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Abstract
This short paper reports about a line of research exploiting a conditional logic of commonsense reasoning

to provide a semantic interpretation to neural network models. A “concept-wise" multi-preferential

semantics for conditionals is exploited to build a preferential interpretation of a trained neural network

starting from its input-output behavior. The approach is general (model agnostic): it is based on a notion

of metric distance to de�ne preferences and has been �rst proposed for Self-Organising Maps (SOMs).

For MultiLayer Perceptrons (MLPs), a deep network can as well be regarded as a (fuzzy) conditional

knowledge base (KB), in which the synaptic connections correspond to weighted conditionals. This opens

to the possibility of adopting conditional description logics as a basis for neuro-symbolic integration.

Proof methods for many-valued weighted conditional KBs have been developed, based on Answer Set

Programming and Datalog encodings to deal with the entailment and model-checking problems.
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1. Introduction

Preferential approaches to common sense reasoning (e.g., [1]) have their roots in conditional

logics [2, 3], and have been recently extended to Description Logics (DLs), to deal with inheri-

tance with exceptions in ontologies, by allowing non-strict form of inclusions, called defeasible

or typicality inclusions.

Di�erent preferential semantics [4, 5, 6, 7] and closure constructions (e.g., [8, 9, 10]) have

been proposed for such defeasible DLs. In this paper, we report about a concept-wise multi-
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preferential semantics [11], �rst introduced as a semantics of ranked knowledge bases in a

description logic (DL) to account for preferences with respect to di�erent concepts, and later

extended to weighted conditional knowledge bases and proposed as a semantics for some neural

network models [12, 13, 14].

We deal with both an unsupervised model, Self-organising maps (SOMs) [15], which is consid-

ered as a psychologically and biologically plausible neural network model, and a supervised one,

MultiLayer Perceptrons (MLPs) [16]. Learning algorithms in the two cases are quite di�erent

but our project is to capture in a semantic interpretation the behavior of the network after

training and not to provide a logical characterization of the learning process.

In both cases, considering a domain of input stimuli presented to the network e.g., during

training or generalization), a semantic interpretation describing the input-output behavior of the

network can be provided as a multi-preferential interpretation, where preferences are associated

to concepts. For SOMs, the learned categories C1, . . . , Cn are regarded as concepts so that a

preference relation over the domain of input stimuli is associated with each category [12, 14].

For MLPs, each unit of interest in the deep network (including hidden units) can be associated

with a concept and with a preference relation on the domain [13].

The idea is that, for two input stimuli x and y and two categories/concepts, e.g., Horse and

Zebra , the neural model can, for example, assign to x a degree of membership in Horse higher

than the degree of membership of y, so that x can be regarded as more typical than y as a

horse (x <Horse y ), while x could be less typical than y as a zebra (y <Zebra x ). A preferential

interpretation can be built over the domain of input stimuli, and used for checking properties

such as: are the instances of category C1 also instances of C2? Are typical instances of C1

also instances of C2? This veri�cation can be done by model-checking on the preferential

interpretation.

For MLPs, the relationship between the logic of commonsense reasoning and deep neural

networks is even stronger, as a deep neural network can itself be regarded as a conditional

knowledge base, i.e., as a set weighted conditionals. This has been achieved by developing a

concept-wise fuzzy multi-preferential semantics for DLs with weighted defeasible inclusions.

Some di�erent preferential closure constructions have been considered for weighted knowledge

bases (the coherent [13], faithful [17] and ϕ-coherent [18] multi-preferential semantics), and

their relationships with MLPs have been investigated (see [13, 18]).

Undecidability results for fuzzy DLs with general inclusion axioms [19, 20] have motivated

the investigation of many-valued approximations of fuzzy multi-preferential entailment. The

semantics above have been reconsidered in the �nitely many-valued case. In [21] an ASP-based

approach has been exploited for reasoning with weighted conditional KBs under ϕ-coherent
entailment. Datalog with weakly strati�ed negation has been used for developing a model-

checking approach for MLPs, still in the many-valued case [22, 23]. Both the entailment and the

model-checking approaches have been experimented in the veri�cation of properties of some

trained multilayer feedforward networks and, speci�cally, in the veri�cation of properties of

neural networks for the recognition of basic emotions.

The strong relationships between neural networks and conditional logics of commonsense

reasoning suggest that conditional logics can be used for the veri�cation of properties of neural

networks to explain their behavior. The possibility of combining symbolic knowledge with

elicited knowledge in the same formalism is a step towards neuro-symbolic integration, in the
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direction of a trustworthy and explainable AI [24, 25, 26].

2. The concept-wise multi-preferential semantics

The concept-wise multi-preferential semantics (cwm-semantics) has been introduced as a se-

mantics for ranked EL knowledge bases [11], and later extended to weighted knowledge bases

[13]. In both cases the knowledge base contains strict (i.e., standard) inclusions and defeasible

or typicality inclusions T(C) ³ D (meaning “the typical Cs are Ds" or “normally Cs are Ds")

with a rank (resp. a weight). They correspond to KLM conditionals C |∼ D [1]. Ranks (weights)

of defeasible inclusions represent their strength (plausibility/implausibility). The preferen-

tial semantics of ranked and weighted knowledge bases are de�ned in terms of concept-wise

multi-preferential interpretations, based on di�erent constructions.

Concept-wise multi-preferential interpretations (cwm-interpretations) are de�ned by adding

to standard DL interpretations (which are pairs I = ï∆, ·Ið, where ∆ is a domain, and ·I

an interpretation function) the preference relations <C1
, . . . , <Cn

associated with a set of

distinguished concepts C1, . . . , Cn, representing the relative typicality of domain individuals

with respect to these concepts. Each preference relation <Ci
is a modular and well-founded

strict partial order on∆. Preferences with respect to di�erent concepts do not need to agree,

as we have seen. In the two-valued case, a global preference relation < can be de�ned from

the <Ci
’s, and concept T(C) is interpreted as the set of all <-minimal C elements. A simple

notion of global preference < exploits Pareto combination of the preference relations <Ci
, but

a more sophisticated global preference, taking into account speci�city, has also been considered

[11]. It has been proven therein that global preference in a cwm-interpretation determines a

KLM-style preferential interpretation, and cwm-entailment satis�es the KLM postulates of a

preferential consequence relation [1].

In the Sections 3 and 4 we will see that, both for SOMs and for MLPs, a multi-preferential

interpretation can be constructed from the input-output behavior of the network over a set of

input stimuli, and can be used for model checking.

3. A preferential interpretation of Self-Organising Maps

Once a SOM has learned to categorize, the result of the categorization can be seen as a concept-

wise multi-preferential interpretation over a domain of input stimuli, in which a preference

relation is associated with each concept (learned category). The combination of preferences

into a global one (following the approach described above) de�nes a KLM-style preferential

model of the SOM. More precisely, once the SOM has learned to categorize, to assess category

generalization, Gliozzi and Plunkett [27] de�ne the map’s disposition to consider a new stimulus

y as a member of a known category C as a function of the distance of y from the map’s

representation of C . The distance d(x,Ci) of a stimulus x from a category Ci can be used to

build a binary preference relation <Ci
among the stimuli in ∆ with respect to category Ci

[14, 12], by letting x <Ci
y if and only if d(x,Ci) > d(y, Ci) (x is more typical than y with

respect to category Ci if its distance from category Ci is lower than the relative distance of

y). Based on the assumption that the abstraction process in the SOM is able to identify the
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most typical exemplars for a given category, in the semantic representation of a category, some

speci�c stimuli (corresponding to the best matching units) are identi�ed as the typical exemplars

of the category.

A notion of relative distance, introduced by Gliozzi and Plunkett in their similarity-based

account of category generalization based on self-organisingmaps [27], is also used for developing

another semantic interpretation of SOMs based on fuzzy DL interpretations. This is done by

interpreting each category (concept) as a function mapping each input stimulus to a value in

[0, 1], based on the map’s generalization degree of category membership to the stimulus [27].

In both the two-valued and fuzzy case, the preferential model can be exploited to learn or

validate conditional knowledge from empirical data, by verifying conditional formulas over the

preferential interpretation constructed from the SOM. In both cases, model checking can be used

for the veri�cation of inclusions (either defeasible inclusions or fuzzy inclusion axioms) over the

respective models of the SOM (for instance, do the most typical penguins belong to the category

Bird with at least a degree of membership 0.8?). Starting from the fuzzy interpretation of the

SOM, a probabilistic interpretation of this neural network model is also provided [14], based on

Zadeh’s probability of fuzzy events [28], and on Montes et al. [29] recent characterization of

the continuous t-norms compatible with Zadeh’s probability of fuzzy events.

4. A preferential interpretation of MultiLayer Perceptrons

The input-output behaviour of MLPs can be captured in a similar way as for SOMs by construct-

ing a preferential interpretation over a domain∆ of input stimuli, e.g., those stimuli considered

during training or generalization [13]. Each neuron k of interest for property veri�cation can

be associated to a distinguished concept Ck. For each concept Ck, a preference relation <Ck

is de�ned over the domain ∆ based on the activity values, yk(v), of neuron k for each input

v ∈ ∆. In a similar way, a fuzzy interpretation of the network can be constructed over the

domain ∆, as well as a fuzzy multi-preferential semantics.

All the three semantics allow the input-output behavior of the network to be captured by

interpretations built over a set of input stimuli through simple constructions, which exploit the

activity level of neurons for the stimuli. In the fuzzy semantics, the interpretation of a concept

Ck is a mapping CI
k : ∆ → [0, 1], associating to each x ∈ ∆ the degree of membership of x

in Ck. The activation value yk(x) of neuron k for a stimulus x in the network (assumed to be

in the interval [0, 1]) is taken to be the degree of membership of x in concept Ch. The fuzzy

interpretation also induces a preference <Ch
on ∆.

The interpretation of boolean concepts is de�ned by fuzzy combination functions, as usual in

fuzzy DLs [30, 31]. This also allows a preference relation <C to be associated to any concept

C , and the typical C-elements to be identi�ed, provided the interpretation is well-founded (an

assumption which clearly holds when the domain ∆ is �nite, as in this case). Let us call Mf,∆
N

the fuzzy multi-preferential interpretation built from network N over a domain ∆.

As for SOMs, logical properties of the network (including fuzzy typicality inclusions) can

then be veri�ed by model checking over such an interpretation. Evaluating properties involving

hidden units might be as well of interest. We refer to the typicality properties considered in the

veri�cation examples in Sections 6.1 and 6.2.
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The fuzzy multi-preferential interpretation Mf,∆
N described above can be proven to be a

model of the neural network N in a logical sense, by mapping the multilayer network into a

weighted conditional knowledge base. Let us introduce a notion of weighted conditional KB.

5. Weighted conditional knowledge bases and MultiLayer Perceptrons

We introduce the de�nition of weighted conditional knowledge bases through an example, and

give some hints about the two-valued and fuzzy multi-preferential semantics.

A weighted ALC knowledge base contains, besides standard inclusion axioms (Tbox T ) and

assertions (Abox A), a set C = {C1, . . . , Ck} of distinguished ALC concepts and, for each Ci,

a set of weighted typicality inclusions of the form T(Ci) ³ Dj , with a positive or negative

weight wi,j (a real number). In the fuzzy case, T and A contain fuzzy axioms [31].

As an example, a knowledge base with T containing the inclusion Black ⊓Grey ³ § may

also include the following weighted defeasible inclusions:

(d1) T(Bird) ³ Fly , +20 (d2) T(Bird) ³ ∃has_Wings.¦, +50

(d3) T(Bird) ³ ∃has_Feathers .¦, +50 (d4) T(Penguin) ³ Fly , - 70

(d5) T(Penguin) ³ Black , +50 (d6) T(Penguin) ³ Grey , +10

The meaning is that a bird normally has wings, has feathers and �ies, but having wings and

feathers is more plausible than �ying, although �ying is regarded as being plausible. For a

penguin, �ying is not plausible (d4 has a negative weight), and being black is more plausible

than being grey.

In the two-valued case, a semantics for weighted ALC knowledge bases can be de�ned with

a semantic closure construction in the spirit of Lehmann’s lexicographic closure [32], but more

similar to Kern-Isberner’s semantics of c-representations [33, 34], in which the world ranks

are generated as a sum of impacts of falsi�ed conditionals. Here, the (positive or negative)

weights of the satis�ed defaults are summed, but in a concept-wise manner, so to determine

the plausibility of a domain elements with respect to certain concepts. For a domain element x
in ∆, and a distinguished concept Ci, the weight Wi(x) of x wrt Ci is de�ned as the sum of

the weights wi
h of the typicality inclusions T(Ci) ³ Di,h veri�ed by x (and is −∞ when x is

not an instance of Ci). From the weightsWi(x) the preference relation fCi
can be de�ned by

letting x fCi
y i� Wi(x) g Wi(y). The higher the weight of x wrt Ci the higher its typicality

relative to Ci. This closure construction de�nes preferences <Ci
(strict modular partial orders)

and allows for the de�nition of concept-wise multi-preferential interpretations as in Section 2.

In the fuzzy case, the fuzzy logic combination functions are used for complex concepts to

compute the Wi(x)’s and to determine the associated preference relations. Speci�cally, let

TCi
= {(dih, w

i
h)} be the set of all weighted typicality inclusions dih = T(Ci) ³ Di,h for the

distinguished concept Ci, for each domain element x ∈ ∆, the weight Wi(x) of x wrt Ci in a

fuzzy interpretation I = ï∆, ·Ið is the sum: Wi(x) =
∑

hw
i
h DI

i,h(x).
To guarantee that the preferences determined from the knowledge base are coherent with

the fuzzy interpretation of concepts, some di�erent semantic constructions have been consid-

ered, namely the notions of coherent [13], faithful [17] and ϕ-coherent [18, 35] (fuzzy) multi-

preferential semantics. Speci�cally, for coherent interpretations we require that:

CI
i (x) < CI

i (y) ⇐⇒ Wi(x) < Wi(y)
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The notion of ϕ-coherence of a fuzzy interpretation I wrt a KB exploits a function ϕ from R

to the interval [0, 1], i.e., ϕ : R → [0, 1]. By slightly generalizing the fuzzy multi-preferential

semantics introduced as a gradual argumentation semantics in [18], we assume that di�erent

functions ϕi are associated to the distinguished concepts Ci.

An interpretation I = ï∆, ·Ið is ϕ-coherent if, for all concepts Ci ∈ C and x ∈ ∆,

CI
i (x) = ϕi(

∑

h

wi
h DI

i,h(x)) (1)

where TCi
= {(T(Ci) ³ Di,h, w

i
h)} is the set of weighted conditionals for Ci. A ϕ-coherent

model of knowledge baseK , is de�ned as a fuzzy interpretation I satisfying TBox T , ABox A
and the ϕ-coherence condition (1).

As usual in preferential semantics, we restrict to canonical models, which are large enough

to contain a domain element for any possible valuation of concepts which is present in some ϕ-
coherent model of K. Based on a notion of ϕ-coherent canonical model of a weighted knowledge

base [21], a notion of ϕ-coherent entailment can be de�ned as expected.

A mapping of a neural network N to a conditional KBKN can be de�ned in a simple way

[13], associating a concept name Ci with each unit i in the network and by introducing, for each

synaptic connection from neuron h to neuron i with weight wih, a conditional T(Ci) ³ Ch

with weight wi
h = wih in KN . If we assume that the activation functions ϕi of the units in the

networkN return values in the interval [0, 1], then the solutions of equations (1) characterize the
stationary states of MLPs, where CI

i (x) corresponds to the activation of neuron i for some input

stimulus x, each DI
i,h(x) corresponds to an input signal xh to neuron i, and

∑
hw

i
h DI

i,h(x)
corresponds to the induced local �eld of neuron i [16].

Let us consider the fuzzy multi-preferential interpretationMf,∆
N built fromN over a domain

∆ of input stimuli, as described in Section 4, and assume that a concept Ck is introduced

in the language for each unit k. It has been proven [13] that the interpretation Mf,∆
N is a

coherent fuzzy multi-preferential model of the knowledge base KN , under some condition on

the activation functions in N . The properties that are entailed fromKN are then satis�ed by

Mf,∆
N , for any choice of the domain ∆.

6. ASP and Datalog for reasoning about neural networks in the

many-valued case: from entailment to model-checking

While a neural network, once trained, is able and fast in classifying the new stimuli (that is,

it is able to do instance checking), other reasoning services such as satis�ability, entailment

and model-checking are missing. Such reasoning tasks are useful for validating knowledge that

has been learned, including proving whether the network satis�es some (strict or conditional)

properties.

Undecidability results for fuzzy DLs with general inclusion axioms [19, 20] have motivated

the investigation of many-valued approximations of fuzzy multi-preferential entailment. The

semantics above have been reconsidered in the �nitely many-valued case. In [21] an ASP-based

approach has been exploited for reasoning with weighted conditional KBs under ϕ-coherent
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entailment. Datalog with weakly strati�ed negation has been used for developing a model-

checking approach for MLPs, still in the many-valued case [22, 23]. Both the entailment and the

model-checking approaches have been experimented in the veri�cation of properties of some

trained multilayer feedforward networks.

6.1. The entailment approach

Reasoning on weighted KBs associated to neural networks, based on a multi-valued truth

space Cn = {0, 1

n
, . . . , n−1

n
, n
n
}, for an integer n g 1, requires introducing, for each activation

function ϕ, a function ϕn which approximates ϕ(x) to the nearest value in Cn. A notion of

ϕn-coherence is de�ned (the analog of ϕ-coherence in Sec. 5), and the corresponding ϕn-coherent

entailment, i.e., satisfaction in all ϕn-coherent models.

In particular, we consider the entailment of a typicality inclusion such asT(C) ³ D g α from

a weighted knowledge baseK in the �nitely many-valued Gödel description logic with typicality

GnLCT, introduced in [21] for the boolean fragment LC of ALC. Such a veri�cation can be

formulated as a problem of computing preferred answer sets of an ASP program, considering

a single distinguished domain element auxC , intended to represent a typical C-element, and

selecting, as preferred answer sets, the ones maximizing the membership of auxC in concept C .

Answer sets maximizing the membership of auxC in concept C can be selected with an asprin

preference program, and represent those inputs stimuli associated with typical C-elements. For

all typical C-elements it is veri�ed that membership in concept D is greater than α.
As a proof of concept, in [21] the entailment approach has been experimented for the weighted

GnLCT KBs corresponding to two of the trained multilayer feedforward network for the

MONK’s problems ([36]). The networks have 17 non-independent binary inputs, corresponding

to values of 6 inputs having 2 to 4 possible values; such inputs are features of a robot, e.g., head

shape and body shape being round, square or octagon, and jacket color being red, yellow, green

or blue. The network for problem 1 has 3 hidden units (h1, h2, h3) and an output unit (o); the
one for problem 3 has 2 hidden units.

For example, in the �rst problem, the trained network learned to classify inputs sat-

isfying a formula F1 ≡ jacket_color_red or head_shape = body_shape which, in terms

of the classes i1 , . . . , i17 corresponding to the binary inputs, is: F1 ≡ i12 ⊔ (i1 ⊓ i4 )
⊔(i2 ⊓ i5 ) ⊔ (i3 ⊓ i6 ).
For instance, the formula T(o) ³ F1 g 1 can be veri�ed for e.g. n = 5, where o is the

concept name associated with the output unit. That is, the G5LCT knowledge base entails that

the typical o-elements satisfy F1. Stronger variants of F1 have also been considered, to check

that the network learned F1 but not such variants. The following formulae have been veri�ed

for hidden nodes h1 , h2 , h3 : T(h1) ³ i12⊔ (¬i1⊓¬i4) g 1, T(h2) ³ i12⊔ (¬i3⊓¬i6) g 1,
T(h3) ³ ¬i12 ⊔ (i2 ⊔ i5) g 1.

6.2. The model-checking approach

Based on the general idea of using model-checking for verifying the properties of a neural

network, as described in Section 4 forMLPs, in [22] we have developed a Datalog-based approach
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Figure 1: The network for MONK’s problem 1, with some of the weights after training, two of the
corresponding typicality inclusions and their ASP representation [21].

which builds a multi-valued preferential interpretation of a trained feedforward network N
and, then, veri�es the properties of the network for post-hoc explanation.

The Datalog encoding contains a componentΠ(N ,∆, n) which is intended to build a (single)

many-valued, preferential interpretation with truth degrees in Cn, and a component associated

to the formulae to be checked. We exploited Datalog with weakly strati�ed negation. The model

checking approach has been experimented in the veri�cation of properties of neural networks

for the recognition of basic emotions using the Facial Action Coding System (FACS) [37].

The RAF-DB [38] data set contains almost 30000 images labeled with basic emotions or

combinations of two emotions. It was used as input to OpenFace 2.0 [39], which detects a subset

of the Action Units (AUs) in [37], i.e., facial muscle contractions. The relations between such

AUs and emotions, studied by psychologists [40], can be used as a reference for formulae to be

veri�ed on neural networks trained to learn such relations.

From the original dataset, we selected the subset of the images that were labelled using only

one emotion in the set {suprise, fear, happiness, anger}. The dataset was highly unbalanced
and we preprocessed the data by subsampling the larger classes and augmenting the minority

ones using standard data-augmentation techniques. The processed dataset contains 5 975 images

(the number of images was 4 283 before augmentation). The images were input to OpenFace

2.0; the output intensities were rescaled in order to make their distribution conformant to the

expected one in case AUs were recognized by humans [37]. The resulting AUs were used as

input to a neural network trained to classify its input as an instance of the four emotions. The

neural network model we used is a fully connected feed forward neural network with three

hidden layers having 1 800, 1 200, and 600 nodes (all hidden layers use RELU activation functions,

while the softmax function is used in the output layer).

The model checking approach was applied, using the Clingo ASP solver as Datalog engine,

taking as set of input stimuli ∆ the test set, containing 1194 images, and n = 5 (given that

AU intensities, when assigned by humans, are on a scale of �ve values). Table 1 reports some

results for the veri�cation of typicality inclusions T(E) ³ F g k/n, with the number of

typical individuals for the emotion E, the number of counterexamples for di�erent values of

k, as well as the value of the conditional probabilities p(F/T(E)) of concept F given concept

T(E), based on Zadeh’s probability of fuzzy events [28]. The approach is the one adopted to

develop a probabilistic interpretation of SOMs after training, starting from a fuzzy interpretation
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Table 1

Results for checking formulae on the test set

[14]. It exploits a recent characterization of the continuous t-norms compatible with Zadeh’s

probability of fuzzy events (PZ-compatible t-norms) by Montes et al. [29]. To compute the

conditional probabilities, we have assumed a uniform probability distribution over∆. Note that

also typicality concepts can occur in conditional probabilities.

For example, T(happiness) ³ au12 g 3/5 (where au12 is the activation of the lip corner

puller muscle, that is, smiling) does not hold as it has 1 counterexample out of 255 instances

of T(happiness). The value of P (au12/T(happiness)) is larger than 4/5, even though there

are 35 counterexamples for T(happiness) ³ au12 g 4/5.

6.3. Further considerations

For the emotion recognition problem in Section 6.2, in the entailment approach the grounding

size of the ASP program only allowed to deal with a network using boolean inputs for the

17 AUs considered, a layer of 8 hidden units, and a single output for deciding membership to

a single emotion. For happiness, in particular, with n=9 (i.e. 10 discrete values) the formula

T (happiness) ³ au6 ⊔ au12 g 1 was found to have 4 counterexamples among the 217

combinations of boolean inputs, 1446 being instances of T (happiness). Interestingly enough,

such 4 combinations do not occur in the data set (indeed, only a small fraction of 217, i.e., 131072
combinations may occur in a few thousand images).

As expected, the model-checking approach outperforms the entailment approach. In fact, the

model checking approach considers a subset of all the possible inputs to the network, and the

veri�cation problem is polynomial in time in the size of the domain ∆ and in the size of the

formula to be veri�ed [22]. On the other hand, all the possible combinations of the values of all

units (including hidden ones) need to be considered in the entailment-based approach. This

was the reason for limiting the size of the network (and, speci�cally, the number of units in

the hidden layers). Note, the entailment approach has been developed for general weighted

conditional knowledge bases, which are not required to be acyclic, while in the experimentation

we have considered feedforward networks.

A multilayer network can be seen as a set of weighted defeasible inclusions in a simple

description logic (only including boolean concepts). However, a weighted conditional knowledge

base can be more general. It can be de�ned for several DLs including roles (as it has been done,

for instance, for EL [13] and for ALC [17]), and it allows for general inclusions axioms and

assertions. The combination of defeasible inclusions with strict (or fuzzy) inclusions and

assertions in a weighted KB allows for the combination of the knowledge acquired from the
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network and symbolic knowledge in the same formalism. In the entailment based approach this

has been exploited in several ways, by adding constraints on the possible inputs through ABox

and TBox axioms (e.g., to exclude combinations of input values).

7. Conclusions

Conditional logics of commonsense reasoning can be used for interpreting and verifying the

knowledge learned by a neural network for post-hoc explanation and, for MLPs, a trained

network can itself be seen as a conditional knowledge base.

Much work has been devoted to the combination of neural networks and symbolic reasoning

(e.g., the work by d’Avila Garcez et al. [41, 42, 43] and Setzu et al. [44]), as well as to the de�nition

of new computational models [45, 46, 47, 48]. The work summarized in this paper opens to

the possibility of adopting conditional logics as a basis for neuro-symbolic integration, e.g.,

learning the weights of a conditional knowledge base from empirical data, and combining the

defeasible inclusions extracted from a neural network with other defeasible or strict inclusions

for inference.

Using a multi-preferential logic for the veri�cation of typicality properties of a neural network

by model-checking is a general (model agnostic) approach. It can be used for SOMs, as in [12, 14],

by exploiting a notion of distance of a stimulus from a category to de�ne a preferential structure,

as well as for MLPs, by exploiting units activity to build a fuzzy preferential interpretation.

Given the simplicity of the approach, a similar construction can be adapted to other network

models and learning approaches, and used in applications combining di�erent network models

(as in the mentioned experiment to the recognition of basic emotions).

Both the model-checking approach and the entailment-based approach are global approaches

(see, e.g., [44] for the notions of local and global approaches), as they consider the the behavior

of the network over a set ∆ of input stimuli. Indeed, the evaluation of typicality inclusions

considers all the individuals in the domain to establish preference relations among them, with

respect to di�erent aspects. However, properties of single individuals can as well be veri�ed (by

instance checking, in DL terminology).

The model-checking approach does not require to consider the activity of all units, but only

of the units involved in the property to be veri�ed. In the entailment-based approach, on the

other hand, all units are considered. This limits its range of applicability to simple networks.

The entailment-based approach is based on the idea of regarding a multilayer network as

weighted conditional knowledge base, and is speci�c for this network model. For MLPs, it has

been proven that, in the fuzzy case, the interpretation built for model-checking is indeed a

model of the weighted conditional KB corresponding to the network [13]. Whether it is possible

to extend the logical encoding of MLPs as weighted KBs to other neural network models is a

subject for future investigation. The development of a temporal extension of this formalism to

capture the transient behavior of MLPs is also an interesting direction to extend this work.
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