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Abstract
We put forward and provide an empirical evaluation of strategies for fully automatic flexible dispute
derivations for assumption-based argumentation (ABA). These being a novel dialectical means of judging
claims in the context of ABA. Central among our findings is that our naive direct implementation of
flexible disputes outperforms the current state-of-the-art system for ABA disputes (acceptance of claims,
admissible semantics) especially when allowing forward moves from premisses to claims in addition to
backwards from conclusions to premisses.
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1. Introduction

Dispute derivations [1, 2] are the main native (vs. reduction-based [3]) reasoning method for
assumption-based argumentation or ABA [4]. Based on games for abstract argumentation [5],
they are conceived of as a dispute with arguments built chaining rules from assumptions and
facts being exchanged by a proponent and an opponent of some claims under scrutiny. In [6],
building on previous work on ABA disputes, we presented a new form of disputes which we called
“flexible dispute derivations”. The main motivation behind these is to also have forward reasoning
(reasoning from premisses to conclusions) and not only backward reasoning (from conclusions to
premisses) as in previous versions of dispute derivations. This allows for novel, arguably quite
natural, and also often shorter forms of dispute derivations for deciding acceptance of claims
w.r.t. the classical admissible (and, hence, complete and preferred) semantics for argumentation.
Having forward moves also allows a straightforward generalization of dispute derivations for the
stable semantics as well as to determine sets of assumptions congruous with claims (w.r.t. the
admissible, complete, and stable semantics).

Yet flexible dispute derivations as defined in [6] also revise existing disputes for ABA even
when only making use of backward moves. The main revision is that both the proponent and
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opponent are completely omniscient in that they remember all arguments (and sub-arguments)
put forward during disputes; we have shown that this avoids redundancy. Flexible disputes, as a
consequence, generalise graph-based disputes [2], not only by also having forward moves, but
also in that all the arguments put forward in disputes, and not only those of the proponent, can be
represented as a (single shared) graph.

In [6] we also presented a prototype system, aba-dd-rule-based. At that moment, in
contrast to available systems for dispute derivations, the system in question was mainly interactive.
We still believe the most obvious virtues of disputes for ABA to be in interactive argumentation-
based reasoning. Nevertheless, (partial) automatic search for disputes can be a component of such
an interactive system. Furthermore, given the above mentioned differences of flexible dispute
derivations w.r.t. previous versions of ABA disputes it is of interest to compare the performance
of our system w.r.t. available systems computing dispute derivations. Specifically, in [6] we
hypothesized that (especially so called conservative) forward moves could lead to more efficient
dispute derivations.

In this work we present, first of all, strategies and related algorithms for finding success-
ful disputes (for the admissible, complete, and stable semantics) which we implemented in a
revamped system which we appropriately redubbed to flexABle1. Secondly, we provide an
in-depth experimental study of such strategies. We also compare the performance of our system
to the main state-of-the-art system computing dispute derivations, abagraph, for determining
acceptance of claims w.r.t. the admissible semantics2. Despite ours being a comparably naive
direct implementation of flexible dispute derivations, while abagraph is based on SICStus
Prolog, we show that our system clearly outperforms abagraph especially when making use of
(conservative) forward moves. We finally, following the lead of [7, 8], also evaluate approximate
strategies for computing disputes within flexABle. Here we find good accuracy, but not as
promising a boost in performance. This work is based on [9] to which we refer for a detailed
presentation.

2. Background

For reasons of space we will only review the absolute minimal elements of ABA and flexible
dispute derivations required to follow our work. We refer to e.g. [4] and [6].

An ABA framework is a tuple ℱ = (ℒ,ℛ,𝒜, ) where (ℒ,ℛ) is a deductive system, with a
language ℒ and a set of inference rulesℛ. Elements of the (non-empty) set 𝒜 ⊆ℒ are referred
to as assumptions and is a total mapping from 𝒜 into ℒ, where a is the contrary of a. As in
all other work on reasoning methods for ABA we are aware of, we make a few further crucial
assumptions about ABA frameworks: 1) that ℒ is finite3, 2) that ℒ consists of propositional
atoms, 3) that contraries do not appear in the heads of rules (i.e. we deal with flat ABA), 4) that all
elements inℛ are given explicitly; given the previous assumptions, this means that they are Horn
rules of the form h← b1, . . . ,bn where h is an atom while b1, . . . ,b2 can be atoms or contraries

1https://github.com/gorczyca/aba-dd-rule-based
2The only semantics which both systems caters for - abagraph also supports the grounded semantics.
3Definitions of dispute derivations, including flexible dispute derivations as defined in [6] (in their argument-based
version), do not require this, but all implementations including ours do.
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Notation Description

𝒟 = P∩𝒜 Defences
𝒞 = {u ∈𝒜 ⋃︀ u ∈ P} Culprits
𝒥B = ℛ /B Remaining rules for the

opponent
𝒥P = ℛ / P Remaining rules for the

proponent
𝒥
−
B = {h← B ∈𝒥B ⋃︀ B∩𝒞 ≠∅} Remaining rules blocked for the

opponent
𝒥
∼
P = {h← B ∈𝒥P ⋃︀ ({h}∪B)∩(B∪𝒞 ∪𝒟) ≠∅} Remaining rules blocked for the

proponent
(P∩ℒ)↓ = {s ∈ P∩ℒ ⋃︀ ¬∃h← B ∈ P with h = s} Played unexpanded statements

of the proponent
(B∩ℒ)↑↑ = {s ∈ (B∩ℒ) ⋃︀ ¬∃h← B ∈ (𝒥B /𝒥 −B with h = s)} Played fully expanded

statements
B− = (B∩𝒞)∪{s ∈ (B∩ℒ)↑↑ /𝒜 ⋃︀ ¬∃h← B ∈

(B∩ℛ) /B− with
h = s}∪{h← B ∈B∩ℛ ⋃︀ B∩B− ≠∅}

Played blocked pieces

P∗ = (P∩𝒜)∪{h← B ∈ (P∩ℛ) ⋃︀ B ⊆ P∗}∪{s ∈
(P∩(ℒ /𝒜)) ⋃︀ ∃h← B ∈ P∗ with h = s}

“Complete” played pieces of the
proponent

B∗ /
−

= (B∩(𝒜 / 𝒞))∪{h← B ∈ (B /B−)∩ℛ ⋃︀ B ⊆
B∗ /

−

}∪{s ∈ (B /B−)∩(ℒ /𝒜) ⋃︀ ∃h← B ∈B∗ /
−

with h = s}

Unblocked complete played
pieces of the opponent

B! / −
S = ((B /B−)∩S)∪{s ∈ (B /B−)∩ℒ ⋃︀ ∃h← B ∈

B! / −
S ∩ℛ with

s ∈ B}∪{h← B ∈ (B /B−)∩ℛ ⋃︀ h ∈B! / −
S }

Unblocked pieces supporting
statements in S ⊆ℒ

𝒜
!
= 𝒜∩B! / −

𝒟
Culprit candidates

𝒥 = {u ∈𝒜 / 𝒞 ⋃︀ u ∉B∗ /
−

} Currently defended assumptions
ℋ = {h ⋃︀ h← B ∈𝒥P /𝒥 ∼P ,B ⊆ P

∗
} Statements derivable from P∗

Table 1
Auxiliary notation for rule-based flexible derivations. All notions defined w.r.t. a dispute state (B,P).

thereof.
Dispute derivations give a dialectical view on acceptance of claims in ABA. In [6] we presented

two definitions of flexible dispute derivations, one where the proponent and opponent exchange
arguments, and a second implementation-oriented definition where the proponent and opponent
exchange claims and rules. The first is, arguably, more intuitive but we have space here to present
only the second definition which is at the basis of our system flexABle. Needless to say, there
is a clear correspondence between both definitions and at each dispute state it is straightforward
to convert from one representation to another (something also possible in flexABle).

Rule-based flexible dispute derivations are sequences of dispute states of the form (B,P),
where B ⊆ (ℒ∪ℛ) and P ⊆B. B is the opponents claim and rule-set, and P the proponents. The
initial dispute state is of the form (γ,γ) with γ ⊆ ℒ (for which no atom and its contrary are in
γ) being the goals. To define moves in dispute derivations the auxiliary notation in Table 1 is
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needed.
Then, a proponent dispute state advancement from a dispute state (B,P) is a dispute state
(B′,P′) with P′ = P∪T , B′ =B∪T , X1 ⊆𝒜, X1 ⊆𝒜, where T is defined as in Table 2.

Move type V. T definition

PB- (𝒜!
∪X1)

1 T = {h← B}∪B for h← B ∈𝒥P /𝒥 ∼P with h ∈ (P∩ℒ)↓
2 T = {h}∪{h← B}∪B for h← B ∈𝒥P /𝒥 ∼P with

h ∈ (𝒜!
∪X1) / (P∪𝒟)

PF-((𝒜!
∩𝒜)∪X2)

1 T = {h}∪{h← B} for h← B ∈𝒥P /𝒥 ∼P , B ⊆ P∗

2 T = {u} for u ∈ ((𝒜!
∩𝒜)∪X2) / (P∪{u}∪𝒞 ∪𝒟)

Table 2
Possible proponent moves. Column “Move type” denotes the type of move (backward or forward), with
column “V.” indicating two variants (1 and 2).

An opponent dispute state advancement from a dispute state (B,P) is a dispute state (B′,P) with
B′ =B∪T , Y1 ⊆𝒜, Y2 ⊆𝒜, where T is defined as in Table 3.

Move type V. T definition

OB-(𝒟∪Y1)
1 T = {h← B}∪B for h← B ∈𝒥B /𝒥 ∼B with h ∈B! / −

𝒟∪Y1
∩ℒ

2 {h}∪{h← B}∪B for for h← B ∈𝒥B /𝒥 ∼B with h ∈𝒟∪Y1

OF-((𝒟∩𝒜)∪Y2)
1 {h}∪{h← B} for h← B ∈𝒥B /𝒥 ∼B with B∗ / − for each b ∈ B
2 {u} for u ∈ ((𝒟∩𝒜)∪Y2) / (𝒜∩B)

Table 3
Possible opponent moves.

The above definitions of moves allow several instantiations by varying the parameters
X1,X2,Y1,Y2. In this work we focus on dispute advancements as given in Table 4. The ter-
mination criteria we consider in this work are in Table 54. Then, we have that dispute derivations
D +TA with D ∈ {DAB,DABF,DC,DS} are sound and complete for acceptance of claims w.r.t. the
admissible (thus also complete, preferred) semantics, while DC + TC and DS + TS are sound and
complete for determining respectively (full) complete and stable assumption sets congruous with
the goal claims [6].

Advancement Proponent Opponent

DAB PB-(𝒜!
), PF-(𝒜!

∩𝒜)-2 OB-(𝒟), OF-(𝒟∩𝒜)-2
DABF PB-(𝒜!

), PF-(𝒜!
∩𝒜) OB-(𝒟), OF-(𝒟∩𝒜)-2

DC PB-(𝒜!
), PF-((𝒜!

∩𝒜)∪𝒥 ) OB-(𝒟∪𝒥 ), OF-((𝒟∪𝒥 )∩𝒜)-2
DS PB-(𝒜!

), PF-(𝒜) OB-(𝒟), OF-(𝒟∩𝒜)-2

Table 4
Advancement types. Second and third columns give the allowed moves by the players.

4Note that here we introduced a slight addition to TC correcting [6]. For details see Chapter 3 of [9].
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C Prop. winning Opp. cannot move Prop. cannot move
TA γ∪𝒞 ⊆P∗,𝒟∩B∗ / − =∅ OB-(𝒟) ∪ OF-(𝒟∩𝒜)-2 or

OF-(𝒜)
PB-(𝒜!

) ∪ PF-(𝒜!
∩𝒜)-2 or

PF-(𝒜)

TC γ ∪𝒞 ⊆ P∗, 𝒟∩B∗ / − =
∅, 𝒥 ⊆𝒟,ℋ ⊆ P∗

OB-(𝒟) ∪ OF-(𝒟∩𝒜)-2 or
OF-(𝒜)

PB-(𝒜!
) ∪ PF-((𝒜!

∩𝒜)∪𝒥 ) or
PF-(𝒜)

TS γ ∪𝒞 ⊆ P∗, 𝒟∩B∗ / − =
∅, 𝒟∪𝒞 =𝒜

OB-(𝒟) ∪ OF-(𝒟∩𝒜)-2 or
OF-(𝒜)

PB-(𝒜!
) ∪ PF-(𝒜)

Table 5
Termination criteria. Proponent wins when the “Prop. winning” condition is satisfied and opponent
cannot move according to any of the combination of moves given by the disjuncts under “Opp. cannot
move”. Opponent wins when the “Prop. winning” condition is not satisfied and the proponent cannot
move according to any of the combination of moves given by the disjuncts under “Prop. cannot move”.

For an example, consider the ABA framework with 𝒜 = {a,b,c,d}, where a = t, b = r, c = t,
d = c. Also: ℛ = {p← q; q← a; r ← p; t ← b; t ← p,s; t ← q,u,d}. A DC+TA (as well
as DS+TA, DC+TC, DS+TS) derivation for p has the initial state ({p},{p}). The first two
moves are backward of the proponent using move type PB15, first with p← q and then q← a
(so now 𝒟 = {a}). Then, the opponent makes an OB2 move using t ← b. Here the proponent
makes a “conservative” forward PF1 move (also a PB2 move in this case) using r ← p (so
𝒞 = {b}). Finally, the proponent makes a “non-conservative” forward move (before this step
ℐ ∖𝒟 =𝒜∖(𝒟∪𝒞) = {c,d}) PF2 advancing c (𝒟 = {a,c}, 𝒞 = {b,d}). The dispute ends with the
opponent not being able to advance further in OF-(𝒜) manner. The assumption set 𝒟 = {a,c} is
admissible, complete, and stable.

3. Strategies and algorithms

Strategies. We start by introducing a simple6 “preference-on-move-types-based” framework
for strategies in which these consist of tuples (<M,H,R,A).

Each dispute derivation variant from Section 2 has associated a set of possible move types
from M = {PB1,PB2,PF1,PF2,OB1,OB2,OF2}. So the first aspect of a strategy is a preference
relation, a strict total order <M on move types. At each step in a dispute, from all possible moves,
moves of type with lowest ranking w.r.t. <M are chosen.

There will often be several possible moves having lowest ranking w.r.t. <M. If the moves
involve adding assumptions to the players sets (moves of type PF2, OF2) then the strategies in
this work all return a random ordering of the assumptions. H, R, and A come into play when the
moves involve adding rules to the players sets. Specifically, H is first of all a “rule-head selecting
function”. Given a set of rules, it selects a subset by considering rule-heads. We consider two
such functions, one mostRules which returns a (random) maximal set of rules from those rule

5Here and in the remainder of this work we often simplify the notation for moves by leaving the instantiations of
parameters implicit.

6Note in particular we define strategies to be homogeneous among players. Non-homogeneous strategies can be
defined in flexABle.

63



Martin Diller et al. CEUR Workshop Proceedings 59–72

sets that result when partitioning the rules according to their heads. The other, leastRules,
selects a minimal such set.

So H gives a new set of rules to choose from, which strategies now order by using R
and A. First R associates a natural number to rules. We define three such “rule com-
parison functions”: bodySize, newStatementsSize and lookaheadSize. The function
bodySize simply returns the cardinality of the body of rules (⋃︀B⋃︀ for r = h← B). The func-
tion newStatementsSize computes how many new statements the rule introduces into the
dispute. Concretely, at a dispute state (B,P), with the turn of p ∈ {proponent,opponent},
newStatementsSize(h ← B) = ⋃︀({h}∪B) / X⋃︀ with X = B if p = opponent and X = P if
p = proponent. The function lookaheadSize is a measure of how close a move will get
the proponent to winning7. Finally, to the last element of a strategy, A is one of � or ⊺ with
rules chosen by H being ordered ascendingly w.r.t. R if A = ⊺ and descendingly if A = � (ties are
resolved randomly).

Given a set of possible moves O = {(t1, p1), . . . ,(tn, pn)} consisting of a move type ti and
piece pi, either an assumption or a rule, we denote the application of a strategy Strat = (<M

,H,R,A) on the possible moves as Strat(O) = (tx,P). Here 1 ≤ x ≤ n s.t. there is no ti with
ti <M tx and P is a random ordering of P′ = {p ⋃︀ (tx, p) ∈ O} if tx ∈ {PF2,OF2} or otherwise
(tx ∈ {PB1,PB2,PF1,OB1,OB2})) an ordering of H(P′) w.r.t. R and A.

Algorithms. We turn to describing the search algorithm for flexible ABA disputes that underlies
our system flexABle. We first extend dispute derivation states to be tuples S = (B,P,Ia,Ic)

where Ia represents assumptions the proponent decides not to use (via PF2 moves), while Ic are
assumptions the proponent decides not to attack (using moves PB2 or PF2). In the algorithms we
denote sequences of elements where the order is important using delimiters ⎷⌄ rather than {}.
Function GetNewStates from Algorithm 1 has a current (extended) dispute state, a strategy and
a set of possible moves at the dispute state as input and returns the sequence of dispute states
to be examined next. These are determined, first of all, by the strategy (line 2 in Algorithm 1)
and then by the move type to which priority is given by the strategy (switch statement line 4).
Here move types PB1,PB2, and PF2 introduce branching. In the case of PB1 (lines 5-6) this is
because several possible rules for a claim can be considered, for PB2 (lines 7-11) in addition the
proponent can decide not to consider some candidate for a culprit, while for PF2 move types
(lines 15-24) the proponent can choose to use an assumption or not. Move type PF1 (lines 12-14)
and all moves of the opponent (lines 25-30) do not introduce branching.

The main search procedure is then the recursive function GetSuccessfulDDs from Algo-
rithm 2. This takes as input a sequence of current dispute states, a set of found successful dispute
states, a strategy Strat, a termination criteria C and an advancement type A. In addition it has an
additional parameter St for defining the search to be depth-first or breadth-first. The procedure
is initialized with input (⎷(γ,γ,∅,∅)⌄, ∅, Strat, C, A, St) (γ are the goals). If the sequence
of current dispute states is empty, the procedure returns the set of successful states (lines 2-3).
Otherwise, the first state in the sequence of current dispute states is taken for consideration and
removed from the current states (line 4), all possible moves at that dispute state are computed
(according to advancement A) (line 5), and moves which would make Ia ∩𝒟 ≠ ∅ or Ic ∩𝒞 ≠ ∅

7For lack of space we refer to Section 4.1 of [9] for the more complex definition.
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Algorithm 1: Function GetNextStates.
input :S = (B,P, Ia, Ic), Strat = (<M ,H,R,A), O = {(t1, p1), . . . ,(tn, pn)} // current dispute state, strategy, and set

of possible moves at the current state S w.r.t. the chosen advancement type
output :newStates = ⎷(B1,P1, Ia1 , Ic1), . . . ,(Bl ,Pl , Ial , Icl )⌄ // chosen sequence of next states to be examined next;

here 1 ≤ l ≤ n.

1 function GetNextStates(S, Strat, O)
2 (chosenMoveType, chosenMovesSequence)←Ð Strat(O) // get chosen move type and moves sequence with

Strat
3 newStates←Ð ⎷⌄ // initialize newStates
4 switch chosenMoveType do
5 case PB1 do // chosenMovesSequence is a sequence of rules
6 newStates←Ð ⎷(B∪({h}∪B1),P∪({h}∪B1), Ia, Ic), . . . ,(B∪({h}∪Bl),P∪({h}∪Bl), Ia, Ic)⌄

for h← Bi ∈ chosenMovesSequence // create a sequence of new dispute states using rules in
chosenMovesSequence, preserve the order

7 case PB2 do // chosenMovesSequence is a sequence of rules
8 attackingStates←Ð

⎷(B∪({h}∪B1),P∪({h}∪B1), Ia, Ic), . . . ,(B∪({h}∪Bl−1),P∪({h}∪Bl−1), Ia, Ic)⌄ for
h← Bi ∈ chosenMovesSequence // create a sequence of new dispute states in which the proponent
attacks some culprit candidate using rules in chosenMovesSequence, preserve the order

9 attackedAssumptions←Ð {a ∈𝒜 ⋃︀ a← B ∈ chosenMovesSequence}} // get the set of assumptions
attacked by head of rules from chosenMovesSequence

10 ignoringState←Ð (B,P, Ia, Ic∪attackedAssumptions) // get new state in which the attacked
assumptions get ignored

11 newStates←Ð attackingStates.append(ignoringState) // append ignoringState to attackingStates

12 case PF1 do // chosenMovesSequence is a sequence of rules
13 h← B←Ð chosenMovesSequence(︀0⌋︀ // take first rule, does not matter which
14 newStates←Ð ⎷(B∪({h}∪B),P∪({h}∪B), Ia, Ic)⌄ // get new state by adding rule statements to

B and P

15 case PF2 do // chosenMovesSequence is a sequence of assumptions
16 b←Ð chosenMovesSequence(︀0⌋︀ // take first assumption b
17 takingState←Ð (B∪{a},P∪{a}, Ia, Ic) // get new state by adding b to B and P
18 attackedAssumptions←Ð {a ∈𝒜 ⋃︀ a = b} // get set of assumptions attacked by b
19 ignoringState←Ð Nil // initialize ignoringState
20 if attackedAssumptions ≠∅ then // if b attacks some assumptions
21 ignoringState←Ð (B,P, Ia, Ic∪attackedAssumptions) // get new ignoringState by adding

attacked assumptions to ignored culprit candidates Ic

22 else // otherwise, get new ignoringState by adding b to ignored assumptions Ia
23 ignoringState←Ð (B,P, Ia∪{b}, Ic)
24 newStates←Ð ⎷takingState, ignoringState⌄ // return both states

25 case OB1 or OB2 or OF1 do // chosenMovesSequence is a sequence of rules
26 h← B←Ð chosenMovesSequence(︀0⌋︀ // take first rule
27 newStates←Ð ⎷(B∪({h}∪B),P, Ia, Ic)⌄ // get new state by adding rule to B

28 case OF2 do // chosenMovesSequence is a sequence of assumptions
29 a←Ð chosenMovesSequence(︀0⌋︀ // take first assumption a
30 newStates←Ð ⎷(B∪{a},P, Ia, Ic)⌄ // get new state by adding a to B

31 return newStates
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hold are filtered-out (line 6). Then, the termination criteria C is applied at the taken state (line
9), if the proponent wins the state is appended to the successful states (lines 10-11), if the op-
ponent wins the state is ignored (line 12), while if there is no winner yet (lines 13-18) function
GetNextStates defined in Algorithm 1 is used to compute next possible states. The obtained
sequence of the next possible states is then either appended at the beginning or the end of the
sequence of current dispute states, depending on the search type (depth or breadth first). Then,
the function is called again with the new sequence of current dispute states and set of successful
dispute states (line 19).

Algorithm 2: Function GetSuccessfulDDs.
input :States = ⎷(B1,P1, Ia1 , Ic1), . . . ,(Bn,Pn, Ian , Icn)⌄ // collection of dispute states

SuccStates = {(B1,P1, Ia1 , Ic1), . . . ,(Bl ,Pl , Ial , Icl )} // currently found succ. states
Strat = (<M ,H,R,A), C ∈ {TA,TC,TS}, A ∈ {DAB,DABF,DC,DS}, St ∈ {DFS,BFS} // strategy, termination
criteria, advancement type, search type (depth-first-search or breadth-first search)

output :succStates = {(B1,P1, Ia1 , Ic1), . . . ,(Bk,Pk, Iak , Ick)} // successful states found

1 function GetSuccessfulDDs(States, SuccStates, Strat, C, A, St)
2 if States = ⎷⌄ then // if there are no more states to examine
3 return SuccStates // return found successful states

4 currState←Ð States.pop() // take first state from States
5 possibleMoves←Ð getPossibleMoves(currState,A) // get possible moves at the current state w.r.t.

advancement type A
6 possibleMoves←Ð f ilter(possibleMoves,currState) // filter possible moves
7 states′ ←Ð States // initialize states′ with remaining states
8 succStates′ ←Ð SuccStates // initialize succStates′ with currently found successful states
9 switch isOver(currState, possibleMoves,C) do // check if dispute over w.r.t. termination criteria C

10 case ProponentWon do // C indicates that proponent has won
11 succStates′.append(currState)
12 case OpponentWon do // C indicates that opponent has won

// do nothing...

13 case NotOver do // C indicates that dispute has not terminated
14 newStates←Ð GetNextStates (currState, Strat, possibleMoves)
15 if searchType = DFS then // if DFS prepend newStates to the beginning of the list
16 states′ ←Ð newStates. join(states′)
17 else // else, if BFS append newStates at the end
18 states′ ←Ð states′. join(newStates)

19 GetSuccessfulDDs(states′, succStates′, Strat, C, A, St) // continue searching

Approximate Reasoning. We follow the lead of [7] but mainly [8] in defining approximate
reasoning for flexible ABA disputes. We consider static and dynamic sampling of rules. In the
first case, rules are removed from the entire ABA framework, thus not being available in entire
disputes. In the second case, rules are removed at each step; such rules may become available
for use at a later dispute state. As in [8] sampling is done independently for players: each gets
assigned a value denoting the probability of a rule not to be removed, pprop and popp for the
proponent and the opponent respectively.
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Str. <M H R A
S1

⎷ PF1, OB1, OB2, OF2, PB1, PB2, PF2 ⌄
leastRules newStatementsSize ⊺

S1a mostRules newStatementsSize �

S1b ⎷ OB1, OB2 , OF2, PB1, PB2, PF2, PF1 ⌄ leastRules newStatementsSize ⊺

S2
⎷ PF1, PB2, PF2, PB1, OB2, OF2, OB1 ⌄

leastRules newStatementsSize ⊺

S2a mostRules newStatementsSize �

S2b ⎷ PB2, PF2, PB1, OB2, OF2, OB1, PF1 ⌄ leastRules newStatementsSize ⊺

SAG ⎷ PF1, PB1, OB2, OF2, OB1, PB2, PF2 ⌄ random lookaheadSize ⊺

Table 6
Strategies of flexABle selected for experimental evaluation.

Str. Turn OppSet Sentence Rule
Default Proponent Smallest Patient Look−ahead 1−step

1 Proponent Smallest Patient Smallest body
2 Opponent Smallest Patient Smallest body
3 Proponent Smallest Eager Smallest body
4 Opponent Smallest Eager Smallest body

Table 7
Strategies for abagraph. Values for parameters Sentence and Rule are the same for both players.

4. Evaluation

Experimental Setup. In our experiments we aimed to evaluate flexible dispute variants and
strategies in their exact and approximate versions, comparing also our system flexABle to the
current best system computing dispute derivations abagraph [2]8. We concentrate on acceptance
w.r.t. the admissible (hence also complete and preferred) semantics for which we can compare to
abagraph, but also report on results on exact disputes finding complete and stable assumptions
congruous with goals.

The strategies (following Section 3) we fixed are detailed in Table 6. We tried to keep
strategies as diverse as possible, while varying in few parameters to ease comparison. The main
distinction is between “patient strategies” S1 prioritizing opponents moves, and “eager strategies”
S2 prioritizing the proponent. Within these, variants Sxa and Sx (x ∈ {1,2}) differ in their use
of H = leastRules vs. H = mostRules and A = ⊺ vs. A = �. Variants Sxb serves to test the
value of conservative forward moves, giving PF1 moves least priority. Strategy SAG simulates the
default strategy of abagraph.

Using the same criteria as when selecting strategies of flexABle, we also settled on the
strategies for abagraph depicted in Table 79. Here parameter Turn indicates player priority.
Setting OppSet to smallest roughly means arguments of the opponent which have the fewest
yet unexpanded statements are expanded first. Sentence denotes which sentences are chosen to
expand by, with Patient meaning non-assumptions and Eager assumptions. Rule offers choices
for backward expansion from proponent sentences: Look-ahead 1-step and selecting a rule with

8http://robertcraven.org/proarg/abagraph.html; last accessed on 1.7.22.
9The parameters used to define strategies in abagraph are not directly comparable to the parameters from Section 3.
To the best of our knowledge there has also been no in-depth study of strategies of abagraph, hence the need to
define our own.
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the smallest body. We refer to [2] and the abagraph webpage for further description.
As to benchmark sets, we follow previous experiments for ABA [3] in using the 680 randomly

generated ABA frameworks used first in [2]10. For each framework, we consider 10 different
(single) goal claims, thus having 6800 instances in total11. All experiments have been performed
in parallel on a cluster operating on Red Hat Enterprise Linux Server version 7.9, kernel version
3.10.0-1127.19.1.el7.x86_64. Each task has been allocated a 2.5Ghz Intel Xeon E5-2680 v3
CPU with 16GB RAM and given a 600-second timeout for admissible semantics tasks and
a 1200-second timeout for the other semantics. For flexABle we used version 1.0 and we
downloaded abagraph on 3.3.22 (there is no version information) and ran it on SICStus Prolog
version 4.7.1

Results for Admissible Semantics. Table 8 presents results for the admissible semantics
with our system flexABle. When setups are compared on advancement type, DABF is the clear
winner. For each setup, the DABF variants have significantly less time-outs and least total running
times. The exception are setups with S1b and S2b strategies, where PF1 moves are essentially
switched-off. The overall best performing dispute variants are those making use of DABF + S2,
having no time-outs, least total solving time (3.06h with DFS), as well as least mean (1.62s with
DFS) solving time. For advancement types for which strategies Sxb ≠ Sx for x ∈ {1,2} (DABF, DC,
and DS) setups with Sxb clearly perform worse than with Sx, this being a further indication of the
benefit of PF1 moves.

As to the role of strategies, for setups with DAB, those making use of S2 outperform the others.
For setups with DC and DS on the other hand, those making use of S2 perform worse. The latter
further highlights that our experiments do not show random branching on PF2 moves to be an
advantage (over the use of PF1) in terms of efficiency.

About the effects of strategies, furtheron, for all setups, Sxa (with H = mostRules and A = �)
performs worse than Sx for x ∈ {1,2}, but especially with DAB. Also for DAB setups, those using
SAG are among the worst performing, while for setups with other advancement types those making
use of SAG have performance comparable to the best.
DAB setups with BFS have slightly better performance than DFS setups, particularly with

strategies S1a, S2a, and SAG. Our experiments suggest BFS to be avoided when non-conservative
moves are often used (setups with DC and DS + strategies S2, S2a and S2b).

Comparison with abagraph. Table 9 shows our results for the admissible semantics with
abagraph strategies. Figure 1 (x-axis indicates solving-time in seconds and y-axis number
of instances solved) shows best and worst variants w.r.t. timeouts for: flexABle with DAB,
flexABle with DABF, and abagraph. We also included the directly comparable strategies: SAG

for flexABle and the default strategy for abagraph.
Clearly, flexABle with DABF significantly outperforms abagraph on any count. When

comparing flexABle with DAB and abagraph on the other hand several of the strategies of
abagraph have less time-outs, yet DAB setups with strategy S2 still clearly outperforms all

10http://robertcraven.org/proarg/experiments.html Last accessed on 1.7.22.
11We do not filter-out trivial instances, either derivable from empty assumptions or not derivable at all, as in other

work [3]. Results filtering-out such instances are comparable and are found in the appendix of [9].
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Str.
DAB DABF DC DS

DFS BFS DFS BFS DFS BFS DFS BFS

S1

#timeout. 193 179 0 2 13 13 36 39
total time [h] 38.39 35.70 3.73 4.05 7.37 7.84 11.84 12.56
95% time [h] 2.79 2.83 2.67 2.77 2.96 3.27 2.73 2.84

mean [s] 3.39 3.18 1.97 1.97 2.76 3.01 3.11 3.22

S1a

#timeout. 868 369 9 11 17 22 82 76
total time [h] 153.97 68.50 6.37 6.32 9.29 9.25 21.24 20.52
95% time [h] 97.29 11.80 3.07 3.07 2.96 3.06 2.77 2.94

mean [s] 5.63 3.90 2.58 2.38 3.42 2.97 4.06 4.20

S1b

#timeout. 193 179 195 180 272 236 300 257
total time [h] 38.24 35.79 38.55 35.69 52.23 45.33 56.28 48.84
95% time [h] 2.67 2.92 2.79 2.72 3.50 3.08 3.52 3.32

mean [s] 3.31 3.23 3.30 3.08 3.80 3.28 3.47 3.29

S2

#timeout. 133 115 0 0 180 260 167 240
total time [h] 28.64 26.08 3.06 3.12 40.82 56.41 39.12 53.04
95% time [h] 2.98 3.00 2.68 2.73 3.92 6.48 3.77 5.46

mean [s] 3.49 3.72 1.62 1.65 5.88 7.19 6.12 7.15

S2a

#timeout. 760 337 1 4 181 262 173 252
total time [h] 136.43 61.98 4.46 4.88 41.10 56.48 39.80 54.46
95% time [h] 79.75 5.36 2.73 2.88 3.93 6.46 3.68 5.84

mean [s] 5.80 3.22 2.27 2.23 5.95 7.04 5.96 6.84

S2b

#timeout. 133 115 133 115 416 838 416 800
total time [h] 28.55 26.16 28.61 25.84 81.07 166.78 80.48 159.82
95% time [h] 2.95 3.05 2.93 2.65 24.39 110.09 23.80 103.13

mean [s] 3.44 3.76 3.47 3.59 6.61 16.34 6.28 15.86

SAG

#timeout. 566 331 1 2 11 15 54 59
total time [h] 102.05 62.26 4.51 4.65 7.54 7.49 15.16 15.33
95% time [h] 45.37 5.91 2.95 2.95 3.20 2.67 2.89 2.80

mean [s] 4.45 3.93 2.30 2.29 3.03 2.65 3.29 2.93

Table 8
Results for the admissible semantics using flexABle. Column “Str.” is for the strategies as in Table 6
with advancement types (DAB,DABF,DC,DS) and search type (depth vs. breadth-first); all use TA for
termination. We give the total time and the time to solve 95% of the instances. Timeouts are not
considered in the mean running time. For each parameter, best results among all setups are highlighted
using green, worst with red.

abagraph strategy
Def. 1 2 3 4

#timeout. 142 139 258 139 764
total time [h] 62.53 76.73 120.86 80.52 256.42
95% time [h] 34.41 48.72 74.27 52.70 199.57

mean [s] 21.00 28.94 42.82 30.99 76.84

Table 9
Results for the admissible semantics using abagraph. Strategies as in Table 7.

abagraph strategies in terms of both timeouts and total solving time (115 and 26.08h in BFS
variant). Also, as is most clearly seen in Figure 1, flexABle setups also with DAB solve instances
faster on average than abagraph.
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Figure 1: Inverted “cactus plot” comparing the performance of flexABle and abagraph.
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– – – –
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– –
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– –
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– – –
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–
1.0
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sens.

– – – –
0.955 1.0
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sens. 0.702 0.773 0.84 0.901 0.953

–

pprop
0.5 0.6 0.7 0.8 0.9 1

p o
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0.5
acc. 0.926 0.976

spec. 0.974 0.97
sens. 0.741

– – – –
1.0

0.6
acc. 0.944 0.982

spec. 0.98 0.978
sens.

—
0.804

– – –
1.0

0.7
acc. 0.961 0.987

spec. 0.986 0.984
sens.

– –
0.865

– –
1.0

0.8
acc. 0.975 0.992

spec. 0.991 0.99
sens.

– – –
0.918

–
1.0

0.9
acc. 0.988 0.996

spec. 0.995 0.995
sens.

– – – –
0.962 1.0

1
acc. 0.945 0.959 0.971 0.983 0.992

spec. 1.0 1.0 1.0 1.0 1.0
sens. 0.732 0.802 0.862 0.916 0.962

–

Table 10
Accuracy, specificity and sensitivity for both static (left) and dynamic (right) sampling. Greyed-out
fields indicate combinations which we did not perform experiments for.

Approximate Reasoning. Table 10 shows surprisingly good results on accuracy, specificity,
and sensitivity for approximate disputes for the combinations of pprop and popp values we consid-
ered. Figure 2 compares the rather representative run-time performance of static and dynamic
bi-directional sampling for all considered values of p, as well as exact reasoning for the worst-
and best performing strategies for advancement types DAB and DABF and search type DFS. In
general, we found little-to-no improvement in performance for DABF setups, yet some for DAB
setups, especially using dynamic sampling.

Results for Complete and Stable Semantics. For DC + TC and DS + TS disputes we com-
pared with an approach in which admissible assumptions congruous with the goal claim are
searched for first and then extended to complete and stable sets. Results are in Table 11 and show
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Figure 2: Inverted cactus plots showing time vs. instances solved of static (left) and dynamic (right)
sampling for approximate reasoning using pprop = popp = p, p ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and exact reasoning
(p = 1.0) for the best (S2) and worst (S1a) performing strategies for DAB, DABF and DFS. Lines with
same colors indicate same advancement type and strategy, with the darkest shades indicating exact
reasoning (p = 1.0). The lighter the shade, the smaller the value of the p parameter, with the lightest
shade indicating p = 0.5.

complete semantics stable semantics

Str.
Start w/ DABF + TA Start w/ DC + TC Start w/ DABF + TA Start w/ DS + TS
DFS BFS DFS BFS DFS BFS DFS BFS

S1

#timeout. 20 34 73 101 168 163 526 549
total time [h] 18.70 20.67 51.84 61.85 71.28 72.12 230.24 237.71
95% time [h] 3.63 3.38 8.50 8.87 5.32 5.34 116.89 124.34

S1a

#timeout. 26 45 87 120 171 174 533 557
total time [h] 21.85 25.62 58.06 69.32 74.76 75.38 231.30 241.24
95% time [h] 3.30 3.63 8.87 10.16 5.76 5.65 117.95 127.87

S1b

#timeout. 275 682 663 1155 892 869
total time [h] 110.71 246.23 263.77 420.20 330.54 318.26
95% time [h] 8.49 132.85 150.43 306.81 217.19 204.88

– –

S2

#timeout. 212 230 887 1004 106 137 377 442
total time [h] 93.49 99.24 503.27 551.97 54.02 60.29 178.07 195.34
95% time [h] 7.03 7.50 389.93 438.60 4.68 4.76 64.73 81.97

S2a

#timeout. 211 233 895 1022 104 133 382 443
total time [h] 96.35 102.98 516.70 559.69 55.00 61.52 178.67 195.20
95% time [h] 8.12 9.65 403.36 446.33 4.67 4.96 65.32 81.84

S2b

#timeout. 853 931 891 896
total time [h] 328.05 350.38 337.54 332.56
95% time [h] 214.70 236.99

– –
224.19 219.18

– –

SAG

#timeout. 21 34 93 125 175 176 557 580
total time [h] 19.97 21.69 62.92 71.38 76.14 76.54 250.66 259.80
95% time [h] 3.71 3.39 10.69 10.35 6.01 5.92 137.31 146.43

Table 11
Results for the complete and stable semantics using flexABle. Dark red cells containing "–" indicate
setups which exceeded the total available running time.

that starting with DABF + TA provides better results. The patient strategy S1 performs better than
S2 for the complete semantics, the opposite for stable.
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5. Conclusions

Strategies have been defined for ABA disputes [1, 2], but there has only been limited empirical
investigation. We had several interesting findings about strategies in the context of flexible
disputes, central among which is that (conservative) forward moves lead to a significant perfor-
mance boost also when comparing our direct implementation flexABle of flexible disputes to
the Prolog-based abagraph, implementing graph-based disputes. Note that we did not com-
pare to the still more efficient reduction-to-answer-set-programming approach of [3], since this
approach does not compute dialectical justifications and cannot readily be incorporated into
interactive argument-based reasoning. In future work, among several things, we want to extend
the experiments to include more and larger benchmarks as well as consider other semantics.
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