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Abstract
The first step in reasoning using an approach such as ASPIC+ requires all arguments to be generated, and
doing so is computationally intensive when encountering large or frequently updated defeasible theories.
In this paper, we introduce the informative partial argumentation framework that enables us to control
and customise the argument construction process, potentially improving computational efficiency. In our
framework, arguments are constructed in a lazy manner; and through the modularisation of our framework,
it is possible to restrict the amount of computation to only the necessary information.
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1. Introduction

The ASPIC+ framework describes how arguments can be constructed from a knowledge base, and
allows for reasoning to take place over the resultant argumentation system. However, generating
all arguments is computationally expensive [1, 2], and may not be needed for some forms of
reasoning. Constructing arguments which contain only the necessary information for a reasoning
task is thus clearly desirable and in this paper, we construct arguments using backwards-chaining
to speed up the process of determining a literal’s status [2], requiring us to often generate only a
subset of arguments.

We begin this paper by describing the ASPIC+ framework and the intuition behind our approach
(Sec. 2). Section 3 forms the core of our work, introducing informative partial arguments and
demonstrating how these can be used to compute the justification status of a literal. In Section
4, we give an overview of factors that affect the efficiency of our approach. In Section 5, we
perform an empirical evaluation of our approach and in Section 6, we conclude and discuss future
research.

2. Background

We start by providing the necessary definitions for the paper, building on the theoretical framework
of Yun et al. [2]. We assume an underlying logical language L defined over a set of literals
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which is closed under negation (¬). A rule r takes the form r : {φ1, ...,φn}⇝ Φ, where n ≥ 0,
∀i ∈ {1, . . . ,n},φi ∈ L , Φ ∈ L and⇝∈ {→,⇒}. Intuitively, such a rule encodes the fact that
the antecedents φ1, . . . ,φn conjunctively yield the conclusion Φ. The symbol → indicates that r is
strict while ⇒ indicates that it is defeasible [3, 4] . We denote the set of all rules as R. We write
a → b to denote {a}→ b in the case of a single antecedent.

The body of r is the rule’s set of antecedents {φ1, ...φn}, and is denoted body(r); head(r) = Φ

is called r’s head, while name(r) returns the name of r, which is assumed to be in L . Axioms
(resp. ordinary premises) are strict (resp. defeasible) rules with empty bodies. The implication of
r is⇝∈ {⇒,→} and is denoted imp(r). A defeasible theory T is a pair (S ,D) where S ⊆ R
is a set of strict rules and D ⊆ R is a set of defeasible rules. Based on the knowledge contained
in a given set of rules, we can identify support relations between pairs of propositions as follows.

Definition 1 (Support Between Propositions). Given R ⊆ R and a logical language L , a
proposition p ∈ L is supported by p′ ∈ L , denoted as p′ R↦−→ p, if (1) there exists a rule r ∈ R
such that head(r) = p and p′ ∈ body(r) or (2) there is a sequence of propositions (p0, p1, . . . , pn)

such that for all 0 ≤ i ≤ n, pi ∈ L , p0 = p′, pn = p such that for all 0 ≤ i ≤ n−1, pi
R↦−→ pi+1.

It is useful to detect circular supports, that is, a proposition that supports itself given some set
of rules. We refer to such a set of rules as circular (c.f., [5] in the context of assumption-based
argumentation).

Definition 2 (Circular set of rules). We say that R ⊆ R is circular iff there is a proposition
p ∈ L such that p R↦−→ p.

We now recall the definition of an argument in ASPIC+ [4].

Definition 3 (ASPIC+ Argument). Given a defeasible theory T = (S ,D), an ASPIC+ argu-
ment A is either:

1. /0⇝ φ ∈ S ∪D , Conc(A) = φ , Sub(A) = {A}, Prem(A) = {φ}; or
2. A1, . . . ,An ⇝ φ where for all 1 ≤ i ≤ n, Ai are arguments, Conc(A) = φ , and there ex-

ists a rule {Conc(A1), . . . ,Conc(An)}⇝ φ in S ∪D , Sub(A) =
⋃︁

1≤i≤n
Sub(Ai)∪{A}, and

Prem(A) =
⋃︁

1≤i≤n
Prem(Ai).

ASPIC+ arguments are generally generated in a bottom-up or forward chaining manner, starting
from the axioms or ordinary premises and working forwards towards conclusions. Observe that
concepts such as attack or defeat, which are built on arguments, have no effect on the arguments
constructed using forward chaining. Clearly, this has the potential to be computationally inefficient
as arguments which are known to not affect the literals we are interested in may still be generated.
In what follows, we consider techniques for backwards chaining in the argument construction
process through the introduction of informative partial arguments. Since backwards chaining
potentially gives many choice points when selecting what to expand, in the next section, we
describe a modular framework where different approaches for expansion selection can be used.

Before that, we introduce some further basic notions and notations about trees. A directed
graph is a pair G = (V,E), where V is a set of nodes and E ⊆ V ×V is the set of directed
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edges. A directed path from node v0 to node vn is a sequence (v0,v1, . . . ,vn) such that for all
i ∈ {0, . . . ,n−1},(vi,vi+1) ∈ E. We say that an acyclic directed graph G = (V,E) is a directed
rooted tree iff there exists a unique r ∈ V , called the root of G such that for all v′ ∈ V \ {r},
there is exactly one directed path from r to v′. Given a directed rooted tree G = (V,E), for all
(v1,v2) ∈ E we define fst((v1,v2)) = v1, snd((v1,v2)) = v2. If (v′,v) ∈ E, we say that v′ is the
parent of v, denoted as parentv. The node v ∈V is a leaf of G if ∀e ∈ E,v ̸= fst(e). The set of all
leaves of G is denoted as LEAVES(G).

3. The Informative Partial Argumentation Framework

Our approach for efficiently reasoning within ASPIC+ is based on the concept of backwards
chaining which involves expanding a conclusion by selecting some applicable rules (i.e., those
whose conclusion is the literal we are hoping to prove). During the expansion process, the objects
we are manipulating are not arguments (as they are not rooted in axioms or ordinary premises). We
therefore introduce informative partial arguments (Definition 11) which include the conclusion
of an argument and a subset of the rules necessary to infer it, as well as context information
gathered during the expansion. We begin by introducing some basic concepts which are key
components of the backward chaining process (Definition 4 to Definition 10). We introduce this
process through an illustrative example.

Example 1. Let us consider T = (S ,D), where S = {b → a,a → b, f → c,e → c, /0 → g}
and D = {{c,d} ⇒ b,n ⇒ b,g ⇒ d,h ⇒ f , /0 ⇒ e, /0 ⇒ h}. Assume that we want to build the
arguments that conclude the target proposition a.

• Step 0: At the beginning of the construction, we have only ‘a’. We need to find all rules
from T that have head ‘a’, and observe there is only one such rule b → a. From this rule,
we see that there must be a proposition ‘b’ that supports ‘a’.

• Step 1: Now, since we have the rule b → a, we need to find all rules from T that have
head ‘b’.There are three such rules, a → b, {c,d}⇒ b and n ⇒ b, these are evidence that
b could be minimally supported in three different ways.

• Step 2: We have three sets of rules that indicate our target proposition ‘a’ could be
supported in these different ways, {a → b,b → a}, {{c,d}⇒ b,b → a}, and {n ⇒ b,b →
a}.

Although we only highlighted three steps in Example 1, we can make the following observations:

• The necessary information for backward chaining: At each step, the input data consists
of a set of rules and a set of propositions. Furthermore, it is possible to collect some
information during the backward chaining process. For example, we could collect the
preference information of defeasible rules as described in [4]. Thus, we argue that some
kind of context information should also be included in the backward chaining process.

• Different Statuses: In step 2, the set {a → b,b → a} demonstrates circular reasoning, while
the backward chaining process stops at ({n ⇒ b,b → a}) as there is no evidence in T that
shows that n is supported. The backward chaining process of arguments that conclude a
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should be stopped in these two cases, as it will not be possible to form an argument by
continuing the process. However, given {{c,d}⇒ b,b → a}, there is evidence in T that
indicates that ‘c’ and ‘d’ can be supported in different ways, thus, it is possible to continue
the backward chaining process in this case.

• Two Operations: At each step, we need to both (1) search for rules that can be applied and
(2) apply these rules to the current information we have. The composition of these two
operations corresponds to our intuition of building an argument backward.

The intuition described in the aforementioned three items are at the heart of the informative
partial argument framework. We encode the (abstract) data structure of our framework via
P-structures which record the necessary information for backward chaining.

Definition 4 (The P-structure). Given a logical language L , a defeasible theory T = (S ,D)
and an arbitrary set of elements I, a P-structure is a triple ⟨L,R, i⟩ where L ⊆ L ,R ⊆ S ∪D
and i ∈ I.

The set I is used to encode specific contextual information about the backward chaining process.
Thus I may be different if we record the number of rules used in an argument or if we record
the set of attacks against an argument. Returning to Example 1, we can encode its data as
follows. The initial input at step 0 is a P-structure ⟨{a}, /0, i0⟩, the input at step 1 is a P-structure
⟨{b},{b → a}, i1⟩, and there are three P-structures as inputs at step 2:

• p1 = ⟨{a},{a → b,b → a}, i′2⟩,
• p2 = ⟨{c,d},{{c,d}⇒ b,b → a}, i′′2⟩, and
• p3 = ⟨{n},{n ⇒ b,b → a}, i′′′2⟩.

The set of literals L in a P-structure contains propositions that are not yet supported, while the set
of rules R serves as the evidence that the proposition a are supported.

Definition 5 (Status of a P-structure). Given a P-structure ⟨L,R, i⟩ and a defeasible theory
T = (S ,D), the status of a P-structure is

• Complete iff L = /0.
• Enrichable iff R is not circular and ∀φ ∈ L , ∃r ∈ (S ∪D) s.t. head(r) = φ .
• Pending if it is not complete or enrichable.

At step 2 in Example 1, p1 = ⟨{a},{a → b,b → a}, i′2⟩, and p3 = ⟨{n},{n ⇒ b,b → a}, i′′′2⟩ are
pending, because the former has a circular set of rules whereas the literal part of the latter has no
support from the defeasible theory.

Definition 6 (Support Function). Given T =(S ,D), we define a function supportT that takes
as input a P-structure p = ⟨L,R, i⟩ and returns a set S ∈ 2(2

S∪D) such that if p is enrichable
then for all s ∈ S, we know that {head(r)|r ∈ s} = L, and each r1 ∈ s, there is no r2 ∈ s such
that head(r1) = head(r2) , and S is maximal (w.r.t. set inclusion). If p is not enrichable, then
supportT (p) = /0.
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In Example 1, given the input data p2 = ⟨{c,d},{{c,d} ⇒ b,b → a}, i′′2⟩, supportT (p2) =
{{ f → c,g ⇒ d},{e → c,g ⇒ d}}. These two sets indicate that p2 can be enriched in two
different ways.

Next we consider how a P-structure can be transformed to another P-structure. The link function
takes as input a P-structure, a set of rules and returns a new P-structure that can be obtained by
combining all these elements. The link function utilises two other functions: the control function
that specifies how the status of the new P-structure is controlled and the extraction function that
specifies how context information is extracted .

Definition 7 (Link Function). Given a defeasible theory T = (S ,D), rules Re ∈ 2S∪D , a set
of context information I, a P-structure p = ⟨L,R, i⟩, and a binary operator ▷◁: I× I→ I which
specifies how context information is accumulated1, A link function is a function of the form
ΣEXTR,CONT,▷◁(p,Re) = ⟨L′,R′, i′⟩, where:

• L′ = CONT(p,Re) (see Definition 8),
• i′ = EXTR(p,Re) ▷◁ i (see Definition 9), and
• R′ = R∪Re.

Definition 8 (Control Function). A control function CONT takes a P-structure p and a set
of rules (evidence returned by support function) as inputs and returns a set of literals, i.e.,
CONT : (2L ×2S∪D × I)×2S∪D → 2L .

Different instantiations of the control function will lead to different P-structures. In the following
example, we propose some basic control functions but the framework can easily be expanded to
more complex ones without loss of generality.

Example 2. Given a P-structure p = ⟨L,R, i⟩ and Re ∈ 2S∪D . We provide two examples of
control functions, CONT1 and CONT2, such that:

• CONT1(p, Re) =
⋃︂

r∈Re

body(r). This control function returns all propositions in the bodies

of rules in Re.
• CONT2(p, Re) =

⋃︂
r∈Re,r ̸∈D

body(r). This control function returns all propositions in the

bodies of strict rules in Re.

Note that while these two control functions are basic and do not make use of the P-structure p,
more complex control functions can be defined.

After applying the control function to a P-structure, we have a set of propositions which require
rules to support them within the new P-structure. We must decide which propositions to support
so as to obtain new P-structures. Given that many strategies exist for doing so, we may apply
different heuristics accordingly. An extraction function takes as input a P-structure and returns
the information needed by our heuristic. For example, we may need to determine the number (or
indeed the set) of all propositions which could be used by the rules supporting a P-structure.
1Note that I can be instantiated in different ways; it is left abstract in this definition. Examples of instantiations of I
are provided in Example 3.
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Definition 9 (Extraction Function). The function EXTR takes a P-structure p and a set of
rules (the evidence returned by the support function) as input and returns an element of I, i.e.,
EXTR : (2L ×2S∪D × I)×2S∪D → I.

Example 3. Given a P-structure p = ⟨L,R, i⟩ and Re ∈ 2S∪D . We provide two examples of
extraction functions, EXTR1 and EXTR2, such that:

• EXTR1(p, Re) = {r|r ∈ Re,r ∈ D}. This extraction function returns all defeasible rules
in Re. Here, I= 2S∪D .

• EXTR2(p, Re) = 2× |R∩S | − |Re ∩D |. This extraction function returns 2 times the
number of strict rules in R minus the number of defeasible rules in Re. Here, I= N.

Using our framework, we can reformulate existing link functions:

• naiveLink = ΣEXTR,CONT1,▷◁. This link function makes use of CONT1 (see Example 2)
and assume the computational context ignores information I, thus EXTR and ▷◁ can be
defined in an arbitrary way.

• weakestLink = ΣEXTR1,CONT1,∪. This link function makes use of CONT1 (see Example 2),
EXTR1 (see Example 3), and ▷◁= ∪.

• lastLink = ΣEXTR1,CONT2,∪. This link function makes use of CONT2 (see Example 2),
EXTR1 (see Example 3), and ▷◁= ∪.

The use of different types of context information (I) will be discussed in Example 4. When
definitions of the control/extraction functions and ▷◁ are clear from the context, we will simplify
ΣEXTR,CONT,▷◁ by writing Σ. We can now give the formal definition of the operations described
in the steps of Example 1.

Definition 10 (Enrich Function π). Given T = (S ,D), a P-structure p = ⟨L,R, i⟩, and a link
function Σ, the enrich function w.r.t. T and Σ is πT ,Σ : 2L ×2S∪D × I→ 2(2

L ×2S∪D×I) such
that, when supportT (p) ̸= /0:

πT ,Σ(p) = {Σ(p,e)|e ∈ supportT (p)}

otherwise:
πT ,Σ(p) = p

The notation πT ,Σ(p) can be written as π(p) if T and Σ are known from the context. Now, all
components that are necessary to describe the backward construction of the partial arguments
have been formally defined, we can finally introduce the informative partial arguments that
integrates all these concepts.

Definition 11 (Informative Partial Arguments). Given T = (S ,D), a link function Σ, an
initial context information i ∈ I, a target proposition φ ∈ L , and a natural number z ∈ N,
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we define the directed rooted tree Gφ

z,Σ,T = (V φ
z ,Eφ

z ) = ΠT ,Σ((V
φ

z−1,E
φ

z−1)), where Gφ

0,Σ,T =

(V φ

0 ,Eφ

0 ) = ({⟨{φ}, /0, i⟩}, /0), and ΠT ,Σ is defined as:

ΠT ,Σ(G) = ((
⋃︂

v∈LEAVES(G)

π(v))∪V,
⋃︂

v∈LEAVES(G)

{(v,v′)|v′ ∈ π(v)})

Symbols Σ and T can be omitted when they are known from the context. Each element of V φ
z

is a P-structure, and it is referred to as an informative partial argument for φ . The root V φ

0 is
the set containing the initial informative partial argument that wraps the target proposition φ

together with the initial context information i. Gφ
z is known as the tree of informative partial

argument of φ at step z, it encodes the history of these z steps backward enrichment process
starting from Gφ

0 . If for all v ∈ LEAVES(Gφ

z,Σ,T ), π(v) = {v} then we call Gφ
z the terminal tree

of informative partial argument for φ . We denote the terminal tree as Gφ

⊥ = (V φ

⊥ ,E
φ

⊥), and the set
{v|v ∈V φ

⊥ , v is complete} as Aφ

Σ,T .

Example 4 (Cont’t Example 1). To demonstrate how trees of informative partial argument are
indexed by different link function instantiations, we define a dummy-link function as followed:

dummyLink = ΣEXTR2,CONT1,K

where for every two natural numbers x,y ∈ N,K(x,y) = x. As shown in Table 1, a tree of
informative partial argument for a is indexed by the link function and enrich steps. We choose /0
and 0 as initial context information respectively. Ga

2,lastLink is a terminal tree, because ⟨{a},{a →
b,b → a}, /0⟩ are of pending status and (⟨ /0,{c,d ⇒ b,b → a},{c,d ⇒ b}⟩ is complete.

z LEAV ES(Ga
z,lastLink) LEAV ES(Ga

z,dummyLink)

0 ⟨{a}, /0, /0⟩ ⟨{a}, /0,0⟩
1 ⟨{b},{b → a}, /0⟩ ⟨{b},{b → a},0⟩

⟨{a},{a → b,b → a}, /0⟩ ⟨{a},{a → b,b → a},2⟩
2 ⟨ /0,{c,d ⇒ b,b → a},{c,d ⇒ b}⟩ ⟨{c,d},{c,d ⇒ b,b → a},1⟩

⟨ /0,{n ⇒ b,b → a},{n ⇒ b}⟩ ⟨{n},{n ⇒ b,b → a},1⟩
3 Same as above (Terminated) ⟨{ f ,g},{ f → c,g ⇒ d,{c,d}⇒ b,b → a},1⟩

⟨{e,g},{e → c,g ⇒ d,{c,d}⇒ b,b → a},1⟩
Table 1
Leaves of trees of informative partial arguments for a at each step w.r.t. lastLink and dummyLink.

The motivation of developing this backward construction framework is to identify deductive
rules that are equivalent to an ASPIC+ argument efficiently. The relation between an informative
partial argument and an ASPIC+ argument is described as follows.

Proposition 1. Given a defeasible theory T , Σ ∈ {naiveLink,weakestLink}, if Aα

Σ,T ̸= /0, then,
for each A = ⟨L,R, i⟩ ∈Aα

Σ,T , based on T ′ = (S ′,D ′),S ′∪D ′ = R, there is an unique ASPIC+
argument A′ that concludes α .
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Proof 1. According to the Definition 5 and Definition 11, we know that there is a natural
number z such that A = ⟨ /0,Rz,_⟩ ∈ V α

z . As defined in Example 2 and Example 3, naiveLink
and weakestLink do not make selection on propositions that need to be supported in the next
step, therefore, according to Definition 6, we know that for each 1 ≤ n ≤ z− 1, there exist
Re

n ∈ supportT (vn) such that R(n+1) = Re
n∪Rn and {head(r)|r ∈ Re

n}= Ln. Given A = { /0,Rz,_},
for each r ∈ Re

(z−1),body(r) = /0, therefore, each r ∈ Re
z−1 is an ASPIC+ argument (the base case

of Definition 3) that concludes a unique l ∈ L(z−1), the set of these ASPIC+ arguments is denoted
as A′

(z−1). According to Definition 3 (inductive case (2)) we know that A′
(z−1) and Re

(z−2) forms a
set of ASPIC+ argument A′

(z−2) such that each ASPIC+ argument in A′
(z−2) concludes a unique

l ∈ L(z−2). Similarly, we can say that the set of ASPIC+ arguments A′
n and Re

(n−1) forms the set of
ASPIC+ arguments A′

(n−1), each ASPIC+ argument in A′
(n−1) concludes a unique l ∈ L(n−1), and

we know L0 = {α}. So we have A′
n ∪·· ·∪A′

0 are all sub arguments of A′. Assuming that given
T ′, there are more than one ASPIC+ arguments concludes α (A′′ and A′), it indicates that there
are at least two sub-arguments of A′ and A′′ respectively, that concludes some proposition β (it is
possible that β = α), in this case, according to Definition 6, R = S ′∪D ′ will lead to more than
one informative partial arguments, thus contradict to the assumption.

Next, we adapt attacks and defeats to our new framework.

Definition 12 (Attack). Given T = (S ,D) and two trees of informative partial arguments
Gφ1

z1,Σ1
= (V1,E1), Gφ2

z2,Σ2
= (V2,E2) for φ1 and φ2. An informative partial argument v1 =

⟨Lv1 ,Rv1 , in f ov1⟩ ∈V1 is attacked by v2 ∈V2 if one of the following item holds:

• ¬φ2 = φ where φ ∈ {head(r)|r ∈ Rv1 ∩D}. We say v2 rebuts v1 on φ .
• ¬φ2 = φ where φ ∈ {name(r)|r ∈ Rv1 ∩D}. We say v2 undercuts v1 on φ .

Proposition φ and φ2 = ¬φ are referred as the attacked proposition and the attacking proposi-
tion respectively. This definition indicates that attackers rely on attacking propositions only , so
Gφ2

z2,Σ2
represents a family of attackers in which each family member is indexed by the choice of z2

and Σ2. Similarly, an argument is attacked only when an attacked proposition is included in its
structure, so Gφ1

z1,Σ1
also represents a family of attacked arguments in which each family member

is indexed by the choice of z1 and Σ1 such that ¬φ2 is included.

From Proposition 1, we know that the attack relation that we are familiar with in the ASPIC+
framework [4] is equivalent to a special case that depends on naiveLink or weakestLink, for
example , it can be expressed as ∀(a,b) ∈ Aφ1

naiveLink ×Aφ2
naiveLink such that a attacks b. In order to

determine whether a rebut is successful or not, we can use weakest-link or last-link or other link
functions to collect context information. So the defeat relation can be formally defined as follows.

Definition 13 (Defeat). Given T = (S ,D), an ordering relation ⪯ parameterized by the choice
of Info (such as Eli or Dem [4]) and a tree of partial arguments Gφ1

z1,Σ1
= (V,E) for φ1 ∈ L . We

say an informative partial argument v ∈V is Σ2-defeated2 by an informative partial argument b
of φ2 ∈ L when one of following items is satisfied.

2We can also say an informative partial argument b of φ2 Σ2-defeats v.
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• b undercuts v on ¬φ2.
• b rebuts v on ¬φ2, b ∈ Aφ2

Σ2
and ∀a ∈ A¬φ2

Σ2
we know that infoa ⪯ infob .

To determine if a rebut leads to a successful attack or not, we rely on an instantiation (Σ2) of
the link function to indicate what information is required for comparison.

Once a rebut is detected during the enrichment process, it is necessary to collect information spec-
ified by Σ2 from all conflicting arguments. Σ2 and Σ1 are not necessarily the same, implying that
the objective of constructing an argument could be independent from the process of determining
whether or not an argument is defeated.

In next section, we will have a discussion about possible optimisations during the construction
process so that we can have a better understanding about the role of our framework.

4. Optimisation options and the scope of heuristic information

We begin this discussion about computation optimisation of higher-level concepts with an example
of query answering on a defeasible theory. The purpose of querying a defeasible theory is to
determine if a statement is justified by the information contained in it. Being justified could be
defined in a variety of ways, such as “there is a naive-complete argument of the query proposition
and it is not attacked” or “ all naive-complete arguments of the query proposition are not attacked”.

Example 5. Assume that a query proposition is justified if there is a naiveLink-complete argument
of this query and it is not Σ-defeated by any other argument. Then given T = (S ,D), where
S = {b → a,→ e, f → ¬b,→ g,h → ¬c,→ i, j → ¬d,→ k} and D = {c ⇒ b,d ⇒ c,e ⇒
d,g ⇒ f , i ⇒ h,k ⇒ j}, is ‘a’ justified and how much computation is necessary for drawing this
conclusion?

Figure 1: Argument that conclude that a is defeated.

The necessary computation for the construction all attackers are constrained by the instantia-
tion of Σ. When adopting Σ = lastLink , the axioms in {→ e,→ k,→ j,→ g} are not necessary
for drawing the conclusion of this query whereas with Σ = weakestLink, we would require all
rules in T .
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In terms of the higher-level structure of the justification criterion in Example 5, there are two
optimisation options: (1) Should we compute the Aa

naiveLink first then compute the Σ-defeat relation
of each attacker; or (2) Should we compute the Σ-defeat relation whenever an attacker is identified
at each enrich step toward Aa

naiveLink ?
Option 1 puts us at the risk that the partial argument of proposition ¬b could be a defeater, if

Σ = lastLink then all computations involving rules {d ⇒ c,e ⇒ d,→ e} are not necessary. Option
2 puts us at the risk that there is no partial argument of proposition a that is naive-complete.
Assume that there is no rule ( /0 → e) in the given defeasible theory in Example 5, then all
computation of the Σ-defeat relation would be not necessary.

At the current stage, we have no means of knowing which option is better than the other.
Example 5 shows that there are two types of heuristic information: (1) The argument-level
heuristic information (I) which has the scope of a path in a tree of informative partial arguments.
(2) The defeasible-theory-level heuristic information which has the scope of the entire defeasible
theory. Because we do not explore defeasible-theory-level heuristic information in this paper, we
will focus on demonstrating the optimization brought about by adopting different link functions
in the next section.

5. Performance Evaluation

To emphasise the performance boost offered by our framework alone, we examine the differences
between using the lastLink and weakestLink. The implementation of weakestLink is the baseline
and could be thought of as a close approximation to the calculation necessary to generate an
ASPIC+ argument.

To evaluate the performance with larger size benchmarks and control the complexity, we reuse
the justification criterion and dataset structure as shown in Example 5. The proposition a is
justified in all benchmarks. The only leaf of Gφ

Σ
,φ ∈ L is denoted as leaf (Gφ

Σ
). The scale of

our benchmarks3 is controlled by three parameters as shown in Figure 1. Here, Target-Depth
(td) is the length of the path from the root to leaf (Ga

naiveLink). The Attacker-Depth (ad) is the
target-depth of an attacker argument. Finally, the LastLink-Info-Depth (lid) is the length of the
path from the root to leaf (Ga

Σ
) for a given Σ. There are 10 attackers, and the values of ad and lid

of all attackers are the same.

• Benchmark Asymptote: Set td and ad to be control variables and increase the value of lid
at a given step 4. The benchmark includes 99 defeasible theories. As shown in Figure 2, in
this case, the length of all attacker arguments is a constant. Adopting weakestLink requires
the construction of a complete ASPIC+ argument, so the computational performance is
relatively stable. Adopting lastLink would require only the computation necessary to meet
the first defeasible rules, so the computation would take more time as the depth of the first
defeasible increased, and in the worst case it will achieve the same performance level as
adopting weakestLink.

3The benchmark is running on a AWS EC2 instance (t3a.large), the implementation is writing with Haskell
and using criterion library for evaluation. Implementation details could refer to https://bitbucket.org/wuhao29/
informative-partial-argument/src/master/.

4td = 20, ad = 100, lid ∈ {10, . . . ,500}
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Figure 2: The performances as LastLink-Info-Depth increasing.

• Benchmark Overhead: Set td and lid to be control variables and increase the value of ad
at a given step5. The benchmark includes 100 defeasible theories. As shown in Figure 3,

Figure 3: The performance as Attacker-Depth is increasing.

the depth of the first defeasible rule in all attackers is a constant. The x-axis is the length
of all attackers, while the y-axis is the time required to complete the computation. As
the value of attacker depth increases, the performance of using weakestLink is increasing
considerably compared to using lastLink. When the attacker depth is small enough, it is
possible that adopting lastLink will take more computational time than adopting weakLink
due to the overhead brought by extra operation defined by lastLink, However, this overhead
is negligible as shown in figure 3.

5td = 20, ad ∈ {5, . . . ,500}, lid = 5.
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6. Discussion and Future work

The idea of constructing argument by backward chaining can be seen in works such as [5, 6, 7, 8, 9]
that discusses dispute derivation for Assumption Based Argumentation (ABA) and the concept
of potential argument in [5] is similar to our definition of partial argument. These works focus
on evaluating acceptances of claims with respect to different semantics that ABA inherits from
abstract argumentation. The argument construction process is embedded in the dialectal procedure
defined by corresponding algorithm and cannot be used as a general framework for defining other
higher-level definitions.

In this paper, we propose a new framework which factorises the argument construction process
and provides modules for improving the expressiveness and the computational efficiency. Based
on this framework, a solver could be further developed for tasks such as the ICCMA structured
Argumentation track[10], and it is also one of many steps toward solving challenges from real
world use cases that involve large dynamic defeasible theories. Future works will mainly focus
on the study of the defeasible-theory-level heuristic information so that our framework will be
able to optimise the computation at both argument level and the higher-level concept level.
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