
Why to Tie to a Single Data Mapping Language?
Enabling a Transformation from ShExML to RML
Herminio García-González1,∗, Anastasia Dimou2

1Kazerne Dossin: Memorial, Museum and Research Centre on Holocaust and Human Rights, Mechelen, Belgium
2KU Leuven, Department of Computer Science, Sint-Katelijne-Waver, Belgium

Abstract
Different mapping languages (e.g., RML, SPARQL-Generate and ShExML) have appeared in the last years
covering different use cases, scenarios and functionalities. However, users cannot seamlessly interchange
between these mapping languages. In this paper, we propose a translation from ShExML to RML letting
users benefit from the usability of ShExML and the wide-support and functionalities of RML.

Keywords
declarative mapping rules, translation, data mapping languages, ShExML, RML

1. Introduction

Declarative mapping languages have been increasingly adopted during the last years in different
fields (e.g., DBpedia [1], digital heritage [2] or the railway domain [3])1. These mapping
languages can be used to specify declarative mapping rules which allow for a modifiable,
flexible, repeatable and shareable workflow when integrating heterogeneous data sources in a
Knowledge Graph (KG) [4] superseding the imperative solutions. However, not all mapping
languages cover the same functionalities, leading to diverse mapping languages. The consequent
lack of interoperability between the different languages ties users to a certain specification,
preventing them to switch between mapping languages.
Among the different declarative mapping languages, RML [5] is the one that has been the

most adopted by the community. More than 20 associated systems implement RML allowing
different approaches and optimisations2 which make RML a very reliable and long-term solution.
However, its syntax, based on RDF, tends to be very verbose and thus not so friendly for humans.
In this context, ShExML appeared with a clear vocation on usability letting users be more
productive when developing mapping rules [6]. However, its specification only counts with a
conformant engine3, which does not cover all the functionalities that users could face nor can
users take advantage of all the optimisations offered by the different RML implementations.

SEMANTICS 2022 EU: 18th International Conference on Semantic Systems, September 13-15, 2022, Vienna, Austria
∗Corresponding author.
Envelope-Open herminio.garciagonzalez@kazernedossin.eu (H. García-González); anastasia.dimou@kuleuven.be (A. Dimou)
GLOBE https://herminiogarcia.com/ (H. García-González); https://natadimou.com (A. Dimou)
Orcid 0000-0001-5590-4857 (H. García-González); 0000-0003-2138-7972 (A. Dimou)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1See more on: https://github.com/kg-construct/use-cases
2https://github.com/kg-construct/resources/blob/master/tools.md
3https://github.com/herminiogg/ShExML

mailto:herminio.garciagonzalez@kazernedossin.eu
mailto:anastasia.dimou@kuleuven.be
https://herminiogarcia.com/
https://natadimou.com
https://orcid.org/0000-0001-5590-4857
https://orcid.org/0000-0003-2138-7972
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Thus, it is important to build bridges to foster adoption and trust in the declarative KG
construction ecosystem while supporting users to effectively and seamlessly cover their needs.
With this objective in mind, in this paper, we propose a conversion from ShExML to RML, letting
users rapidly sketch their mapping rules in ShExML and then switch to RML to take advantage
of its plethora of implementations. A live demo is available at the ShExML playground4.

2. Related Work

Different mapping languages were proposed in the past [7] based on dedicated languages,
e.g., RML extending R2RML to support heterogeneous data sources; repurposed languages,
e.g., SPARQL-Generate [8] extending the SPARQL query language or ShExML using Shape
Expressions (ShEx)-based syntax [9]; or serialisation languages like YARRRML [10] extending
YAML. As YARRRML is a tightly coupled serialisation for RML aiming for better readability
by humans, translating YARRRML to RML is straightforward5. Besides the YARRRML to RML
translation, an RML to SPARQL-Generate6 translation exists enabling the use of RML mapping
rules with the SPARQL-Generate implementation, but the inverse translation is not tackled.
Recently, an ontology was presented as a meta-language to represent the functionalities of

existing mapping languages [11]. Future implementations will offer translations from and to the
targetedmapping languages. Despite covering all mapping rules, being ameta-language involves
more verbose constructions than existing languages, surpassing even a verbose language like
RML. In addition, covering the expressiveness from all potential mapping languages could be a
difficult—if ever approachable—task. Thus, specific translations are still necessary.

In this paper we propose a specific translation from ShExML to RML to combine the usability
of ShExML and the sustainability and wide-support of RML implementations.

3. Brief introduction of RML and ShExML

The two languages offer different syntaxes for integrating heterogeneous data into a KG. The
example in Figure 1 generates a triple for each entity, showing their correspondences.
On the one hand, RML7 offers a syntax based in RDF which ties the representation of

the language to the RDF serialisation formats (i.e., Turtle, NTriples, RDF/XML, etc.). For
describing the mapping process it relies on classes like: rr:SubjectMap , rr:PredicateMap and
rr:ObjectMap that define how the subject, predicate and object of a triple will be generated; rr:
PredicateObjectMap which relates a predicate with an object; rml:LogicalSource which describes
an input data source; and rr:TriplesMap which defines how a set of triples will be generated for
a certain data source. Each class offers different fields to modify the aspects of the generation.

On the other hand, ShExML8 separates the constructions intended to extract values (declara-
tions) from those to generate triples (shapes). ShExML offers: SOURCE which points to a data

4http://shexml.herminiogarcia.com/editor/
5https://github.com/RMLio/yarrrml-parser
6https://github.com/sparql-generate/rml-to-sparql-generate
7https://rml.io/specs/rml/
8http://shexml.herminiogarcia.com/spec/

source, ITERATOR which defines a query whose results need to be iterated, FIELD that holds the
query to a value that will be outputted in a triple, and EXPRESSION which relates the sources
with the iterator and field queries. Then, the shapes part allows to format the output in triples
using already defined expressions for subjects, predicates and objects.

4. Translating ShExML constructions to RML rules

Figure 1: A set of ShExML mapping rules (left side) and an equivalent set of RML mapping rules (right
side). Each color identifies a correspondence between an RML construction and a ShExML construction.

PREFIX : <http://example.com/>
PREFIX schema: <http://schema.org/>

SOURCE films_xml_file
< http://shexml.herminiogarcia.com/files/films.xml >

ITERATOR film_xml < xpath: //film > {
FIELD id < @id >
FIELD name < name >

}

EXPRESSION films <films_xml_file.film_xml>

:Film :[films.id] {
schema:name [films.name] ;

}

@prefix : <http://example.com/> .
@prefix schema: <http://schema.org/> .
@prefix rml: <http://semweb.mmlab.be/ns/rml#> .
@prefix rr: <http://www.w3.org/ns/r2rml#> .
@prefix d2rq:
<http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .
@prefix ql: <http://semweb.mmlab.be/ns/ql#> .
@prefix map: <http://mapping.example.com/> .

map:550785378 a rml:LogicalSource ;
rml:source

"http://shexml.herminiogarcia.com/files/films.xml" ;
 rml:iterator "//film" ;
 rml:referenceFormulation ql:XPath .

map:s_1 a rr:SubjectMap ;
 rr:template "http://example.com/{@id}" .

map:p_1 a rr:PredicateMap ;
 rr:constant schema:name .

map:o_1 a rr:ObjectMap ;
 rr:template "{name}" ;
 rr:termType rr:Literal .

map:m_1 a rr:TriplesMap ;
 rml:logicalSource map:550785378 ;
 rr:predicateObjectMap map:po_1 ;
 rr:subjectMap map:s_1 .

map:po_1 a rr:PredicateObjectMap ;
 rr:objectMap map:o_1 ;
 rr:predicateMap map:p_1 .

As ShExML follows a ShEx-based syntax, a dedicated parser fitting the ShExML grammar is
required. For this purpose, the translator is embedded in the ShExML engine, taking advantage
of the already developed modules. Once the abstract tree is generated the translator traverses it
to generate the triples that conform an RML rules set. This process is similar to how the ShExML
engine outputs the mapped RDF but this time it generates RML. The translator performs a one to
one translation of the different directives, taking into account that in many cases information in
ShExML rules is dispersed across different directives in comparison with their RML counterparts
(see Figure 1 for a diagram on how ShExML constructions are translated to RML). A live demo
of this algorithm can be tested on the ShExML playground9. To verify the validity of the
performed translations we developed a set of test cases10 that cover different aspects of ShExML
functionality. The test cases convert the ShExML rules to RML rules. The latter are executed in
the rml-mapper processor11 and the output is compared to the output of the ShExML engine.
9http://shexml.herminiogarcia.com/editor/
10https://github.com/herminiogg/ShExML/tree/master/src/test/scala-2.12/com/herminiogarcia/shexml/rml
11https://github.com/RMLio/rmlmapper-java

Non translatable directives

Even though many declarative mapping languages share the same foundations and a common
iteration model [11], they have evolved in different directions covering different functionali-
ties. Therefore, unlike YARRRML, not all ShExML features can be directly translated to RML
statements, or it would involve too complex processes to make them possible.
Certain features are included in ShExML but they are not directly supported in RML. This

includes Matchers12 (substitute one string occurrence for other string), String operations13

(concatenate two strings), and Auto-increment ids14. All these functionalities could be covered
in RML using the FnO [12] extension but that is beyond the scope of this translation. Last year,
ShExML introduced a set of modifications to cope with the mapping challenges15 [13]. It is now
possible to define dynamic data types16 and language tags17. This has been tackled by RML
specification for dynamic language tags generation but not for dynamic datatypes. ShExML
allows accessing fields outside the iteration scope. This is useful when accessing parent nodes
in JSON as JSONPath specification does not support it18. It has been described how to tackle
this with RML [14] but it is not yet implemented in the specification.
Finally, external functions execution has been recently supported in ShExML. However,

ShExML uses Scala classes that can be directly executed while FnO relies on a function hub
where functions can be implemented in JavaScript or Java. This could be resolved by translating
from Scala to Java code and then pushing the Java code to the Function Hub [12].

5. Conclusions

In this work, we described a translation from ShExML to RML, letting users sketch mapping
rules rapidly in ShExML and then switching to RML. In addition, we discussed the limitations
of the current translation due to different coverage of features between the two languages. In
the future, we will tackle the inverse translation, i.e., from RML to ShExML. This will let more
users adopt ShExML using their already created RML rules as well as allowing them to switch
back and forth between the two languages depending on their needs.

Acknowledgments

This work was carried out in the context of the EHRI-3 project funded by the European Com-
mission under the call H2020-INFRAIA-2018-2020, with grant agreement ID 871111 and DOI
10.3030/871111.

12http://shexml.herminiogarcia.com/spec/#matcher
13http://shexml.herminiogarcia.com/spec/#string-operation
14http://shexml.herminiogarcia.com/spec/#autoincrement-ids
15https://kg-construct.github.io/workshop/2021/challenges.html
16http://shexml.herminiogarcia.com/spec/#data-types-dynamic-version
17http://shexml.herminiogarcia.com/spec/#lang-tags-dynamic-version
18https://goessner.net/articles/JsonPath/

References

[1] B. De Meester, W. Maroy, A. Dimou, R. Verborgh, E. Mannens, Declarative data transfor-
mations for Linked Data generation: the case of DBpedia, in: The Semantic Web – ISWC
2017, Springer, 2017. doi:10.1007/978- 3- 319- 68204- 4_28 .

[2] H. García-González, E. Albarrán-Fernández, J. E. L. Gayo, M. Calleja-Puerta, Converting
Asturian Notaries Public deeds to Linked Data Using TEI and ShExML, in: Proceedings of
the Third Workshop on Humanities in the Semantic Web, CEUR, 2020.

[3] J. A. Rojas, M. Aguado, P. Vasilopoulou, I. Velitchkov, D. V. Assche, P. Colpaert, R. Verborgh,
Leveraging Semantic Technologies for Digital Interoperability in the European Railway
Domain, in: The Semantic Web–ISWC, Springer, 2021. doi:10.1007/978- 3- 030- 88361- 4_38 .

[4] B. D. Meester, P. Heyvaert, R. Verborgh, A. Dimou, Mapping Languages: Analysis of
Comparative Characteristics, in: Joint Proceedings of the 1st Workshop on Knowledge
Graph Building and 1st Workshop on Large Scale RDF Analytics, CEUR, 2019.

[5] A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, R. V. de Walle, RML: A
generic language for integrated RDF mappings of heterogeneous data, in: Proceedings of
the Workshop on Linked Data on the Web, CEUR, 2014.

[6] H. García-González, I. Boneva, S. Staworko, J. E. Labra-Gayo, J. M. C. Lovelle, ShExML:
improving the usability of heterogeneous data mapping languages for first-time users,
PeerJ Computer Science (2020) e318. doi:10.7717/peerj- cs.318 .

[7] D. V. Assche, T. Delva, G. Haesendonck, P. Heyvaert, B. D. Meester, A. Dimou, Declarative
RDF graph generation from heterogeneous (semi-)structured data: a Systematic Literature
Review, Journal of Web Semantics (2022). (In press).

[8] M. Lefrançois, A. Zimmermann, N. Bakerally, A SPARQL extension for generating RDF
from heterogeneous formats, in: The Semantic Web–ESWC, Springer, 2017. doi:10.1007/
978- 3- 319- 58068- 5_3 .

[9] E. Prud’hommeaux, J. E. Labra Gayo, H. Solbrig, Shape Expressions: An RDF Validation
and Transformation Language, in: Proceedings of the 10th International Conference on
Semantic Systems, ACM, 2014. doi:10.1145/2660517.2660523 .

[10] P. Heyvaert, B. De Meester, A. Dimou, R. Verborgh, Declarative rules for linked data
generation at your fingertips!, in: The Semantic Web: ESWC Satellite Events, Springer,
2018. doi:10.1007/978- 3- 319- 98192- 5 .

[11] A. Iglesias-Molina, A. Cimmino, E. Ruckhaus1, D. Chaves-Fraga, R. García-Castro, O. Cor-
cho, An Ontological Approach for Integrating Declarative Mapping Languages, Semantic
Web (2022). (In press).

[12] B. De Meester, T. Seymoens, A. Dimou, R. Verborgh, Implementation-independent function
reuse, Future Generation Computer Systems (2020). doi:10.1016/j.future.2019.10.006 .

[13] H. García-González, A ShExML Perspective on Mapping Challenges: Already Solved
Ones, Language Modifications and Future Required Actions, in: Proceedings of the 2nd
International Workshop on Knowledge Graph Construction, CEUR, 2021.

[14] T. Delva, D. V. Assche, P. Heyvaert, B. D. Meester, A. Dimou, Integrating Nested Data into
Knowledge Graphs with RML Fields, in: Proceedings of 2nd Workshop on Knowledge
Graph Construction, CEUR, 2021.

http://dx.doi.org/10.1007/978-3-319-68204-4_28
http://dx.doi.org/10.1007/978-3-030-88361-4_38
http://dx.doi.org/10.7717/peerj-cs.318
http://dx.doi.org/10.1007/978-3-319-58068-5_3
http://dx.doi.org/10.1007/978-3-319-58068-5_3
http://dx.doi.org/10.1145/2660517.2660523
http://dx.doi.org/10.1007/978-3-319-98192-5
http://dx.doi.org/10.1016/j.future.2019.10.006

	1 Introduction
	2 Related Work
	3 Brief introduction of RML and ShExML
	4 Translating ShExML constructions to RML rules
	5 Conclusions

