
 

 

NEOntometrics: A Flexible and Scalable Software for Calculating 
Ontology Metrics 
 

Achim Reiz1 and Kurt Sandkuhl1  

 
1 Rostock University, 18051 Rostock, Germany  

  

Abstract  
Metrics allow to empirically assess ontologies. They enable the knowledge engineer to quickly 

grasp changes and differences between two different ontologies or two different versions of 

one ontology and can guide developing or reusing decisions.  

Calculating ontology metrics requires specialized software. Today, there is a lack of 

application support, as none of the previously developed software is open source, and most 

applications are not available anymore. This paper presents a flexible, scalable architecture for 

future-proof metric calculation software. We first depict the missing availability and lack of 

functionality in the current approaches. Afterward, we abbreviate a new scalable and flexible 

architecture, which is the underpinning of the new NEOntometrics software. The software is 

open source and comes with a public metric calculation endpoint.  

 

Keywords  1 
Ontology Metrics, Ontometrics, NEOntometrics, Ontology Quality  

1. Introduction 

Ontologies come in various shapes, sizes, degrees of interconnection, or logical complexities. 

Comparing ontologies of different domains or various versions can be a tedious task. Here, metrics 

offer a great way to quickly grasp a set of attributes. They provide a replicable, objective way to assess 

ontologies and offer condensed information, such as the ratio of classes to relations, the number of 

annotations, the depth and breadth of the graph, and much more. 

Calculating these values is not trivial. While some basic measurements are available in popular 

ontology editors like protégé, specialized software is needed for most metrics. Furthermore, even 

though some software has been developed in the past years, only a few are still available and usable 

today. One of them is Ontometrics, which is available as a graphical user interface (GUI) application 

[1] and an API2 [2]. It originated from a student project and is since maintained by the authors of this 

paper. 

However, further research in ontology metrics brought new requirements that the existing 

applications struggled to fulfill. Ontometrics has problems with the efficient analysis of large 

ontologies, does not allow for the calculation of evolutional metrics, and has no interface to adopt new 

measurements. These shortcomings initiated the development of NEOntometrics3. 

The paper is structured as follows: First, we present previously developed metric calculation 

software and derive our need for a new development based on the research requirements and the 

shortcomings of the current Ontometrics application. These shortcomings then motivate the newly 

proposed application architecture. The research concludes with an overview of upcoming research 

activities. 

 
SEMANTICS 2022 EU: 18th International Conference on Semantic Systems, September 13-15, 2022, Vienna, Austria  
EMAIL: achim.reiz@uni-rostock.de (A. 1); kurt.sandkuhl@uni-rostock.de (A. 2)  

ORCID: 0000-0003-1446-9670 (A. 1); 0000-0002-7431-8412 (A. 2) 

 
©️  2022 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 
2 ontometrics.informatik.uni-rostock.de/, opi.informatik.uni-rostock.de/ 
3 neontometrics.com 



 

 

2. Related Work And New Requirements For Metric Based Ontology Research 

The field of automatic metric calculation has seen some activity in the past years. However, many 

approaches are unavailable and lack the features we deem necessary for our research. Table 1 below 

gives an overview of previously published ontology evaluation software.  

 

Table 1 
Ontology Metric Calculation Software and Their Availability. 

Software Type Open Source Still Available Citation 

OntoKBEval Standalone No No [3] 
OntoQA Standalone No4 No [4] 

S-OntoEval Standalone No No [5] 
OntoMetrics Web Application No Yes [1,2] 

DoORS Web Application No Yes [6] 
OQuaRE Web Application No Yes [7,8] 

 

None of the software named above is open source, and most are no longer available. The lack of 

sources and applications hinders today's research from reusing significant parts of the already developed 

body of knowledge. Thus, the research approaches are often isolated from one another. As a result, an 

assessment that applies the OntoQA framework is hardly comparable with an assessment that utilizes 

metrics from the OQuaRE framework. 

As part of a broader research perspective [9], we would like to: (A.) Analyze historical metric data 

for a variety of different ontologies. As git has become the de facto standard for sharing codebases and 

distributed development, we argue that the software should allow the git protocol. (B.) Support a variety 

of existing and potential future calculation methodologies and frameworks. (C.) Provide helpful 

resources on the various available metrics. (D.) Have convenient interfaces for both humans and 

machines. 

As the Ontometrics source code is available at our institution, we selected it as the basis for our 

future software. Furthermore, at first glance, Ontometrics already fulfills many of the given 

requirements: It comes with a web GUI and an API. The latter could be extended with a script to 

calculate historical data. The corresponding wiki provides helpful resources on the metrics.  

However, the underlying metric calculation does not scale well, and the implemented calculation 

algorithms are neither easily extensible nor flexible. The missing scalability originates from the 

implementation of the metric calculation itself: Each calculated metric is represented as an object with 

an internal representation of the given ontology. This architecture creates a massive overhead of 

memory usage for larger ontologies, which were at risk of overloading the memory stack. This 

inefficient memory handling further hindered the parallelization of calculations. 

The metric calculations themselves were hardcoded into the software. While this, arguably, does not 

hinder the extension of the software, it adds a layer of complexity for future efforts. Regarding the API, 

which is REST-based, adding new metric calculations would require adding versioning to keep the 

endpoint consistent for the consumers.  

There are a few more issues, like the old-fashioned web interface and the isolated help pages on the 

wiki. The application was not future-proofed in the old state, and we argue that a complete rework is 

more promising than a somewhat limited evolution for all of the given requirements.  

3. A New Calculation Architecture 

As shown before, the old Ontometrics application is not sufficient to fulfill the upcoming requirements. 

The following section outlines the architecture for Ontometrics' successor NEOntometrics. The 

software is open-source and available on GitHub5. 

 
4 Java binaries available on GitHub, but no source code or license attached.  
5 https://github.com/achiminator/NEOntometrics, https://doi.org/10.5281/zenodo.6984839 



 

 

3.1. A Metric Ontology For Ontology Metrics 

Fundamental to the new metric application is a central place for storing knowledge on ontology metrics. 

NEOntometrics stores the information in the form of an ontology. The resource contains human-

readable data, like metric descriptions and definitions, but also the underlying calculation 

methodologies that the computer will use to set up the calculation engine at the start of the application. 

The ontology contains two main sets of different metrics: The Elemental Metrics represent the 

atomic attributes of the ontology, like the Number of Classes or Object Property Domain Axioms. These 

measurements are connected to individuals representing the metric name in the database and the 

calculation software. 

 
Figure 1: The Modeling of OntoQA's Relationship Diversity Metric 

 

The section Quality Frameworks upholds metrics proposed in the literature, namely the various 

frameworks like OntoQA by Tartir et al. [4] or the measurements by Gangemi et al. [10]. These 

elements contain annotations representing the textual description found in their papers and the 

calculation of the metrics in the form of relations with the Elemental Metrics. Figure 1 shows Tartir et 

al.'s Relationship Diversity. The calculation is formalized using the object properties divisor and 

numerator, connected to the elemental metrics Sub Class Declarations and Object Property Class 

Assertions. 

As we will show in the next section, the ontology aligns the various (micro-)services and provides 

the domain knowledge responsible for the functioning of the services. It ensures the flexibility to 

describe and implement new metrics quickly. As long as there is no need to add other Elemental 

Metrics, newly implemented Quality Frameworks can be instantly applied to already calculated 

datasets. 

3.2. A Scalable Calculation Unit 

The new service is built in a microservice architecture, encapsulating the various functionalities in 

separate containers. Figure 2 gives an overview of the application stack and the underlying 

technologies. 

The web frontend is built using the multi-platform language flutter and the underlying client 

language dart6. The Web-Framework complies with the Material design, which is known chiefly as the 

primary design language of Android Apps. It thus provides a familiar navigation experience. flutter 

allows us to utilize a state-of-the-art web design while building the UI with a typed, object-oriented 

programming language. The metric-related parts, like the help and calculation page, are created 

dynamically when visiting the frontend webpage. 

The API part is built using django and django rest framework7 and handles all incoming requests. 

At startup, the API first extracts the relevant information from the Metric Ontology. Afterward, it 

prepares the data for the frontend help page and metric calculation options and augments the Elemental 

 
6 https://flutter.dev, https://dart.dev 
7 https://www.djangoproject.com, https://www.django-rest-framework.org 



 

 

Metrics available in the database with the Quality Framework metrics from the ontology using 

automated code generation. 

For accessing ontology data, the client first examines whether a requested ontology analysis is 

already known in the system. Three states can occur: If it is in the (redis-) queue, the API returns either 

the current position of the job in the queue or, if the calculation has already started, its progress. If the 

metrics are already completely calculated and stored in the database, they can be retrieved with a second 

request. The user can put the calculation into the queue if the requested ontology (repository) is 

unknown to the system. 

Already, NEOntometrics is currently able to calculate over 160 metrics – returning all of them would 

produce a significant over-fetching for most situations. Thus, the API provides its services to the 

frontend and other consumers using a GraphQL interface. It empowers the service consumer to decide 

how the response is structured and which information and metrics shall be included.  

 

 
Figure 2: The Microservice Architecture Ensures Scalability 

 

The queue is managed by a Redis8 instance, an in-memory key-value database. It stores information 

on the required parameters and meta information on the upcoming jobs, the workers that handle the 

actual calculation, and their progress. The latter includes information like the number of already 

analyzed and analyzable files.  

The workers handle the actual calculation of the jobs. They register themselves in the queue and 

retrieve open jobs. To analyze a git repository, they clone it, then collect the files that end with .owl, 

.rdf, or .ttl. Afterward, the service calls the OPI calculation instance for every commit of every collected 

file to calculate the underlying elemental ontology metrics. After a successful calculation, the metrics 

are stored in the database. The worker and API share a common codebase,  which can either be started 

as a django instance (API) or as a worker. The asynchronous calculation is managed using the django-

rq9 package. 

The OPI service carries out the actual analysis of the ontologies. The worker sends an ontology to 

OPI using an HTTP-POST request and receives the corresponding metric data. OPI is the successor of 

the OntoMetrics API [2]. However, the service does not have much in common with its predecessor. 

First and foremost, the metric calculation has been reworked: Each metric now works on the same 

internal ontology object, thus, avoiding inefficient memory allocation. Further, the service supports 

reasoning capabilities. At last, we removed all non-atomic metrics and homogenized and aligned the 

names of the calculated metrics with the other services.  

The relational database stores the django-related information and the calculated metrics. It currently 

builds upon MariaDB10. However, django is highly flexible regarding the endpoint and allows the user 

to adapt it to other technologies without changing the code. 

Docker11 handles the provisioning of the services. The use of containers ensures portability, 

isolation of services, and scalability. For instance, the number of parallel analyses can be scaled up by 

increasing the number of workers (currently: 3). As OPI creates a new thread for every request, we can 

scale the number of parallel computations on the machine by scaling up the workers. Furthermore, the 

 
8 https://redis.io 
9 https://github.com/rq/django-rq  
10 https://mariadb.org 
11 https://www.docker.com 



 

 

system is future-proofed for more upcoming demand as it could be scaled out horizontally, e.g., by 

adding it to a docker swarm or Kubernetes cluster with load balancing. More API nodes handle more 

frontend requests, and the calculation capacity increases with adding more OPI nodes. 

4. Conclusion 

Calculating ontology metrics requires specialized software. Depending on the ontology size and 

complexity, the analysis of ontologies can require considerable computational resources. It is especially 

the case if we target not only one ontology at a time but an ontology repository with all available files 

and versions. 

This paper presented the architecture of NEOntometrics, a responsive, flexible, and scalable 

application for calculating ontology metrics. We believe that it has the potential to strengthen the use 

of ontology metrics and enable us to answer many research questions of today and tomorrow. 

Future research will analyze the results of the metric calculations. However, we still plan to extend 

the application with functionalities like the analysis of SPARQL endpoints, dashboarding capabilities, 

or private repositories. 

 

5. References 

[1] B. Lantow, OntoMetrics: Putting Metrics into Use for Ontology Evaluation, in: Proceedings of 

the 8th IC3K 2016 International Joint Conference on Knowledge Discovery, Knowledge 

Engineering and Knowledge Management, Porto, Portugal, 2016, pp. 186–191. 

[2] A. Reiz, H. Dibowski, K. Sandkuhl, B. Lantow, Ontology Metrics as a Service (OMaaS), in: 

Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge 

Engineering and Knowledge Management, Budapest, Hungary, 02.11.2020 - 04.11.2020, 

pp. 250–257. 

[3] Qing Lu, Volker Haarslev, OntoKBEval: A Support Tool for DL-based Evaluation of OWL 

Ontologies, in: OWL: Experiences and Directions, Athens, Georgia (USA), 2006. 

[4] S. Tartir, I.B. Arpinar, M. Moore, A.P. Sheth, B. Aleman-Meza, OntoQA: Metric-Based 

Ontology Quality Analysis, in: IEEE Workshop on Knowledge Acquisition from Distributed, 

Autonomous, Semantically Heterogeneous Data and Knowledge Sources, Houston, 2005. 

[5] R. Dividino, M. Romanelli, D. Sonntag, Semiotic-based ontology evaluation tool S-OntoEval, 

in: Proceedings of the International Conference on Language Resources and Evaluation, 

Marrakech, Morocco, 2008. 

[6] M. McDaniel, V.C. Storey, V. Sugumaran, Assessing the quality of domain ontologies: Metrics 

and an automated ranking system, Data & Knowledge Engineering 115 (2018) 32–47. 

https://doi.org/10.1016/j.datak.2018.02.001. 

[7] A. Reiz, K. Sandkuhl, Harmonizing the OQuaRE Quality Framework, in: Proceedings of the 

24th International Conference on Enterprise Information Systems, online, 2022, pp. 148–158. 

[8] A. Duque-Ramos, J.T. Fernández-Breis, R. Stevens, N. Aussenac-Gilles, OQuaRE: A square-

based approach for evaluating the quality of ontologies, Journal of Research and Practice in 

Information Technology 43 (2011) 159–176. 

[9] A. Reiz, An Evolutional Based Data-Driven Quality Model for Ontologies, in: Proceedings of 

the ISWC 2020 Doctoral Consortium, Athens, Greece/online, 2020. 

[10] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann, R. Gil, F. Bolici, Strignano Onofrio, 

Ontology evaluation and validation: An integrated formal model for the quality diagnostic task, 

Trentino, Italy, 2005. 


