
Ontolo-CI: Continuous Data Validation With ShEx
Gustavo Correa Publio1,∗, Jose Emilio Labra Gayo2, Guillermo Facundo Colunga2 and
Pablo Menendéz2

1AKSW Research Group, University of Leipzig, Germany
2WESO Research Group, University of Oviedo, Spain

Abstract
The amount of public linked data published on the Web has been growing more and more over the last
years. In order to keep the consistency of this continuously-growing base of datasets, data validation
is a necessity for data publishers and maintainers. To address such validation of ontologies, there are
mainly two shapes-based languages, e.g. ShEx and SHACL. The former is pointed out as a concise,
formal, modeling approach, while the second is a W3C recommendation for data validation. SHACL
already has available tools to perform validation on the fly, but ShEx still lacks this feature. In order to
reduce this gap, this work presents Ontolo-CI: a tool for automated data validation, capable of accepting
ShEx shapes as input, allowing users to validate their data on the fly through an CI/CD approach, by
using GitHub Actions.

Keywords
shex, data validation, ontology validation, continuous integration

1. Introduction

The RDF data model is a core technology of the Semantic Web. RDF is used to integrate data
from heterogeneous sources, is extensible, flexible and can be manipulated with the SPARQL
query language [1].

The need to describe the topologies (or shapes) of RDF graphs triggered the creation of an
early version of Shape Expressions (ShEx) and the formation of aWorldWideWeb Consortium
(W3C) Working Group—the Data Shapes Working Group—in 2014 [2]. Its task was to recom-
mend a technology for describing and expressing structural constraints on RDF graphs. This
has led to SHACL [3] and further development of ShEx. But defining, developing, and extend-
ing ontologies, as stated in [4], is a non-trivial task as ontology authors are usually domain
experts but not necessarily proficient in logic. The usage of collaboration tools, such as ver-
sioning systems, may address part of the issues, but a continuous validation process is needed
to validate data on the fly, i.e., right after each change, to assure that data is still consistent
with its schema after each iteration.

SEMANTICS 2022 EU: 18th International Conference on Semantic Systems, September 13-15, 2022, Vienna, Austria
∗Corresponding author.

gustavo.publio@informatik.uni-leipzig.de (G. C. Publio); labra@uniovi.es (J. E. L. Gayo); thewilly.work@gmail
.com (G. F. Colunga); pabloyo97@hotmail.com (P. Menendéz)

https://aksw.org/GustavoPublio (G. C. Publio); https://labra.weso.es/ (J. E. L. Gayo)
0000-0002-3853-3588 (G. C. Publio); 0000-0001-8907-5348 (J. E. L. Gayo); 0000-0003-1283-2763 (G. F. Colunga);

0000-0002-8602-6927 (P. Menendéz)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:gustavo.publio@informatik.uni-leipzig.de
mailto:labra@uniovi.es
mailto:thewilly.work@gmail.com
mailto:thewilly.work@gmail.com
mailto:pabloyo97@hotmail.com
https://aksw.org/GustavoPublio
https://labra.weso.es/
https://orcid.org/0000-0002-3853-3588
https://orcid.org/0000-0001-8907-5348
https://orcid.org/0000-0003-1283-2763
https://orcid.org/0000-0002-8602-6927
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


For this purpose, SHACL has SHARK [5], a SHACL-based ontology validation framework.
But ShEx still misses a continuous-integration and continuous-development (CI/CD) approach
for validation of ontologies on the fly. To address this gap, in this paper we will present Ontolo-
CI, a CI/CD tool based in GitHub Actions which is capable of running tests and validating RDF
data with ShEx automatically for a given GitHub repository.
The paper is divided as following: Section 2 describes some related work. Section 3 describes

the features, architecture and general implementation of the Ontolo-CI tool, and finally on
Section 4 we present our preliminary conclusion and possibilities of future work.

2. Related Work

Recent works have been trying to tackle the challenge of data validation in collaborative en-
vironments with different approaches and technologies. However, to our knowledge, none of
them are able to provide ShEx validation with CI/CD capabilities yet.
With focus on biological ontology development (OBO ontology), the ROBOT [6] is a com-

mand line tool which can be integrated in custom CI/CD environments and has the option to
run validations at logical level (i.e., look for incoherency). It also runs validations based in a
SPARQL query, but misses the capabilities of a validation language such as ShEx or SHACL.
The OnToology work [7] lies in a similar place: it is capable of being integrated in GitHub

repositories (although technically not directly in CI/CD environments), and triggers, besides
other features, the evaluation of the new ontology according to OOPS! pitfalls [8], but it lacks
the possibility to use a validation language with custom test cases.
Another approach, the eXtreme Design methodology (XD), has TESTaLOD [9], a tool de-

signed for supporting the testing team of XD projects - but although it is able to read files from
a Git repository, it cannot be automatically integrated to Git environments, and is only able to
validate tests written with the TestCase OWL meta mode [10].

Finally, SHARK [5] is the closest to what we have proposed. It uses the Travis-CI to run
pre-defined or custom SHACL tests over an uploaded ontology file, and publishes the ontology
in a GitHub repository. As a WebService, it is able to be integrated to a CI/CD environment
such as GitHub actions, although prior configuration would be necessary.

3. Implementation

Ontolo-CI1 is a docker based system that integrates with GitHub to provide a continuous in-
tegration system for ontologies. In order to achieve that, it uses Shape Expressions and test
instances for data validation.

The tool is focused on develop continuous integration for ontologies, although inspired in
Travis-CI andmany other continuous integration systems. For that, it enables authors that uses
GitHub as version control system to add it as a check to Pull Requests or Pushes to different
branches via GitHub Actions.

In fig. 1, it is demonstrated an abstraction of Ontolo-CI. As can be seen, it can be deployed
as a docker container in any machine. Then it will listen to GitHub webhooks. Whenever a
1Available in https://github.com/weso/ontolo-ci

https://github.com/weso/ontolo-ci


Figure 1: Overview of the Ontolo-CI architecture.

webhook from GitHub arrives, it immediately schedules a build. After the build is finished,
Ontolo-CI will notify GitHub and publish the data on its web page.

3.1. Architecture & Technical details

Its implementation is mainly in Java, with the support of Docker2 containers in order to achieve
easiness of execution regardless the user’s platform. For the web module, the JavaScript lan-
guage with the support of React.js3 component were used. Finally, a NoSQL database instance
of MongoDB4 was also used to store the results of each run, as can be seen in fig. 2.
In order to achieve scalability, each module work independently, in a microservices archi-

tecture, while the whole builds up the system’s functionalities. Those modules are:

• Listener: The listener component receives notifications from GitHub when a Pull Re-
quest is started or when commits are pushed. This notifies the scheduler about the new
build to perform.

• Hub: It acts as a GitHub API interface client. It allows the system to collect files from
GitHub but also to inform about the status of the builds.

• Scheduler: This component receives builds to schedule from the listener, then creates a
worker with the build and schedules its execution.

• Worker: Each worker contains a build to execute. A build is a set of tests to execute
over an ontology. It only knows how to execute tests when told and who to notify when
finished.

• Database: When a build is finished by a worker, the results of the build are stored in
a database. Up to now the results that are being stored are: repository, branch, event,
result. The result stores not only the results of the test cases, but also the execution time
and other metrics.

• API : The API provides an access layer for third party services that need to explore the
data from an Ontolo-CI instance. It is also used by the web service. It only allows reading
data at the time.

2https://www.docker.com/
3https://reactjs.org/
4https://www.mongodb.com/

https://www.docker.com/
https://reactjs.org/
https://www.mongodb.com/


Figure 2: A closer look at the Ontolo-CI architecture.

• Web Provides the interface that displays to the user the results of all scheduled execu-
tions.

3.2. Features

For every run, there are a couple of features to provide the results to the user, as listed below:

• GitHub Check Runs: Ontolo-CI uses GitHub Check Runs5 in order to provide detailed
feedback on commits. Every time a push or a pull request is made, Ontolo-CI creates and
updates a check run with the status of the validation process.

• GitHub Details View: Once the validation has finished, a more detailed view can be
seen in the details section of the check run.

• Website Dashboard view: The Dashboard View shows in the website page all the builds
that has been executed over the Ontolo-CI instance. It includes information such as the
name of the repository where the build comes from, Owner of the repository, commit
message and ID, branch name and number, and date and time of the execution.

• Website Build-specific view: The user can get details of the run in a build-specific view
for each build. This view shows all the test cases that make up the build. The users
can see the details of the validation process for any test. The detailed view of a test
case shows the validation and the expected result for each node with its shape. It is also
possible to see the full shape map result of the test case.

More details and illustrations on the above features can be found in the Ontolo-CI website.6

5https://docs.github.com/en/rest/checks/runs
6https://www.weso.es/ontolo-ci/

https://docs.github.com/en/rest/checks/runs
https://www.weso.es/ontolo-ci/


4. Conclusion and future work

In this work, we introduced Ontolo-CI, a tool capable of validating ontologies through ShEx
on the fly within a GitHub environment. By using the GitHub Actions, the tool is capable
of producing checks and reports for every change in the repository, making sure that new
changes does not introduce inconsistencies in the data according to the defined ShEx shapes
tests. We plan to extend the tool to enable the validation of SHACL shapes, as well as its
features, transforming it into a more comprehensive Ontology Validation Framework.

Acknowledgments

Gustavo Correa Publio acknowledges the Schwarz IT KG for the sponsorship of his participa-
tion in the conference.

References

[1] J. E. L. Gayo, E. Prud’Hommeaux, I. Boneva, D. Kontokostas, Validating rdf data, Synthesis
Lectures on Semantic Web: Theory and Technology 7 (2017) 1–328.

[2] E. Prud’hommeaux, J. E. Labra Gayo, H. Solbrig, Shape expressions: an rdf validation
and transformation language, in: Proceedings of the 10th International Conference on
Semantic Systems, 2014, pp. 32–40.

[3] H. Knublauch, D. Kontokostas, Shapes Constraint Language (SHACL), Recommendation,
W3C, 2017. URL: https://www.w3.org/TR/2017/REC-shacl-20170720/.

[4] Y. Ren, A. Parvizi, C. Mellish, J. Z. Pan, K. v. Deemter, R. Stevens, Towards competency
question-driven ontology authoring, in: European Semantic Web Conference, Springer,
2014, pp. 752–767.

[5] G. C. Publio, Shark: A test-driven framework for design and evolution of ontologies, in:
European Semantic Web Conference, Springer, 2018, pp. 314–324.

[6] R. C. Jackson, J. P. Balhoff, E. Douglass, N. L. Harris, C. J. Mungall, J. A. Overton, Robot:
a tool for automating ontology workflows, BMC bioinformatics 20 (2019) 1–10.

[7] A. Alobaid, D. Garijo, M. Poveda-Villalón, I. Santana-Perez, A. Fernández-Izquierdo,
O. Corcho, Automating ontology engineering support activities with ontoology, Jour-
nal of Web Semantics 57 (2019) 100472.

[8] M. Poveda-Villalón, A. Gómez-Pérez, M. C. Suárez-Figueroa, Oops!(ontology pitfall scan-
ner!): An on-line tool for ontology evaluation, International Journal on Semantic Web
and Information Systems (IJSWIS) 10 (2014) 7–34.

[9] V. A. Carriero, F. Mariani, A. G. Nuzzolese, V. Pasqual, V. Presutti, Agile knowledge graph
testing with testalod., in: ISWC (Satellites), 2019, pp. 221–224.

[10] E. Blomqvist, K. Hammar, V. Presutti, Engineering ontologies with patterns-the extreme
design methodology., Ontology Engineering with Ontology Design Patterns (2016) 23–50.

https://www.w3.org/TR/2017/REC-shacl-20170720/

	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Architecture & Technical details
	3.2 Features

	4 Conclusion and future work

