
Oruga: An Avatar of Representational Systems

Theory

Daniel Raggi1,*, Gem Stapleton1, Mateja Jamnik1, Aaron Stockdill2, Grecia Garcia
Garcia2 and Peter C.-H. Cheng2

1University of Cambridge, Cambridge, UK
2University of Sussex, Brighton, UK

Abstract

Humans use representations flexibly. We draw diagrams, change representations and exploit creative
analogies across different domains. We want to harness this kind of power and endow machines with
it to make them more compatible with human use. Previously we developed Representational Systems
Theory (RST) to study the structure and transformations of representations [1, 2]. In this paper we
present Oruga (caterpillar in Spanish; a symbol of transformation), an implementation of various as-
pects of RST. Oruga consists of a core of data structures corresponding to concepts in RST, a language
for communicating with the core, and an engine for producing transformations using a method we call
structure transfer. In this paper we present an overview of the core and language of Oruga, with a brief
example of the kind of transformation that structure transfer can execute.

Keywords

Representation, Transformation, Heterogeneous reasoning

1. Introduction: rep2rep and RST

This work is part of the rep2rep project [3, 4], whose aim is to study and implement systems that
mimic and accommodate the flexibility of human representational skills. As part of rep2rep, we
developed Representational Systems Theory (RST) [1, 2], a theoretical foundation for studying
the structure and transformations of representations. The main requirement for such a theory is
that it must be general enough to account for the diversity of representations used by humans
(e.g., formal and natural languages, geometric figures, graphs, plots, etc.), and at the same time
it must be rigorous and precise enough to be implementable. For example, it must be able to
explain the relation between the validity of 1 + 2 = 3 and the fact that can be built by
joining and , and ultimately allow us to produce such transformations between arithmetic
terms and dot diagrams; but its scope must not be limited to arithmetic and dot diagrams.

One of the key innovations of RST is the notion of a construction space, where many concepts
of interest for the study of representations can be defined in graph-theoretic terms. Notably,
the concept of a construction generalises that of a syntax tree, but its weaker restrictions and

HLC 2022: 3rd International Workshop on Human-Like Computing, September 28–30, 2022, Cumberland Lodge, UK
*Corresponding author.
 daniel.raggi@cl.cam.ac.uk (D. Raggi)
� 0000-0002-9207-6621 (D. Raggi); 0000-0002-6567-6752 (G. Stapleton); 0000-0003-2772-2532 (M. Jamnik);
0000-0003-3312-5267 (A. Stockdill); 0000-0002-7327-7225 (G. Garcia Garcia); 0000-0002-0355-5955 (P. C.-H. Cheng)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:daniel.raggi@cl.cam.ac.uk
https://orcid.org/0000-0002-9207-6621
https://orcid.org/0000-0002-6567-6752
https://orcid.org/0000-0003-2772-2532
https://orcid.org/0000-0003-3312-5267
https://orcid.org/0000-0002-7327-7225
https://orcid.org/0000-0002-0355-5955
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


our graph-theoretic approach allow us to model more complex structures and inspect their
properties. Importantly, it allows us to model representations often considered informal, and to
do so uniformly across different representational systems so that we can encode relations and
produce transformations between them.

In this paper we present an overview of Oruga’s core data structures and language for
communicating with the core. Specifically, we demonstrate how some of the main concepts of
RST are declared in Oruga. Here we do not focus on the engine for producing transformations.
The Standard ML code can be found in [5].

2. The core of Oruga

Oruga’s core data structures are type systems, constructor specifications, constructions and trans-
fer schemas. These are crucial for specifying construction spaces, building structures within
them, and producing transformations across them.

2.1. Type Systems

In RST we refer to concrete representations as tokens, and we assign them types. This induces
equivalence classes of tokens apropos to the token-type dichotomy [6]. RST is agnostic concern-
ing the criteria for determining whether two tokens have the same type – it simply regards type
as a function that assigns a value to every token. For example, we may say that the arithmetic
expression 1 + 1 contains two tokens of type one. RST also enables subtyping via a partial
order on the set of types. For instance, we can set the order to be such that one is a subtype
of numeral, and numeral is a subtype of numExp. Formally, we define a type system as a pair,
(Ty ,≤), where Ty is a set whose elements are called types, and ≤ is a partial order over Ty .

typeSystem arithT =
types _:numeral, _:var, _:numExp, _:formula,

plus, minus, binOp, leq, equals, binRel
order var < numExp, numeral < numExp,

plus < binOp, minus < binOp,
leq < binRel, equals < binRel

In the Oruga language, we can declare type sys-
tems, as demonstrated here (right): a type system
for a fragment of arithmetic. Expressions such
as _:var declare that the type var has infinitely
many subtypes which are not explicitly declared.
In practice, it means that the user of Oruga can
write t:A:var, and this means t is a token of type A, which is a subtype of var. The transitive/re-
flexive closure of the subtype relation is calculated in the background to facilitate minimal
declarations.

2.2. Constructor specifications

A construction space is where we encode how tokens are constructed, for example, how 1 + 2
relates to 1, + and 2. Formally, a construction space is a triple (𝑇,𝐶,𝐺) where 𝑇 is a type
system, 𝐶 is a constructor specification, and 𝐺 is a structure graph. We explain these below.

Formally, a constructor specification is a pair (Co, sig) where Co is a set of elements called
constructors and sig is a function with domain Co that, given a constructor, returns a pair
([𝜏1, . . . , 𝜏𝑛], 𝜏), where [𝜏1, . . . , 𝜏𝑛] is a finite sequence of input types and 𝜏 is an output type.



For example, a constructor that infixes a binary operator, infixOp, may be defined so that
sig(infixOp) = ([numExp, binOp, numExp], numExp). conSpec arith:arithT =

infixOp : [numExp,binOp,numExp] -> numExp,
infixRel : [numExp,binRel,numExp] -> formula,
implicitMult : [numExp,numExp] -> numExp

See (right) how we declare a finite constructor
specification arith for type system arithT in the
Oruga language.

The structure graph associated with a construction space is the home of all admissible con-
structions of every token of the construction space. This is where the structure of representations
is encoded. See [1] for a full formal definition. For most interesting construction spaces, its
graph is infinite and perhaps undecidable (i.e., we cannot know if any arbitrary graph is a part
of it). Then, insofar as it concerns implementation we need to think about manageable parts of
structure graphs. This leads us to the concept of a construction.

2.3. Constructions and patterns 1 + 2 = 𝑥

infixRel

1 + 2

infixOp

1 + 2

=
𝑥

1

2
3

1
2

3

rotate

remove
1

1

2

A construction captures one way in which one token is
constructed. Here (right) we show two constructions,
one for 1 + 2 = 𝑥 and another for dot diagram .

Constructions have many useful properties; in parti-

construction con:arith =
t:1plus2equalsx:formula

<- infixRel[t1:1plus2:numExp
<- infixOp[t11:1:numeral,

t12:plus,
t13:2:numeral],

t2:equals,
t3:x:var]

cular, they can be easily encoded with a recur-
sive datatype (for implementation, see [5]). See
(right) how a construction is declared. Notation
t1:1plus2:numExp creates a new type, 1plus2, such
that 1plus2 is a subtype of numExp; this is allowed
because we declared _:numExp in the type system.

A pattern for a construction space, (𝑇,𝐶,𝐺), is
a construction that satisfies the restrictions

formula

infixRel

numExp

infixOp

one binOp numExp

binRel

numExp
1

2
3

1 2 3

given by the type system and constructor specification, but may not
necessarily be a part of 𝐺. Patterns are useful given the concept of
matching, as they allow us to capture classes of constructions. Roughly,
we say that a construction matches a pattern if there exists an isomor-
phism from the former to the latter that respects the subtype order.
See (right) an example of a pattern; the labels on token vertices specify
types. The construction of 1 + 2 = 𝑥 (above) matches this pattern.

2.4. Transfer schemas

t’ dotDiag

join

a
dotDiag

b
dotDiag

1 2

tnumExp

infixOp

n
numExp

p
plus

m
numExp1 2 3

rep

true
21

rep

true

2
1 rep

true

2
1 disj

true

1 2

One key concept for achieving transformations
is that of a transfer schema. A transfer schema is,
roughly, an inference rule for deriving relations
that cross construction spaces. We omit the for-
mal definition here. See (right) a transfer schema
which captures the fact that, provided that two
disjoint dot diagrams (a and b) represent two nu-
merical expressions (n and m), then the result of joining them yields a representation of n+ m.



tSchema plusJoin:(arith,dotDiagrams) =
source t:numExp <- infixOp[n:numExp,

p:plus,
m:numExp]

target t’:arr <- join[a:arr,b:arr]
antecedent ([n:numExp],[a:arr]) :: rep,

([m:numExp],[b:arr]) :: rep,
([],[a:arr,b:arr]) :: disj

consequent ([t:numExp],[t’:arr]) :: rep

A transfer schema is declared inOruga by specifying
source and target patterns, and the antecedent and
consequent constraints, as demonstrated here (right).

3. Structure Transfer

Structure transfer is a method for producing transfor-
mations of a given graph in a source construction space
into some target construction space. The goal of structure transfer is to satisfy some constraint
involving a given token and some sought-after token. For instance, if we start with token
1 + 2 + 3 and we wish to find a dot arrangement which represents it, structure transfer will use
transfer schemas to try to build such dot arrangement while simultaneously proving that the
desired constraint must hold. A general version of this method is presented in [2].

join

1

join

1 2

2

rotate
1

remove

1

2

We have had success with various tests of structure transfer.
For example, it is possible to define a transfer schema that roughly
specifies that a dot arrangement represents an equation if the
same arrangement represents each side of the equation. Thus,
given 1 + 2 + 3 = 3(3 + 1)/2, structure transfer will try to
find one arrangement that can be constructed in two ways, one
corresponding to 1 + 2 + 3 and the other to 3(3 + 1)/2. One
result is a pair of constructions of arrangement , as shown
here (right). The generalisation of this result is a graphical proof
of Gauss’ sum.

4. Past and future work

Oruga’s purpose is to facilitate encoding diverse representations within a uniform framework
so that we can perform transformations between them. So far, we have implemented a restricted
version of the methods presented in [2], wherein transfer schemas are used as inference rules
applied backwards (from the goal). Our approach is domain-independent. To date we have used
Oruga to transform across multiple construction spaces (e.g., arithmetic, Euler diagrams, set
algebra, propositional logic and geometry). We discuss its generality in [2], and in particular
its relation to similar but more specific formal methods [7, 8, 9], as well as its relation to the
application and discovery of analogies [10]. In future work we aim to explore more in depth the
potential of structure transfer for analogy, and other applications of RST in cognitive science. We
are currently developing a graphical interface to improve its usability, especially for inputting
constructions.

Acknowledgments

Supported by EPSRC grants EP/R030650/1, EP/T019603/1, EP/R030642/1, and EP/T019034/1.



References

[1] D. Raggi, G. Stapleton, A. Stockdill, M. Jamnik, G. Garcia Garcia, P. C.-H. Cheng, Repre-
sentational systems theory: A unified approach to encoding, analysing and transforming
representations, manuscript submitted for publication (2022).

[2] D. Raggi, G. Stapleton, A. Stockdill, M. Jamnik, G. Garcia Garcia, P. C.-H. Cheng, Inference
and transformation in representational systems theory, in preparation for submission
(2022).

[3] M. Jamnik, P. C.-H. Cheng, Endowing Machines with the Expert Human Ability to Select
Representations: Why and How, Oxford University Press, 2021, pp. 355–378.

[4] P. Cheng, G. Garcia Garcia, D. Raggi, A. Stockdill, M. Jamnik, Cognitive properties of
representations: A framework, in: International Conference on Theory and Application of
Diagrams, Springer, 2021, pp. 415–430.

[5] D. Raggi, An implementation based on RST, https://github.com/danielraggi/rep2rep, 2022.
[6] L. Wetzel, Types and Tokens, in: E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy,

Fall 2018 ed., Metaphysics Research Lab, Stanford University, 2018.
[7] B. Huffman, O. Kunčar, Lifting and transfer: A modular design for quotients in Is-

abelle/HOL, in: International Conference on Certified Programs and Proofs, Springer,
2013, pp. 131–146.

[8] J. Reynolds, Types, abstraction and parametric polymorphism, in: Information Processing
83, Proceedings of the IFIP 9th World Computer Congres, 1983, pp. 513–523.

[9] C. S. Coen, A semi-reflexive tactic for (sub-) equational reasoning, in: International
Workshop on Types for Proofs and Programs, Springer, 2004, pp. 98–114.

[10] D. Gentner, Structure-mapping: A theoretical framework for analogy, Cognitive science 7
(1983) 155–170.

https://github.com/danielraggi/rep2rep

	1 Introduction: rep2rep and RST
	2 The core of Oruga
	2.1 Type Systems
	2.2 Constructor specifications
	2.3 Constructions and patterns
	2.4 Transfer schemas

	3 Structure Transfer
	4 Past and future work

