range from the Google Pixel 6
mobile phone equipped with the newest Google Tensor
processor to mobile devices that use Edge TPU (Tensor
Processing Unit) chip. Two examples of Edge TPU devices
include Coral Dev Board and the Coral USB accelerator.

Although the CNNs comprise a considerable number
of neurons at different layers, the model benefits from
weight sharing that keeps down the number of trainable
parameters. With local receptive fields (i.e., rectangular
filters), the CNNs scan the presented images to look for
significant visual pattern features. This information is
combined in subsequent layers to detect more complex
higher-order features. The neurons’ activities form the so-
called feature maps representing the extracted knowledge
in each layer. Alternating pooling layers blur the exact
position of the features and allow for down-sampling of
feature maps.

Our ultimate objective is to develop a mobile-phone
application to classify cars we might see and search for
dealerships to rent or buy a similar car. Fig. 1 presents
a snapshot illustrating the function of the application.
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Figure 1: A snapshot of the application running on the Pixel
3 virtual mobile device: the classification of a presented sports
car is followed by searching for the closest dealerships offering
similar cars in Poprad.

Considering the limited hardware means of mobile de-
vices, a crucial steppingstone in the application design
represents the choice of an accurate, robust, and memo-
ry/time efficient network model for the CNN-based car
classifier.

As a part of our research, we tested the classification
and robustness performance of 10 selected CNN mod-
els. The results indicate that the EficcientNet models
are superior in all cases. More precisely, EfficientNetB5,
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Figure 2: Examples for car classes from the used dataset. Row-wise from left to right: BigCoupeOrSedan, Hatchback,
MuscleCar, PickUp, Van, SportsCar, SUV, Unknown.

with its 108MB TensorFlow Lite version, fits perfectly
into an Android application, and its accuracy of 75.7%
also outperforms larger models like InceptionResNetV2
(75.5%). Lastly, EfficientNetB5 shows outstanding robust-
ness results. The only model able to beat EfficientNetB5
is EfficientNetB7, which unfortunately does not fit into
our application. As a result, we shall prioritize Efficient-
NetB5.

The Android application we have developed thus uses
EfficientNetB5 to classify cars directly on a mobile device.
After classification, the application allows the user to
search for nearby dealerships that provide vehicles of the
same type as the classification result. We see an addi-
tional benefit of our research in developing a CNN-based
application for Android devices as a proof of concept for
solving other image classification and machine learning
tasks.

Various CNN architectures target mobile devices, e.g.,
MobileNet, EfficientNet, and others. Section 2 depicts
their main characteristics and briefly overviews the mo-
bile devices under question. Section 3 discusses the de-
sign of a mobile-phone application we have developed
to classify cars the user sees and might want to rent or
buy. Section 4 evaluates the performance of the con-
sidered networks concerning their time and space effi-
ciency, accuracy, and robustness to noise and various
image transformations. The concluding section summa-
rizes the obtained results, focusing on the TensorFlow
EfficientNet Lite model, and provides an outlook for a pos-
sible enhancement of the application with the so-called
federated learning.

2. Related Work

To find the best model satisfying the above-specified re-
quirements, we have selected 10 candidate network mod-

els: MobileNetV2, EfficientNetB0, EfficientNetB5, Effi-
cientNetB7, NASNetMobile, NASNetLarge, InceptionV3,
Xception, InceptionResNetV2, and DenseNet121. Their
TensorFlow Lite versions are publicly available for all
of them and together, they provide a wide variety of
architectures (large and small) applicable to image classi-
fication. For the chosen models, their size characteristics
are summarized in Table 1. Depth refers to the topologi-
cal depth of the respective model inclusive its activation
layers, batch normalization layers etc. [11].

2.1. Network Architectures For Mobile
Devices

The historically first model, InceptionV3 [15], introduced
the concept of modules consisting of several convolutions
with different sizes operating on the same level. The con-
catenation layer puts together the information gathered
from all the convolutions at the end of each module. This

Table 1
Size characteristics of the considered CNNs

Model Depth  Parameters (M)
MobileNetV2 105 3.5
EfficientNetB0 132 5.3
EfficientNetB5 312 30.6
EfficientNetB7 438 66.7
NASNetMobile 389 5.3
NASNetLarge 533 88.9
InceptionV3 189 23.9
Xception 81 22.9
InceptionResNetV2 449 55.9
DenseNet121 242 8.1

The data comes from the Keras Application page of
the official Keras documentation [11].



model is characterized by the depth of 189 and 23.9 mil-
lion parameters. InceptionV3 achieved the best results
for its time, but today it gets easily outperformed even
by smaller models.

The InceptionResNet model replaces the concatena-
tions of InceptionV3 with residual connections skipping
the layers [16]. Inserting such shortcuts improves the
network’s ability to back-propagate errors across multi-
ple layers. InceptionResNetV2 has the depth of 449 layers
and 55.9 million parameters which makes it one of the
biggest models we dealt with. In this case the size of the
model and its residual Inception-like structure result into
very good accuracy and robustness results.

The Xception network splits full convolutional oper-
ators into depthwise and pointwise convolutions. The
depthwise separable convolutions reduce the necessary
computational costs almost ten times with only slightly
reducing the accuracy compared to standard convolu-
tions [17]. This led to a considerable drop in depth to 81.
The number of parameters was, however, reduced just by
1 million (to 22.9 million). Still, despite of a reduced num-
ber of layers and parameters, Xception usually performs
slightly better than InceptionV3.

To support feature reuse, the DenseNet model em-
braces an architecture connecting each convolutional
layer to all its successors [18]. DenseNet121 belongs to
rather smaller models. It has just 8.1 million parameters
and a depth of 242. We can clearly see the effect of the
added connections from each layer to all its successors.
The number of trainable parameters remains low even
though the depth of the model is above average. In addi-
tion to reducing the number of network parameters, this
approach further improves the efficiency of the network.

The austere model of MobileNetV2 [19] exploits the
so-called linear bottleneck layers to capture the function
of the entire layer. The model also takes advantage of
the so-called inverted residuals. In this case, several bot-
tlenecks follow the input within a residual block and are
enhanced by an expansion afterward. Utilizing the much
smaller input and output dimensions for the shortcuts
improves efficiency of the inverted design considerably.
MobileNetV2 has one the smallest depths (105) and also
the smallest number of parameters (3.5 million) of all the
models in our selection. Considering its small size, Mo-
bileNetV2 is able to outperform bigger models in some
of the tests.

The NASNet approach automatically searches for the
best network architecture considering the data at hand
[20]. However, the learned image features can be trans-
ferred to other computer vision problems. NASNetMobile
and NASNetLarge are two variants of the same model.
They share the same structure and differ only in their
size. They preceded the EfficientNet model family and
also achieve worse results. Due to the depth of 533 and
88.9 million parameters, the NasNetLarge may be too

large for the small dataset we have and could easily get
overfitted.

The state-of-the-art family of the so-called Efficient-
Nets [21] exploits the NASNet strategy. The baseline
model of EfficientNetB0 and its variants B1 to B7 upscaled
uniformly in all the network parameters (i.e., width,
depth, or resolution) belong to the most accurate and
memory-efficient CNNs, now. EfficientNetB0 is bigger
than MobileNetV2, but has still a very small size com-
pared to the remaining models. The automated construc-
tion of EfficientNetB0 aims at finding the best possible
network given the predefined operations.

The bigger size of EfficientNetB5 and B7 leads to im-
proved accuracy and noise robustness. B5 is character-
ized by the depth of 312 and 30.6 million parameters. B7
is with its depth of 438 and 66.7 million parameters the
second largest model in our collection (behind NASNet-
Large). EfficientNetB7 also performs the best.

2.2. Android Mobile Devices

Recent mobile devices, e.g., Google Pixel 6 equipped with
Google Tensor processor [4], can perform complex com-
putations such as image and video processing, real-time
evaluation of CNNs, or other machine learning tasks.
Except for the traditional CPU and GPU modules, the
Google Tensor processor [4] also contains a TPU module.
Below, we will provide a brief overview of mobile devices
suitable for CNNs, such as mobile phones, accelerators,
and micro-computers. Based on their price, we will con-
sider three categories of Android-run smartphones:

« Mobile phones priced at about 100 EUR, e.g., Xi-
aomi Redmi 9 A with 2GB RAM and 32GB inter-
nal memory. It runs Android 10, has an 8-core
MediaTek Helio G25 CPU, and supports Al face-
scanning [1]. For the tests, we have created a less
powerful virtual mobile phone that could eval-
uate even the Lite versions of the EfficientNet
models.

« Middle-priced smartphones at around 470 EUR,
e.g., the Samsung Galaxy phone A52s 5G with
6GB RAM, 128GB internal memory, and an 8-core
CPU [2]. It runs Android 11 (can be upgraded to
the newest Android 12 OS). Without problems,
these phones can operate TensorFlow applica-
tions.
Cutting-edge phones at about 1150 EUR, e.g., the
Galaxy S21 Ultra 5G phone with 12GB RAM (can
be bought even with 16GB RAM), 256GB internal
memory (512GB is possible, too), 8-core CPU, and
more [3]. It supports Android 11 and 12. These
phones are more powerful than some laptops to-
day, and we might even use them to fine-tune
small neural network models in the future.
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Figure 3: Application flow diagram.

Coral Dev Board is a single-board computer equipped
with the Edge TPU coprocessor. Edge TPU is a chip
crafted specifically to accelerate machine learning infer-
ence (MLI) for mobile CNN models [5]. Another example
of a device that uses the Edge TPU coprocessor is Coral
USB Accelerator. Its purpose is to enable or accelerate
MLI on other external devices. Both Coral Dev Board and
Coral USB Accelerator support Tensor-Flow Lite. Fur-
ther, the accelerator can cooperate with devices that run
Debian Linux, macOS, or Windows 10, even with another
single-board computer such as Raspberry Pi. Unfortu-
nately, most reviewed mobile devices are not powerful
enough to train deep neural networks.

3. Application Design

This section highlights the main design principles for
the planned Android classifier of cars’ body styles. A

viable implementation option would be to gather the
input images and send them to a distant server via the
Internet. Then, the server shall evaluate the acquired
images with a CNN and return the classification results
to the Android application afterward to present them
to the user. This approach requires a stable Internet
connection; without it, the application is out of order.

To overcome this limit, we decided to classify the car
images directly within the Android application by a built-
in TensorFlow Lite CNN model. A working Internet con-
nection is thus needed only to search for the best scoring
cars of the resulting type or the closest car dealerships
offering these cars. On the other hand, the chosen neu-
ral network model has to be small enough to fit into
the Android application. At the same time, the selected
CNN must be as accurate and robust as possible (Efficient-
NetB5, in our case). Figure 3 outlines the application flow
diagram.

3.1. The Form of the Employed Data

We used a variant of the Stanford Cars dataset [6] to
train and test the respective CNN models. The modified
dataset consists of 2560 images of the size 224x224 that
belong to 8 different classes (Fig. 2) - BigCoupeOrSedan,
Hatchback, MuscleCar, PickUp, Van, SportsCar, SUV, and
Unknown. 'Unknown’ contains images with no identifi-
able cars. Table 2 summarizes the class distribution for
the involved class labels. For training, we split the dataset
into batches of size 64 (i.e., 40 batches in total). 80% of
the images form the training set, 20% make up the test
set.

For most of the classes, their pattern distributions are
comparable. The only exception is the class 'Unknown’.
The results we have obtained for the performed tests,
however, do not indicate significant overtraining of the
CNN models. A reason for this effect could represent
extensive data augmentation applied during training. In
addition, we can consider the so-called stratified sam-
pling when generating training, testing, or validation
datasets in the future.

A critical issue in machine learning consists in ade-
quate data preprocessing. Preliminary experiments in-
dicate, for example, that even the color of the vehicles
might strongly affect the classification result. If the data
contains specific cars only in one color, the trained model
can pick that color as the distinguishing feature. Some-
times, this choice might correspond to particular brand
colors, e.g., a red Ferrari or a blue Subaru.

Other factors can also significantly affect the classifica-
tion results, e.g., the car’s angle in the photo. To limit the
considerable probability of misclassification in such cases,
we decided to augment the training data with car images
enhanced by various transformations (e.g., corrupted by
noise or taken from different perspectives).



Table 2

Class distributions for the original and validation datasets
Class Original  Validation
BigCoupeOrSedan 406 42
Hatchback 362 44
MuscleCar 280 35
PickUp 353 38
SportsCar 356 42
SUv 366 42
Unknown 80 9
Van 357 35
Total 2560 287

20% of the original dataset patterns were ran-
domly chosen for testing during the 5-fold CV,
the rest was used for training.

During training, CNNs extract features characteristic
for the given class and then attempt to detect these fea-
tures in the images provided for recall. Poorly trained
networks can, however, fail to identify representative
features from the data. Manufacturers often use, e.g.,
appealing body parts like headlights or the grille’s shape
for different types of vehicles they produce. Misguided
networks sometimes prefer to choose familiar design el-
ements as vital for classification. We shall thus prepare
the training data carefully to encourage an improved
classifier performance. In the forthcoming section on
supporting experiments, we will describe the employed
data set in more detail.

4. Supporting Experiments

We will use the above-specified dataset to test the per-
formance of the considered CNN models: MobileNetV2,
EfficientNetB0, EfficientNetB5, EfficientNetB7, NASNet-
Mobile, NASNetLarge, InceptionV3, Xception, Inception-
ResNetV2 and DenseNet121. While we used Python to
write the project for evaluating the experiments, we have
implemented the example Android application in Java
using Android API and Android Studio version 4.1.3.

To train and test the models, we resorted to the li-
braries TensorFlow 2.5.0-rc1 [9], TensorFlow Lite [10]
and Keras 2.5.0 [11]. Keras can work directly with the
ImageNet [8] checkpoints of the selected models. Further,
we applied NumPy 1.19.5 [12], and Pandas [13, 14] to pro-
cess the gathered data (count means, standard deviations,
confidence intervals, etc.).

4.1. The Accuracy Test

To test the architectures for the achievable top-1 accu-
racy, we used the 5-fold cross-validation (CV) over the

modified Stanford Cars dataset (see Section 3.1). To en-
hance the recall capabilities of the trained networks, we
added an image augmentation layer to the considered
models. This layer automatically adds random noise to
the images and is active only during training. Further,
the considered augmentations comprise horizontal flip,
up to 54 degrees rotation, contrast with a factor set to
0.5, zoom with the height factor set to 0.15 (upper and
lower zooming limits), and translation (height and width
factors set to 0.15).

During training, the image modifications were per-
formed on-place by means of a set of sequential image
augmentation layers from the Keras library. Every train-
ing image has thus been randomly modified by all aug-
mentation layers. There also exists a very small probabil-
ity that the image is left without any modification. We
shall, however, highlight that augmentation layers can
modify the same image differently in different training
epochs. This boosts the involved training dataset several
times. In fact, each iteration employs the same number
of different training patterns (of the same nature).

We used a Gaussian filter implemented within the
SciPy library (scipy.ndimage.gaussian_filter) with the
standard deviation (sigma factor) set to 1.5 to create
blurry images. The 2D Gaussian kernel we used is defined
as:
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x and y denote the distance from the origin (at the center
(0, 0) of the filter) in the horizontal and vertical axes.

Image rotation was performed with the Keras Random-
Rotation layer which involves the respective rotation
matrices. In order to make the model noise-robust, we
considered random rotations of up to 54 degrees. The
newly appeared empty regions near the image borders
are filled using a reflection (by reflecting the closest im-
age pixel).

To apply horizontal flips, we used the Keras layer called
RandomFlip which performs flipping with a 50% chance.
Similarly, using the methods from SciPy, we implemented
also the remaining layers such as RandomContrast, Ran-
domZoom and RandomTranslation.

We attached the augmentation layers to the beginning
of the models, which allows to modify the images using a
GPU acceleration. The augmentation layers also become
part of the SavedModel during serialization. The augmen-
tation layers thus do not have to be created separately
after loading the model [9].

An alternative option would be to use a TensorFlow
Image augmentation pipeline. The augmentation meth-
ods are, namely, part of the tf.image library and can be
applied to the dataset using the tf.data.Dataset.map func-
tion. The advantages of this approach are that the data
for the following epoch can be prepared by the CPU in ad-
vance during the current epoch and the model itself also



Figure 4: Image of a pick-up truck with random pixels set
to random colors with probability equal to 0 (upper left), 0.1
(upper right), 0.2 (bottom left), 0.4 (bottom right).

does not have to be further modified. The CNN would
be therefore a little bit smaller, but the image augmenta-
tion pipeline should be manually constructed every time
before the training of the model starts.

For the beginning five epochs, we trained just the last
classifier layers of the networks. Afterward, we kept ad-
justing the top 10% layers of the networks for additional
ten epochs (with fixed last classification layer weights).
The results are summarized in Table 3 together with the
necessary memory requirements. The table shows that
EfficientNetB7, EfficientNetB5, and InceptionResNetV2
belong to the most accurate models.

Some models, however, did not achieve accuracy rates
measured on the ImageNet dataset due to the limited
number of training epochs, e.g., Xception (with the top-1
accuracy of 79.0% reported for ImageNet). In such a case,
(re)training of additional top 20% to 30% of network layers
with early stopping and patience set to 10 indicated a
significant improvement in the final top-1 accuracy (up
to 85.7% for the EfficientNetB7 model and roughly 80%
for the other networks).

Table 3
Size and accuracy of the considered CNNs

Model Size (MB) Top-1 acc. Cl Lite Size (MB)
MobileNetV2 19.7 0.7140 =+ 0.0088 8.5
EfficientNetB0 31.4 0.7441 =+ 0.0067 15.3
EfficientNetB5 210.0 0.8051 == 0.0067 108.0
EfficientNetB7 455.0 0.8441 + 0.0090 243.0
NASNetMobile 42.0 0.6301 == 0.0130 16.3
NASNetLarge 503.0 0.7192 = 0.0071 323.0
InceptionV3 123.0 0.6791 = 0.0089 83.1
Xception 119.0 0.7057 = 0.0052 79.3
InceptionResNetV2 317.0 0.8177 = 0.0081 207.0
DenseNet121 43.0 0.7279 = 0.0093 26.6

' The accuracy is averaged over all 5-fold cross validation
steps, Cl specifies 95% confidence intervals.

4.2. The Robustness Tests

With these tests, we wanted to assess the resilience of
the considered networks to noise corruption and various
image modifications. We prepared a unique validation
set of 287 images not used previously in training for
the experiments. The dataset contains images selected
both from the Stanford Cars dataset [6], and from the

Figure 5: A positive blurred image test performed with Ef-
ficientNetB5. The upper image is the original one, yet mis-
classified as a sports car. The bottom one was blurred via a
Gaussian kernel with a standard deviation of 1.5 and correctly
classified as a hatchback.

Figure 6: A positive cropping test done with EfficientNetB5.
The upper image is the original misclassified as a muscle car.
The bottom one was cropped from all sides with a factor of
12 (cropping amount: width and height divided by 12), and
correctly classified as a sports car.



Table 4

95 % confidence intervals for the considered CNN models accuracy (in %) on noisy images

Model Original Blurred Grayscale Graysc. Blurred Cropped RGB%p=0.1 RGB p=0.2 RGB p=0.3 RGB p=0.4
MobileNetV2 71.0+25  679+18 67017 66.5 % 3.0 725+33 532412 297425 133+ 42 6.3+ 3.1

EfficientNetB0 721406 663408 64003 65.8 & 0.1 70.5 % 0.1 63.2+16 575407 495400  39.4 £ 0.0
EfficientNetB5 757412 725412 707 +14 67.9 + 1.4 765+ 1.6 700 & 21 682+30 604+04 528403
EfficientNetB7 784+27 752+08 722426 723 + 23 786+1.0 741+16 693+07 624+12 565+00
NASNetMobile 69.2+23 682+13 64328 622414 68.7+16 57.8+24 511+£16 430+12 362+17
NASNetLarge 726 £23 66.5+24  61.2+26 60.3 2.7 735+ 1.7 60.2+ 1.8 56.9 £ 3.5 505+ 18 461 +13
InceptionV3 70.0 £+ 2.1 68.4 £+ 1.9 64.0 £ 1.2 653+ 1.2 70.7 £ 15 60.8 + 2.3 54.4 + 22 511+ 1.8 445+ 1.1
Xception 702+32 686432 592+ 31 61.7 + 35 70.7 £28  587+32 51.9+£08  486+20  395+29
InceptionResNetV2 755+ 1.6 713424 6504 0.7 635+ 1.3 742 £ 1.1 68.0+29 574416 53.0+14 469 £07
DenseNet121 720+33 688+ 17  59.6420 65.1 + 2.5 733+42 574408  49.0+05 40805 324+ 19

! The top-1 accuracy of 5 different checkpoints trained on the original data set with early stopping was considered, its
mean was calculated together with the corresponding 95 % confidence intervals (in %).
2 RGB stands for RGB noise. Random pixels were set to a random color value with probability p (%).

Figure 7: A negative cropping test done with EfficientNetB5.
The upper image is the original one correctly classified as a
hatchback. The bottom one was cropped from all sides with a
factor of 12 (cropping amount: width and height divided by
12), yet misclassified as an SUV.

DVM-CAR dataset, [7] (63 of them to better simulate the
reality).

Further, we created multiple variants of the 287-image
validation dataset (see Table 2). Each variant contains
all of the images from the original dataset modified in a
different way: changing random pixels to a random color
with a certain probability, blurring the images, cropping
them, and making them grayscale and/or blurring them
at the same time. This way we were able to test separately
the behavior of each model on modified images.

We trained the networks by employing early stopping
with patience set to 10 and GPU acceleration. The train-
ing ran for all models five times in a row and used always
the same validation data. Table 4 shows the results aver-
aged over all five runs.

Regards the robustness to random pixel color changes
(see, e.g., Fig. 4), EfficientNetB7 and EfficientNetB5 are
the most robust but, at the same time, memory-intensive
models. The smallest network, MobileNetV2, demon-
strates, on the other hand, the worst results in this test.
As an acceptable compromise, we can thus pick the Ef-
ficientNetB0 model with just 31.4MB memory require-
ments and results outperforming many more extensive
networks, e.g., Xception, NASNetLarge, and even Incep-
tionV3 (except for highly noised images).

On blurred and grayscale image sets, the models per-
formed better than in the RGB noise test, and the Mo-
bileNetV2 model achieved even higher accuracy than
EfficientNetB0. The other two EfficientNet models are
significantly more accurate than both the MobileNetV2
and EfficientNetB0. Yet as the top-1 accuracy fell signif-
icantly for grayscale images compared to the original
validation dataset, color proves to play an essential role
in the classification process. Also, classification is more
accurate for blurred images than for grayscale images.

Although blurring does not improve the overall accu-
racy of the networks, it can sometimes emphasize signifi-
cant image characteristics and improve the classification.
For example, let us consider the case illustrated in Fig. 5.
The EfficientNetB5 model misclassified the shown vehi-
cle as a sports car but correctly classified the blurred one
as a hatchback. Blurring emphasized the edge separat-
ing the back of the vehicle from the background for the
model, thus better indicating a hatchback.

For many CNN architectures, cropping of images re-
sults in a higher top-1 accuracy compared to the original
validation set. During training, the augmentation layer
prepares the network for this test scenario, and cropping
removes the image’s noisy edges, thus focusing better on
the main object, see, e.g., Fig. 6. On the other hand, crop-
ping can also impact unwanted results, see, e.g., Fig. 7 of
a hatchback misclassified as an SUV after image cropping
caused the car to fill the whole image and appear to be
more spacious.



4.3. CNN Models And Mobile Android
Devices

From the robustness tests, we see that the most noise-
robust models are EfficientNetB7 and EfficientNetB5 fol-
lowed by InceptionResNetV2. These models may be, how-
ever, too big for mobile devices. MobileNetV2 and Effi-
cientNetB0 have the best accuracy-to-size ratios, so we
consider them suitable for CNNs to be implemented in
mobile devices. If we look for a higher accuracy, then
EfficientNetBO is a better choice. But what if we seek a
maximum accuracy?

Further, we will focus on EfficientNetB5, Efficient-
NetB7, and InceptionResNetV2, which are the most accu-
rate and memory-demanding CNN models. A bigger size
means slower evaluation, more challenging learning, and
more energy consumption. To see whether the usage of
these three models slows us down, we have run a speed
test in which we did 100 evaluations of the 287 validation
images. For every model, just one checkpoint from the
robustness test discussed above was considered. Dur-
ing the assessment, the images were loaded as a dataset
object to TensorFlow and split into batches of size 64.

As we can see from Table 5, EfficientNetB5, Efficient-
NetB7 and InceptionResNetV2 are among the slowest
models. Yet, we want to use these models to evaluate a
single image at a time (as we are not working with videos).
So even the biggest models are sufficiently fast. As an
example, EfficientNetB0 is just two times faster than Effi-
cientNetB5. At the same time, EfficientNetB0 evaluates
one image in less than approximately 0.005 s when con-
sidering our current test settings and the specifications of
our computer listed below. So both this computation and
the computation of the two times slower EfficientNetB5
are indistinguishable from this point of view.

This test ran on the DellG5-15 laptop, which has
NVIDIA GeForce RTX 2070 Max-Q Design GPU, Intel
Core i7-9750H 2.60GHz CPU, and 16GB RAM. The mobile
devices planned for the considered models have much
less computational power. Therefore, we decided to fo-
cus on the most accurate and robust models for an actual
Android application to be created via Android Studio
4.1.3.

An Android Studio project can contain only files
smaller than 200MB. So it was impossible to upload di-
rectly (without any size optimization) EfficientNetB7 and
InceptionResNetV2 to the application as the sizes of their
Lite versions are 243MB and 207MB. The most accurate
and robust model smaller than 200MB is EfficientNetB5.
Therefore, we decided to upload this model into the de-
veloped Android application as part of the experiment.

Then, we compiled the application on a virtual mobile
phone. Intentionally, we made this device computation-
ally as slow as possible. The aim was to replicate the
characteristics of the cheapest mobile devices one can

Table 5

Mean evaluation time over 100 classifications performed in
a row over 287 images (the images were split into batches of
size 64) and a summary of the results

Eval. Fits in Accurate Fast class-
Model . . PN
time (s) mobile enough ification
MobileNetV2 1.081 YES NO YES
EfficientNetB0O 1.203 YES NO YES
EfficientNetB5 2.236 YES YES YES
EfficientNetB7 3.346 NO YES NO
NASNetMobile 1.335 YES NO YES
NASNetLarge 3.618 NO NO NO
InceptionV3 1.307 YES NO YES
Xception 1.709 YES NO YES
InceptionResNetV2 2121 NO YES YES
DenseNet121 1.516 YES NO YES

YES / NO denotes very good / very bad. YES / NO
denotes good / bad.

find on the market. Our virtual machine had 1536MB
of RAM, and its CPU was set to Google Play Intel Atom
(x86), which has only four cores. Further, the device
had the Android 7.0 operating system, which is the mini-
mum system our application supports (Android 7.0 was
released in 2016, so meanwhile it is considered to be an
old system).

As discussed above, even the cheapest mobile phones
are more powerful today than the simulated mobile
phone. It is also important to note that when writing
this article, the newest Android operating system was 12.
Despite of that, it was possible to evaluate EfficentNetB5
successfully on our virtual device. So EfficientNetB5 can
be used in combination with the most affordable smart-
phones.

By converting EfficientNetB5 to TensorFlow Lite, we
did not lose its accuracy as TensorFlow Lite ensures a
stable conversion without modifying the structure of the
model. Only the network format is changed to become
more compact and easier to access and evaluate [10].
Table 3 shows that the resulting model size can fall up
to two times without losing accuracy. Also, it is already
possible to apply on-device training to improve the Lite
models. The only limitation is that not all neural network
operators are available in Lite, so theoretically, not all
models are convertible to Lite. Anyway, we succeeded in
converting all CNN models we have considered to Lite.

5. Conclusions And Further
Research

Contemporary Android devices are powerful enough for
real-time image processing based on neural networks.
In this paper, we studied the accuracy, evaluation speed,
robustness, and size of 10 considered CNN models and
selected the best-performing ones to upload to the devel-
oped Android smartphone application.



Table 5 summarizes the results obtained for the car
dataset. According to top-1 accuracy, the most accurate
models are EfficientNetB7 (84.4%), InceptionResNetV2
(81.8%) and EfficientNetB5 (80.5%). These models are the
biggest ones for their TensorFlow Lite size (243, 207, and
108MB, resp.) yet remain easy to train.

After only 15 training epochs, the networks achieved
adequate accuracy in the 5-fold CV test. The aforemen-
tioned networks are robust against random RGB noise
and various image distortions. All of them can be con-
verted to the Tensor-Flow Lite format, although Efficient-
NetB7 and InceptionResNetV2 do not fit into an Android
application. Due to its size, the most accurate and noise-
robust model suitable for an Android Studio application
seems to be EfficientNetB5.

Should the model be as small and as fast as possible,
EfficientNetB0 might pose a better choice. It achieves
satisfiable accuracy and robustness results and it is the
second smallest model among the considered ones. Fur-
ther, it can achieve better results than many bigger mod-
els like Xception, NASNetLarge, and even InceptionV3.
The main contribution of this study thus consists in:

« the development of a mobile Android application
that facilitates the classification of car images
according to the car’s body style.

« the choice of the EfficientNetB5 model for the de-

veloped smartphone application. Extensive test-
ing of the CNN models in question justifies this de-
cision that constitutes an acceptable compromise
for all the criteria, particularly concerning the
model’s accuracy, robustness, and the required
time and memory costs.
Only for EfficientNetB5, we obtained good results
(although not the very good ones) conforming to
all three considered criteria. None of the other
models meets all of them. The other candidate
models, EfficientNetB7 and InnceptionResNetV2,
achieving acceptable accuracy results, do not fit
into the mobile application.

While working with the standard TensorFlow library,
we did not encounter any significant problems. But to as-
sess the viability of the networks for future on-device fine-
tuning, we also measured the memory requirements of
EfficientNetB5, EfficientNetB7, and InceptionResNetV2
during training (see Table 6; we averaged the obtained
results over five training sessions). EfficientNetB5 con-
sumed 5.3GB of GPU memory and 2.5GB of RAM during
each training session.

Our computer needed 251.5MB of GPU memory to
store EfficientNetB5 and its training metadata. The other
two models were more demanding. Yet, even if we
focused only on the EfficientNetB5, we would need a
cutting-edge category smartphone like the Galaxy S21
Ultra 5G phone equipped with 12GB of RAM to launch

Table 6
Memory usage during training

Model GPU memory Max. RAM'  Model size*
used (GB) used (GB) (MB)
EfficientNetB5 5.3 2.5 251.5
EfficientNetB7 5.4 2.7 556.7
InceptionResNetV2 3.0 2.6 4253

T A possible bias can be caused by programs running on
the background.

2 The size of the model located on the GPU during train-
ing (including the training metadata).

on-device training. The conversion to Lite reduces the
models’ size up to two times without reducing their ac-
curacy.

The TensorFlow Lite library was, on the other hand,
built to operate on portable devices with low computa-
tional power. Originally, the Lite library did not allow
on-device training of Lite models. Meanwhile, this limita-
tion has been removed and on-device training is already
supported. Despite of a well-written TensorFlow doc-
umentation, training of Lite models still remains quite
cumbersome, at least from the programming point of
view.

Another limitation for our research comes from the An-
droid Studio that we have used to implement the trained
CNNs in mobile applications. It has an inbuilt size limit
of 200MB for external files to be uploaded to a project.
As a result of this restriction, we were not able to upload
Lite models bigger than 200MB to mobile applications..

The last limitation is that Android Studio does not of-
ficially support uploading of TensorFlow models saved
in formats different from TensorFlow Lite. On the other
hand, TensorFlow Lite supports also other operating sys-
tems such as i0S, so the developers are not limited to
writing their applications just for Android.

Further research could enhance the developed applica-
tion both with on-device training and with federated
learning. Federated learning enables robust training
across several decentralized edge devices or servers hold-
ing local data samples without sharing them. This way,
the inbuilt CNN classifier could be easier retrained on
new data to keep the implementation up-to-date. Other
intriguing options for future research comprise the area
of architecture optimization for the trained networks
and the involvement of nature-inspired heuristics in the
process of CNN design.
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