
Deletion-Backdoors for Argumentation Frameworks
with Collective Attacks
Wolfgang Dvořák1, Matthias König1,∗ and Stefan Woltran1

1TU Wien, Institute of Logic and Computation

Abstract
Analyzing computational aspects of argumentation has the ultimate goal to find efficient tools to reason
in an argumentative setting. In particular, exploiting islands of tractability leads to enhancements of our
ability to create such tools. In this work, we identify as such an island of tractability deletion-backdoors for
argumentation frameworks with collective attacks (SETAFs). A backdoor is the part of a problem instance,
the removal of which leads to a simple structure. If we can find such a backdoor and guess the solution on
this part (in the context of argumentation: extensions), the rest of the solution follows almost effortlessly.
In terms of complexity analysis, this means for constant backdoor sizes, general argumentation tasks
become efficiently solvable—they are fixed-parameter tractable. In this work, we generalize the respective
techniques that are known for the special case of Dung-style argumentation frameworks (AFs) and show
that they also apply to the more general case of SETAFs. In addition, we can show an improvement in the
asymptotic runtime compared to earlier approaches for AFs. Along the way, we point out similarities and
interesting situations arising from the more general setting.

Keywords
Abstract Argumentation, Backdoors, FPT, SETAF, Complexity

1. Introduction

In the last decades of argumentation research, several formalizations have been considered for
suitable abstractions of argumentation processes—Dung’s approach of abstract argumentation
frameworks (AFs) [1] is nowadays one of the most widely used such formalisms. In AFs,
arguments are abstract entities represented by nodes in a directed graph, the edges form the attack
relation. Several generalizations have been proposed in order to achieve more expressiveness
or to be able to instantiate knowledge bases more easily or intuitively. One such generalization
is the addition of collective attacks [2], the resulting class of frameworks is referred to as
SETAFs. Reasoning in AFs is computationally expensive—in order to still obtain efficient
runtimes in special cases restrictions of the graph structure have been investigated [3, 4, 5].
While in the general case the same (mostly intractable) complexity upper bounds hold for

SAFA’22: Fourth International Workshop on Systems and Algorithms for Formal Argumentation 2022, September 13,
2022, Cardiff, Wales, United Kingdom
∗Corresponding author.
$ wolfgang.dvorak@tuwien.ac.at (W. Dvořák); matthias.koenig@tuwien.ac.at (M. König);
stefan.woltran@tuwien.ac.at (S. Woltran)
� https://dbai.tuwien.ac.at/staff/dvorak/ (W. Dvořák); https://dbai.tuwien.ac.at/user/mkoenig/ (M. König);
https://dbai.tuwien.ac.at/staff/woltran/ (S. Woltran)
� 0000-0002-2269-8193 (W. Dvořák); 0000-0003-0205-0039 (M. König); 0000-0003-1594-8972 (S. Woltran)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

98

mailto:wolfgang.dvorak@tuwien.ac.at
mailto:matthias.koenig@tuwien.ac.at
mailto:stefan.woltran@tuwien.ac.at
https://dbai.tuwien.ac.at/staff/dvorak/
https://dbai.tuwien.ac.at/user/mkoenig/
https://dbai.tuwien.ac.at/staff/woltran/
https://orcid.org/0000-0002-2269-8193
https://orcid.org/0000-0003-0205-0039
https://orcid.org/0000-0003-1594-8972
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

SETAFs [6], tractable graph classes have only recently been brought to the attention of the
research community [7, 8]. The analysis of computational aspects of SETAFs by parameterized
means just started by investigations of the parameter treewidth [9]. A particular challenge
hereby is to extend structural parameters (that work well for the simple structure of AFs), to the
hypergraph structure SETAFs provide. In fact, it turned out that while for certain generalizations
the parameterized tractability results of AFs carry over to SETAFs, other scenarios give rise to
interesting behavior that leads to most problems remaining intractable.

In this paper, we use the tools of parameterized complexity analysis and focus on the parameter
of minimum-size deletion-backdoors. The backdoor-concept is used in different contexts such as
constraint satisfaction problems (CSP), satisfiability checking (SAT), answer set programming
(ASP) (see e.g. [10, 11, 12, 13] for recent work), and has also been investigated in the context
of AFs [14]. Intuitively, a backdoor is one part of an instance that “makes it hard to solve”. In
this work, we focus on deletion-backdoors, i.e. if this backdoor is removed from the instance, the
remaining (sub-)instance is computationally easy. In the context of formal argumentation this
means that a framework belongs to a tractable class (such as acyclicity) after removing certain
arguments. This means we can utilize the tractability results of these easy classes for general
frameworks without restrictions, as arbitrary distances to the tractable fragments are allowed. If
this distance is small (constant), we can reason in polynomial time [14].

Our main contributions are as follows: (i) we introduce the concept of deletion-backdoors
for SETAFs utilizing the concept of primal-graphs for SETAFs [7]; (ii) we present an algorithm
to reason w.r.t. the common admissibility based semantics stable, preferred, complete, and
semi-stable, to exploit given backdoors for the fragments acyclicity and even-cycle-freeness
(as introduced for SETAFs in [7]), thereby improving the runtime of the best known backdoor-
approach for AFs [14]; and (iii) show that our introduced algorithm is optimal unless the Strong
Exponential Time Hypothesis is false.

2. Background

We start by recalling the definition of argumentation frameworks with collective attacks
(SETAFs) [2] and identify argumentation frameworks (AFs) [1] as a special case.

Definition 1. A SETAF is a pair SF = (A,R) where A is a finite set of arguments, and R ⊆
(2A \{ /0})×A is the attack relation. For an attack (T,h) ∈ R we call T the tail and h the head
of the attack. SETAFs (A,R), where for all (T,h) ∈ R it holds that |T |= 1, amount to (standard
Dung) AFs. In that case, we usually write (t,h) to denote the set-attack ({t},h). For S⊆ A, we
say S attacks an argument a ∈ A if there is an attack (T,a) ∈ R with T ⊆ S. We use S+R to denote
the set {a | S attacks a} and define the range of S (w.r.t. R), denoted S⊕R , as the set S∪S+R .

The well-known notions of conflict and defense from classical Dung-style AFs naturally
generalize to SETAFs.

Definition 2. Let SF = (A,R) be a SETAF. A set S ⊆ A is conflicting in SF if S attacks a for
some a ∈ S. S⊆ A is conflict-free in SF, if S is not conflicting in SF, i.e. if T ∪{h} ̸⊆ S for each
(T,h) ∈ R. cf(SF) denotes the set of all conflict-free sets in SF.

99

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

Table 1
Complexity for AFs and SETAFs (C-c denotes completeness for class C).

adm com pref stb sem

Credσ NP-c NP-c NP-c NP-c ΣP
2 -c

Skeptσ trivial P-c ΠP
2 -c coNP-c ΠP

2 -c

Definition 3. Let SF = (A,R) be a SETAF. An argument a ∈ A is defended (in SF) by a set S⊆ A
if for each B⊆ A, such that B attacks a, also S attacks B in SF. A set T ⊆ A is defended (in SF)
by S if each a ∈ T is defended by S (in SF).

The semantics we study in this work are the admissible, complete, preferred, stable, and semi-
stable semantics, which we will abbreviate by adm, com, pref, and stb, and sem, respectively [2,
6, 15]. σ(SF) denotes the set of extensions of SF under semantics σ .

Definition 4. Given a SETAF SF = (A,R) and a conflict-free set S ∈ cf(SF). Then,
• S ∈ adm(SF), if S defends itself in SF,
• S ∈ com(SF), if S ∈ adm(SF) and a ∈ S for all a ∈ A defended by S,
• S ∈ pref(SF), if S ∈ adm(SF) and there is no T ∈ adm(SF) s.t. T ⊃ S,
• S ∈ stb(SF), if S⊕R = A,
• S ∈ sem(SF), if S ∈ adm(SF) and ∄T ∈ adm(SF) s.t. T⊕R ⊃ S⊕R .

The relationship between the semantics has been clarified in [6, 2, 15] and matches with the
relations between the semantics for Dung AFs, i.e. for any SETAF SF :

stb(SF)⊆ sem(SF)⊆ pref(SF)⊆ com(SF)⊆ adm(SF)⊆ cf(SF)

We assume the reader to have basic knowledge in computational complexity theory1, in
particular we make use of the complexity classes P (polynomial time), NP (non-deterministic
polynomial time), coNP, ΣP

2 , and ΠP
2 . For a SETAF SF = (A,R) and an argument a ∈ A, we

consider the standard reasoning problems (under semantics σ):

• Credulous acceptance Credσ : Is a contained in at least one σ extension of SF?
• Skeptical acceptance Skeptσ : Is a contained in all σ extensions of SF?

The complexity landscape of SETAFs coincides with that of Dung AFs and is depicted in Table 1.
As SETAFs generalize Dung AFs the hardness results for Dung AFs [16] carry over to SETAFs,
also the same upper bounds hold for SETAFs [6].

For a more fine-grained complexity analysis we also make use of the complexity class FPT
(fixed-parameter tractability): a problem is fixed-parameter tractable w.r.t. a parameter if there
is an algorithm with runtime O(f (p) ·poly(n)), where n is the size of the input, p is an integer
describing the instance called the parameter value, and f (·) is an arbitrary computable function
independent of n (typically at least exponential in p). We also make use of the class XP. A
problem is in XP w.r.t. a parameter if there is an algorithm with runtime O(nO(p)), where n is the
size of the input, and p is the parameter value. We have that P⊆ FPT⊆ XP.
1For a gentle introduction to complexity theory in the context of formal argumentation, see [16].

100

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

a b c

d e f g

i jh

(a)

a b c

d e f g

i jh

(b)

Figure 1: (a) The SETAF SF and (b) its primal graph Primal(SF). Collective attacks and their corre-
sponding edges in the primal graph are highlighted.

3. Graph Properties and Backdoors for SETAFs

The underlying structure of SETAFs is a directed hypergraph, which makes it hard to apply
certain notions of graph properties. We can avoid these issues by utilizing “standard” directed
graphs to describe SETAFs, and analyze graph properties (such as backdoors). There are different
such directed graph-representations [7, 8]; we focus on the primal graph, as it arguably is the
most intuitive way to embed SETAFs into directed graphs and fits our purposes best. An example
for a primal graph is given in Figure 1; the corresponding SETAF will serve as a running example
throughout the paper. We utilize the primal graph to define primal-backdoors.

Definition 5 ([7]). Let SF = (A,R) be a SETAF. The primal graph of SF is defined as
Primal(SF) = (A,R′), where R′ = {(t,h) | (T,h) ∈ R, t ∈ T}. A (primal-)cycle of length n
in SF is a non-repeating sequence (a1,a2, . . . ,an) of arguments such that for each 1≤ i≤ n−1
there is (Ai,ai+1) ∈ R such that ai ∈ Ai, and there is (An,a1) ∈ R with an ∈ An. Equivalently, a
primal cycle corresponds to a directed cycle in Primal(SF). SETAFs SF with

• no (primal-)cycles are called (primal-)acyclic,
• no (primal-)cycles of even length are called even-(primal-)cycle-free,

It is easy to see that several SETAFs can map to the same primal graph. However, restrictions on
the primal graph are often useful to obtain computational speedups for otherwise hard problems [7,
8, 9]. We denote the classes of acyclic, even-cycle-free SETAFs by ACYC,NOEVEN, respectively.
Note that in the special case of AFs these classes coincide with the standard definitions, i.e.,
they properly generalize the standard case. For AFs, also the classes of bipartite and symmetric
frameworks have been investigated. However, while finding suitable backdoors to these classes
was shown to be parameterized-tractable, reasoning in AFs with constant backdoor-size to
these frameworks remains hard [14]. Even though there are generalizations of symmetry and
bipartiteness for SETAFs where reasoning also becomes tractable [7], as these classes generalize
the respective properties of AFs, the hardness-results for backdoor evaluation carry over to
the general SETAFs. Hence, we focus on the fragments ACYC and NOEVEN. On AFs, all of
these classes are considered as the tractable fragments of argumentation, as for many semantics
there are efficient algorithms to reason in AFs that belong to one of these classes [3, 4, 5].
However, these fragments restrict the possible structure of an AF. In order to exploit the speedup
while still keeping the full expressiveness, the requirements have been weakened to allow for
arbitrary distance to these fragments. We generalize this so-called backdoor-approach by Dvořák
et al. [14].

101

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

a b c

d e f g

i jh

(a)

c

d e f g

i jh

(b)

Figure 2: (a) The SETAF SF = (A,R) with the highlighted NOEVEN-backdoor B = {a,b} and (b) the
“remaining” framework SF↓A\B after the deletion of B.

For this, we need the notion of the projection. Intuitively, a SETAF SF = (A,R) projected to
a set of arguments S ⊆ A (we write SF↓S) can be seen as the result of removing the arguments
outside of S while retaining as much of the original structure as possible.

Definition 6. Let SF = (A,R) be a SETAF and let C be a class of SETAFs. We call a set B⊆ A a
C-backdoor if SF↓A\B belongs to C, where

SF↓A\B= (A\B,{(T \B,h) | (T,h) ∈ R,T \B ̸= /0,h ∈ A\B}).

We denote the size of a smallest C-backdoor by bdC(SF).

Figure 2 illustrates the idea of backdoors: the set B = {a,b} is a NOEVEN-backdoor for the
SETAF SF = (A,R) of size 2. It is easy to see in Figure 2(b) that in the SETAF SF projected to
A\B, i.e., the remaining framework SF↓A\B after removing the backdoor, has no directed cycles
of even length in its primal graph. We want to highlight that in SF↓A\B the attack ({b,g},c) from
SF is not deleted as a whole, but “reduced” to the attack (g,c). It can easily be verified that
indeed, B is a smallest NOEVEN-backdoor. For any ACYC-backdoor, furthermore the argument h
has to be included (in general, every ACYC-backdoor is a NOEVEN-backdoor but not vice versa).
Hence, for our example we have bdACYC(SF) = 3 and bdNOEVEN(SF) = 2.

It was shown that reasoning in AFs w.r.t. stable, complete, and preferred semantics is tractable
for the fragments C ∈ {ACYC,NOEVEN} if bdC(SF) is fixed [14], we generalize these results in
Section 4. We can efficiently recognize these classes for AFs [14] and find backdoors of bounded
size. As we defined the fragments for SETAFs on the primal graph, the respective results from
AFs immediately carry over to our setting.

Corollary 7. Let SF be a SETAF.

1. We can recognize whether SF belongs to ACYC or NOEVEN in polynomial time.
2. We can find a NOEVEN-backdoor of size at most p in time |SF |O(p) (or if no such backdoor

exists correctly detect so).
3. We can find an ACYC-backdoor of size at most p in time f (p) · poly|SF | (or if no such

backdoor exists correctly detect so).

This means, that the fragment ACYC is in principle suitable for FPT algorithms, while for
NOEVEN we aim for XP algorithms (however, it is principally possible that faster algorithms for
finding NOEVEN-backdoors exist).

102

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

4. Backdoor Evaluation

In this section we tackle the evaluation of backdoors of constant size, i.e., assume we are given a
backdoor, how can we efficiently compute the extensions. We adapt the results from [14] and
generalize the therein mentioned notions such as partial labelings and propagation algorithms
to SETAFs. Our approach however differs from the one in [14] as it is tailored to the fragments
ACYC and NOEVEN. This allows us to give a tighter upper bound for the runtime: O(2p ·poly(n))
instead of O(3p ·poly(n)) (p is the size of the given backdoor and n is the size of the instance).
Our improved algorithm is applicable to SETAFs as well as AFs, as the latter is just a special
case of the former.

The basic idea of the backdoor evaluation algorithm is to guess parts of an extension on the
arguments in the backdoor, and then cleverly propagate this guess to the rest of the instance. As the
remaining instance is even-cycle-free, there are no supportive cycles to consider in the propagation
step. Algorithm 1 captures the whole process; in the following we will verify its correctness
and give an intuition for each step. If we provide for a SETAF SF a NOEVEN-backdoor B,
Algorithm 1 returns a set of admissible candidates pref ∗(SF,B) for preferred extensions.

Algorithm 1: Computation of pref ∗(SF,B)
1 pref∗(SF,B)← /0;
2 foreach I ⊆ B do
3 let λ be a partial labeling on B;
4 set λ (a) = in for a ∈ I;
5 set λ (a) = out for a ∈ B\ I;
6 λ ∗← propagateIO(SF,λ);
7 set λ ∗(a) = und for a ∈ A\DEF(λ ∗);
8 λ †← propagateU(SF,λ ∗);
9 if IN(λ †)∩B = I then

10 pref∗(SF,B)← pref∗(SF,B)∪{IN(λ †)};

We capture the concept of the partial guess by partial labelings (cf. [14]).

Definition 8. Let SF = (A,R) be a SETAF and let X ⊆ A be a set of arguments. A partial
labeling is a function λ : X → {in,out,und}. By IN(λ) we denote the set {a ∈ X | λ (a) = in}
(similarly, OUT(λ),UND(λ)). We write DEF(λ) to identify the set X. For a set S⊆ X we fix the
corresponding partial labeling on X as

λS(a) =

⎧⎪⎨⎪⎩
in if a ∈ S,
out if a ∈ S+R ,
und else, i.e. a ∈ X \S⊕R .

A labeling λ is compatible with a set S⊆ A if ∀a ∈ DEF(λ) it holds λ (a) = λS(a).

We consider two “phases” of propagation. In the first, we propagate the in/out labels of
the guess as far as possible. The second phase fixes incorrectly labeled arguments and assured
admissibility in the generated labeling. We will show that with this approach we can capture all
preferred extensions.

103

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

a
out

b
out

c
in

d
out

e
in

f
in

g
out

i j
in

h

(a)

a
in

b
in

c
out

d
in

e
out

f
out

g
in

i
in

j
in

h

(b)

Figure 3: The first propagation propagateIO (a) λ ∗1 , (b) λ ∗2 , on the guessed labels for the backdoor
arguments a and b (highlighted).

Definition 9. Let SF = (A,R) be a SETAF and λ be a partial labeling on X ⊆ A. Consider the
following propagation rules for λ :

1. set λ ∗(a) = out if ∃(T,a) ∈ R with T ⊆ IN(λ ∗),
2. set λ ∗(a) = in if ∀(T,a) ∈ R there is a t ∈ T with λ ∗(t) = out.

We define propagateIO(SF,λ) as the result of initializing λ ∗ with λ on DEF(λ), and then exhaus-
tively applying the rules 1. and 2. to each argument a ∈ A\DEF(λ).

3. set λ †(a) = und if λ †(a) = in and there is (T,a) ∈ R s.t. ∄ t ∈ T : λ †(t) = out,
4. set λ †(a) = und if λ †(a) = out and there is no (T,a) ∈ R s.t. T ⊆ IN(λ †).

We define propagateU(SF,λ) as the result of initializing λ † with λ on DEF(λ), and then exhaus-
tively applying the rules 3. and 4. to each argument a ∈ IN(λ)∪OUT(λ).

In the following Lemma 10 we formalize the intuition of propagateIO. We propagate the
labels we guessed on B and treat them at this stage as if they are “confirmed”, i.e., whenever
we have a reason to assume an argument is defended, we add it (by labeling it in), whenever
we have a reason to assume an argument is defeated, we keep track of this fact (by labeling
it out). In this stage, no argument will be labeled und. We revisit our running example from
Figure 2. Assume we guess λ1(a) = λ1(b) = out for the backdoor {a,b}. The labeling λ ∗1 after
exhaustively applying rules 1. and 2. is depicted in Figure 3(a). In general, we will incorrectly
label arguments: as can be seen, the argument a is labeled out, but there is no attack towards a
that verifies this label. Now assume we guess λ2(a) = λ2(b) = in. One can see in Figure 3(b)
that there is a problem with the propagated labeling λ ∗2 : the arguments d and a are both labeled
in, effectively causing a conflict. Though we will correct this problem in the second step of the
propagation algorithm, we will have to change the label of a from in to und. We will see that we
can actually already stop at this point, as we will then compute (a subset of) the extension we
get from the guess λ3(a) = out,λ3(b) = in. In the following lemma we establish that we label all
arguments a ∈ E⊕R correctly (i.e., in and out, resp.).

Lemma 10. Let SF = (A,R) be a SETAF, let E ∈ pref(SF), and B⊆ A a NOEVEN-backdoor for
SF. For the input (SF,B) to Algorithm 1, assume in step 2 we choose I = E ∩B, let λ be the
corresponding partial labeling from steps 4 and 5. Set λ ∗ = propagateIO(SF,λ). Then for each
a ∈ A:

104

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

(a) if λ ∗(a) = in then a /∈ E+
R ,

(b) if λ ∗(a) = out then a /∈ E,
(c) if a /∈ DEF(λ ∗) then a /∈ E⊕R ,
(d) E ⊆ IN(λ ∗), and
(e) E+

R ⊆ OUT(λ ∗).

Proof. We show (a) and (b) by induction on the number of labeled arguments in the construction
of λ ∗. For the base case λ ∗ = λ it is easy to see that all conditions (a) and (b) hold (by assumption
we have OUT(λ) = B\ IN(λ) = (A∩B)\E). For the step we consider the rules 1. and 2.:

Assume a is labeled via rule 1., i.e. we set λ ∗(a) = out for some a ∈ A\DEF(λ). Clearly, (a)
is not violated by labeling a as out, for (b) we show a /∈ E. Since we invoked rule 1., there is
an attack (T,a) ∈ R with T ⊆ IN(λ ∗). By our induction hypothesis we know that (a) holds for
each t ∈ T , i.e. T ∩E+

R = /0. This means E does not defend a against the attack (T,a), and since
E ∈ pref(SF), we get a /∈ E.

Now assume a is labeled via rule 2., i.e. we set λ ∗(a) = in for some a ∈ A\DEF(λ). Clearly,
(b) is not violated by labeling a as in, for (a) we show a /∈ E+

R . Since we invoked rule 2., for all
attacks (T,a) ∈ R there is some t ∈ T with λ ∗(t) = out. By our induction hypothesis we know
that (b) holds for each such t, i.e. t /∈ E. Hence, there can be no attack (T,a) with T ⊆ E, i.e.,
a /∈ E+

R .
For (c) assume towards contradiction there is an argument a1 ∈ E such that a1 /∈ DEF(λ ∗).

If there is no attack (T,a1) ∈ R towards a1, we would have λ ∗(a1) = in, hence, there is such an
attack. Moreover, there is a (T,a1) ∈ R s.t. for no t ∈ T we have λ ∗(t) = out, otherwise we would
have λ ∗(a1) = in. However, by admissibility of E there is at least one t1 ∈ T ∩E+

R . For this t1 we
have t1 ∈ A\DEF(λ ∗), i.e. t1 is unlabeled (the only other option, the label in, violates (b)). Since
t1 ∈ E+

R , there is an attack (S, t1) ∈ R, but since t1 is unlabeled, S ̸⊆ IN(λ ∗), i.e., there is an a2 ∈ S
such that a2 is unlabeled. We have a1 ̸= a2, as this would imply an even-length cycle (a2, t1). As
for a2 we can reason in the same way as for a1, we obtain another unlabeled argument t2 ∈ E+

R ,
and eventually a sequence a1, t1,a2, t2, . . . of arguments. However, as SF is finite and all ai are
different, eventually there is either (i) an unlabeled argument ak where no attack (Tk,ak) towards
ak has an unlabeled tk ∈ Tk, but then λ ∗(ak) = in, a contradiction, or (ii) an unlabeled argument
tk where there is no counter-attack (Sk, tk) with an unlabeled ak+1 ∈ Sk, but then λ ∗(tk) = out, a
contradiction. Hence, no such a1 can exist. Assuming there is an unlabeled argument t1 ∈ E+

R
analogously leads to a contradiction.

Finally, from (a) and (c) follows (d) and from (b) and (c) follows (e).

Lemma 11 shows that the procedure propagateU(SF,λ) is sound. In particular, it is easy to
see that any partial labeling λ ∗ with DEF(λ ∗) = A that we give as input to propagateU will
give us an admissible set (rule 3. removes conflicts and both rules 3. and 4. resolve undefended
arguments). An argument is incorrectly labeled in if it is not defended against each attack; it is
incorrectly labeled out if it is not attacked from within the set IN(λ). By exhaustively applying
the propagation rules 3. and 4. we fix these incorrect labels. To illustrate this, we revisit our
running example. In Figure 3 we see the resulting labelings λ ∗1 ,λ

∗
2 for the backdoor B = {a,b}

for the guesses (a) λ1(a) = λ1(b) = out, and (b) λ2(a) = λ2(b) = in. Following Algorithm 1, in
step 7 we set the un-labeled argument to und and compute propagateU for both labelings. In

105

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

a
und

b
out

c
in

d
und

e
und

f
in

g
out

i
und

j
in

h
und

(a)

a
und

b
in

c
out

d
und

e
und

f
out

g
in

i
und

j
in

h
und

(b)

Figure 4: The second propagation propagateU (a) λ
†
1 , (b) λ

†
2 , computed on the labels from Figure 3(a)

and (b), respectively.

Figure 4 we see the resulting labelings λ
†
1 ,λ

†
2 . Our algorithm outputs the sets {c, f , j},{b,g, j}

respectively, and it can be indeed verified that these sets are preferred in SF . Now consider the
guess λ3(a) = out,λ3(b) = in. It turns out that λ

†
3 = λ

†
2 : the fact that both labelings result in the

same propagation means in particular that there is no preferred extension E where {a,b} ⊆ E,
as by trying to construct such an extension in (b) we had to correct the label of a. In general,
whenever we re-label one of the guessed in-labels, we can abort the run of the algorithm on this
guess and proceed with a different guess, as we will always compute (a superset of) the thereby
“missed” set when we start with the corresponding “correct” labeling on the backdoor arguments.

We show in the following Lemma 11 that for every argument a where we fix the label und, a is
indeed neither in the corresponding extension nor attacked by it, i.e. a /∈ E⊕R . This together with
the results of Lemma 10 suffices to show that if we guess correctly, the algorithm computes every
preferred extension.

Lemma 11. Let SF = (A,R) be a SETAF, let E ∈ pref(SF), and B⊆ A a NOEVEN-backdoor for
SF. For the input (SF,B) to Algorithm 1, assume in step 2 we choose I = E ∩B, let λ ∗ be the cor-
responding propagated partial labeling from step 7 with und labels. Set λ † = propagateU(SF,λ ∗).
Then E = IN(λ †).

Proof. We first show by induction on the number of re-labeled arguments (i.e., arguments that
are labeled und during the construction of λ †) that for each a ∈ A it holds if λ †(a) = und then
a ∈ A\E⊕R . The base case where λ † = λ ∗ is covered by Lemma 10(c). For the inductive step
consider the rules 3. and 4.:

Assume a is re-labeled by rule 3., i.e. we set λ †(a) = und for some a ∈ IN(λ ∗). By
Lemma 10(a) we know a /∈ E+

R , we show a /∈ E. Since we invoked rule 3., there is (T,a) ∈ R
s.t. ∄ t ∈ T with λ †(t) = out. By induction hypothesis and Lemma 10(a) and (c), this means
E+

R ∩T = /0, i.e. a is not defended by E against (T,a). By admissibility this means a /∈ E.
Assume a is re-labeled by rule 4., i.e. we set λ †(a) = und for some a ∈ OUT(λ ∗). By

Lemma 10(b) we know a /∈ E, we show a /∈ E+
R . Since we invoked rule 4., there is no (T,a) ∈ R

s.t. T ⊆ IN(λ ∗). By induction hypothesis and Lemma 10(c), this means T ̸⊆ E, i.e. a is not
attacked by E.

Next, we show IN(λ †) ∈ adm(SF). By E ′ we identify the set IN(λ †). Assume towards
contradiction there is a conflicting attack (T,h) ∈ R with T ∪{h} ⊆ E ′. However, this means
we would re-label h by rule 3., as there is no t ∈ T with λ †(t) = out, a contradiction. Hence,

106

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

E ′ ∈ cf(SF). Now assume towards contradiction there is an undefended argument a ∈ E ′, i.e.,
there is an attack (T,a) ∈ R s.t. for no t ∈ T there is an attack (S, t) ∈ R with S⊆ E ′. As a ∈ E ′,
there is some t ∈ T where either (i) we set λ ∗(t) = out during the computation of λ ∗ and did not
change the label later, in which case we did not invoke propagation rule 4., and there is indeed
an attack (S, t) ∈ R towards t with S ⊆ E ′ and a is defended, or (ii) we set λ ∗(t) = out during
the computation of λ ∗ and during the computation of λ † update it to λ †(t) = und, but then if no
t ′ ∈ T with λ †(t ′) = out is left, we would have invoked propagation rule 3. for a and set it to und,
and if such a t ′ exists where we did not change the label, then a is also defended as in case (i). In
all cases we see that indeed a is defended by E ′ and can conclude E ′ ∈ adm(SF).

Finally, by Lemma 10(d) and the formerly established fact that for each a ∈ A it holds if
λ †(a) = und then a ∈ A\E⊕R we know also E ⊆ E ′. Since E ′ ∈ adm(SF) and we assumed E is
preferred, we get E = E ′.

These correctness results for the propagation procedures are the basis for the main result of this
section, namely the efficient computation of preferred extensions if a suitable backdoor is given.

Theorem 12. Let C ∈ {NOEVEN,ACYC} be a SETAF class, let SF = (A,R) be a SETAF, and
B⊆ A a C-backdoor for SF with |B| ≤ p. With Algorithm 1 we can enumerate all σ -extensions
in time 2p ·poly(|SF |) for σ ∈ {pref,stb,sem} on input (SF,B).

Proof. Let E ∈ pref(SF), we show that E is in the output of Algorithm 1, i.e., E ∈ pref ∗(SF,B).
Since in step 2 we try all subsets of B, we will try I = E∩B. Lemma 11 ensures E ∈ pref ∗(SF,B).
It remains to show that all steps 3-10 can be done in polynomial time w.r.t. |SF |. It is easy to
see that (assuming we use reasonable data structures) this is the case for steps 3-5, 7, 9, and 10.
For step 6 and 8 note that each argument is (re)-labeled at most once, and the check for each
propagation rule can clearly be carried out in polynomial time. Hence, the overall runtime is
2p ·poly(|SF |). Finally, we can then check whether the extensions are (range)-subset-maximal or
attack every argument not in them, as all candidates are available. Hence, we can remove those
sets that are not preferred/stable/semi-stable.

As we can efficiently enumerate all extensions, also reasoning becomes efficient in this
case. This result also carries over to admissible and complete semantics, as the respective
credulous acceptance problems coincide with preferred semantics, Skeptcom is already possible in
polynomial time and Skeptadm is trivial. We want to highlight that even if we have a NOEVEN-
backdoor of size p, there can be up to O(3p) complete extensions. Clearly we cannot enumerate
them with our approach, which is why we capture the preferred extensions (in contrast to the AF
approach [14]).

Corollary 13. Let C ∈ {NOEVEN,ACYC} be a SETAF class, let SF = (A,R) be a SETAF, and
B⊆ A a C-backdoor for SF with |B| ≤ p. Then we can decide the problems Credσ and Skeptσ in
time 2p ·poly(|SF |) for σ ∈ {adm,com,pref,stb,sem}.

Combining Corollary 7 and Corollary 13, we immediately obtain the following main result
that captures finding and exploiting minimal backdoors for SETAFs.

Theorem 14. Let SF be a SETAF and let σ ∈{adm,com,pref,stb,sem} be a semantics.

107

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

1. If bdACYC(SF)≤ p, we can solve Credσ and Skeptσ in FPT w.r.t. parameter p.
2. If bdNOEVEN(SF)≤ p, we can solve Credσ and Skeptσ in XP w.r.t. parameter p.

In fact, our algorithm for exploiting a small backdoor that is already given is only in 2p for the
parameter value p, which is an improvement over the existing 3p approach [14]. This also has
implications in practice, as it turns out that finding the minimal backdoor-size often comes with
high computational cost: for example, one known FPT algorithm for the computation of minimal
NOEVEN-backdoors of size p for directed graphs G has runtime 4p · p! ·poly(|G|) [17], which
is often impractical even for small parameter values. Instead, recent implementations focus on
finding backdoors heuristically, cf. [18]. Hence, our results are also relevant for the development
of fast algorithms for AFs, since Theorem 12 & 14 and Corollary 13 also hold in the special case
of AFs.

5. Conditional Lower Bounds for Backdoor Evaluation

In this section we show a so-called conditional lower bound [19] for NOEVEN/ACYC-backdoor
evaluation, i.e. we show that our algorithm is basically optimal based on some well-known conjec-
ture. The conjecture we are going to use is the Strong exponential-time hypothesis (SETH) [20, 21].
We show this for AFs; the result carries over to SETAFs.

Conjecture 1 (Strong Exponential Time Hypothesis (SETH)). For each ε > 0 there is a k such
that k-CNF-SAT on n variables and m clauses cannot be solved in O(2(1−ε)n ·poly(n+m)) time.

Let p be the parameter for the backdoor size. We will show that any NOEVEN-backdoor
evaluation that runs in time O(2(1−ε)p ·poly(|F |)) for AFs F would violate SETH and thus imply
a major break-through in the development of SAT algorithms.

Theorem 15. Let F = (A,R) be an AF and let C ∈ {NOEVEN,ACYC} and let p the size of the
given backdoor. There is no O(2(1−ε)p ·poly(|A|)) C-backdoor evaluation algorithm for Credσ

for σ ∈ {adm,com,pref,stb,sem} unless SETH is false.

Proof. Given an instance from SETH, i.e. a CNF formula ϕ with n variables and m clauses.
Let X = {x1, . . . ,xn} be the set of variables and C = {c1, . . . ,cm} be the set of clauses appearing
in ϕ . Consider the standard translation [16] from a CNF formula ϕ to an AF Fϕ = (A,R) (cf.
Figure 5) with A = {ϕ}∪C∪X ∪ X̄ and R = {(c,ϕ) | c ∈C}∪{(x, x̄),(x̄,x) | x ∈ X}∪{(x,c) |
x ∈ c,c ∈C}∪{(x̄,c) | x̄ ∈ c,c ∈C}. We know that the formula ϕ is satisfiable iff the argument
ϕ is credulously accepted w.r.t. σ [16]. Moreover, we have that the set X is a C-backdoor of Fϕ

and has size n.
Towards, a contradiction let us assume we have a O(2(1−ε)p ·poly(|A|)) C-backdoor evaluation

algorithm. Then we can decide whether a CNF formula ϕ is satisfiable as follows: We first
construct the AF Fϕ (which is polynomial in n+m) and then run the C-backdoor evaluation with
backdoor X and return the answer for the credulous decision problem as answer to the satisfiability
problem. By assumption the latter step has a running time of O(2(1−ε)n ·poly(n+m)). That is, we
have a O(2(1−ε)n ·poly(n+m)) algorithm for k-CNF-SAT for arbitrary k > 1, which contradicts
SETH.

108

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

ϕ

c1 c2 c3

y1 ȳ1 y2 ȳ2 z1 z̄1 z2 z̄2

Figure 5: Illustration of the standard translation Fϕ for ϕ = {{ȳ1, ȳ2, z̄1},{y1,y2,z2)},{y2,z1, z̄2}}

6. Conclusion

In this paper, we have applied the well known concept of backdoors for the first time to ar-
gumentation frameworks with collective attacks. Instead of simply adapting previous work in
this direction, we came up with a genuinely new approach for computing extensions utilizing
backdoors to acyclicity and no-even graphs that shows improved runtime bounds compared to the
known algorithms for standard AFs. Moreover, we proved that under some complexity-theoretic
assumptions further such improvements are not possible. We focused on graph restrictions on the
primal graph rather than the SETAF’s hypergraph structure, as this allows us to exploit established
ideas for finding backdoors—the situation for directed hypergraphs is less diverse. Future work
includes the implementation of these techniques and the optimization for heuristics to find suitable
backdoors.

Acknowledgments

This research has been supported by the Vienna Science and Technology Fund (WWTF) through
project ICT19-065, and by the Austrian Science Fund (FWF) through projects P32830 and Y698.

References

[1] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Artif. Intell. 77 (1995) 321–358.

[2] S. H. Nielsen, S. Parsons, A generalization of Dung’s abstract framework for argumentation:
Arguing with sets of attacking arguments, in: Proceedings of ArgMAS 2006, Springer,
2006, pp. 54–73. doi:10.1007/978-3-540-75526-5_4.

[3] S. Coste-Marquis, C. Devred, P. Marquis, Symmetric argumentation frameworks, in:
Proceedings of ECSQARU 2005, volume 3571 of LNCS, Springer, 2005, pp. 317–328.

[4] P. E. Dunne, Computational properties of argument systems satisfying graph-theoretic
constraints, Artif. Intell. 171 (2007) 701–729.

[5] P. E. Dunne, T. J. M. Bench-Capon, Complexity and Combinatorial Properties of Argument
Systems, Technical Report, Dept. of Computer Science, University of Liverpool, 2001.

[6] W. Dvořák, A. Greßler, S. Woltran, Evaluating SETAFs via answer-set programming, in:

109

http://dx.doi.org/10.1007/978-3-540-75526-5_4

Wolfgang Dvořák et al. CEUR Workshop Proceedings 98–110

Proceedings of SAFA 2018, volume 2171 of CEUR Workshop Proceedings, CEUR-WS.org,
2018, pp. 10–21.

[7] W. Dvořák, M. König, S. Woltran, Graph-classes of argumentation frameworks with
collective attacks, in: Proceedings of JELIA 2021, volume 12678 of LNCS, Springer, 2021,
pp. 3–17. doi:10.1007/978-3-030-75775-5_1.

[8] W. Dvořák, M. König, S. Woltran, On the complexity of preferred semantics in argumen-
tation frameworks with bounded cycle length, in: Proceedings of KR 2021, 2021, pp.
671–675. doi:10.24963/kr.2021/67.

[9] W. Dvořák, M. König, S. Woltran, Treewidth for argumentation frameworks with collective
attacks, in: Proceedings of COMMA, 2022. To appear.

[10] S. Gaspers, S. Ordyniak, S. Szeider, Backdoor sets for CSP, in: The Constraint Satisfaction
Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 137–157. URL: https://doi.org/10.
4230/DFU.Vol7.15301.5. doi:10.4230/DFU.Vol7.15301.5.

[11] J. K. Fichte, S. Szeider, Backdoors to tractable answer set programming, Artif. Intell.
220 (2015) 64–103. URL: https://doi.org/10.1016/j.artint.2014.12.001. doi:10.1016/j.
artint.2014.12.001.

[12] S. Ordyniak, A. Schidler, S. Szeider, Backdoor dnfs, in: Z. Zhou (Ed.), Proceedings of
IJCAI 2021, ijcai.org, 2021, pp. 1403–1409. URL: https://doi.org/10.24963/ijcai.2021/194.
doi:10.24963/ijcai.2021/194.

[13] S. Gaspers, N. Misra, S. Ordyniak, S. Szeider, S. Zivný, Backdoors into heterogeneous
classes of SAT and CSP, in: C. E. Brodley, P. Stone (Eds.), Proceedings of AAAI, AAAI
Press, 2014, pp. 2652–2658. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/
paper/view/8177.

[14] W. Dvořák, S. Ordyniak, S. Szeider, Augmenting tractable fragments of abstract argumen-
tation, Artificial Intelligence 186 (2012) 157–173. URL: http://www.sciencedirect.com/
science/article/pii/S0004370212000239. doi:10.1016/j.artint.2012.03.002.

[15] G. Flouris, A. Bikakis, A comprehensive study of argumentation frameworks with sets of
attacking arguments, Int. J. Approx. Reason. 109 (2019) 55–86. doi:10.1016/j.ijar.
2019.03.006.

[16] W. Dvořák, P. E. Dunne, Computational problems in formal argumentation and their
complexity, in: Handbook of Formal Argumentation, College Publications, 2018, pp.
631–687.

[17] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, I. Razgon, A fixed-parameter algorithm for the
directed feedback vertex set problem, J. ACM 55 (2008) 21:1–21:19. URL: https://doi.org/
10.1145/1411509.1411511. doi:10.1145/1411509.1411511.

[18] W. Dvořák, M. Hecher, M. König, A. Schidler, S. Szeider, S. Woltran, Tractable abstract
argumentation via backdoor-treewidth, in: Proceedings of AAAI, 2022, pp. 5608–5615.

[19] A. Abboud, V. V. Williams, Popular Conjectures Imply Strong Lower Bounds for Dynamic
Problems, in: Proceedings of FOCS, 2014, pp. 434–443.

[20] R. Impagliazzo, R. Paturi, Complexity of k-SAT, in: Proceedings of CCC, 1999, pp.
237–240.

[21] R. Impagliazzo, R. Paturi, F. Zane, Which Problems Have Strongly Exponential Complex-
ity?, in: Proceedings of FOCS, 1998, pp. 653–662.

110

http://dx.doi.org/10.1007/978-3-030-75775-5_1
http://dx.doi.org/10.24963/kr.2021/67
https://doi.org/10.4230/DFU.Vol7.15301.5
https://doi.org/10.4230/DFU.Vol7.15301.5
http://dx.doi.org/10.4230/DFU.Vol7.15301.5
https://doi.org/10.1016/j.artint.2014.12.001
http://dx.doi.org/10.1016/j.artint.2014.12.001
http://dx.doi.org/10.1016/j.artint.2014.12.001
https://doi.org/10.24963/ijcai.2021/194
http://dx.doi.org/10.24963/ijcai.2021/194
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8177
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8177
http://www.sciencedirect.com/science/article/pii/S0004370212000239
http://www.sciencedirect.com/science/article/pii/S0004370212000239
http://dx.doi.org/10.1016/j.artint.2012.03.002
http://dx.doi.org/10.1016/j.ijar.2019.03.006
http://dx.doi.org/10.1016/j.ijar.2019.03.006
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1145/1411509.1411511
http://dx.doi.org/10.1145/1411509.1411511

	1 Introduction
	2 Background
	3 Graph Properties and Backdoors for SETAFs
	4 Backdoor Evaluation
	5 Conditional Lower Bounds for Backdoor Evaluation
	6 Conclusion

