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Abstract
This paper presents preliminary work on the formalization of three prominent cognitive biases in the

diagnostic reasoning process over epileptic seizures, psychogenic seizures and syncopes. Diagnostic

reasoning is understood as iterative exploration of medical evidence. This exploration is represented as a

partially observable Markov decision process where the state (i.e., the correct diagnosis) is uncertain.

Observation likelihoods and belief updates are computed using a Bayesian network which de�nes the

interrelation between medical risk factors, diagnoses and potential �ndings. The decision problem is

solved via partially observable upper con�dence bounds for trees in Monte-Carlo planning. We compute

a biased diagnostic exploration policy by altering the generated state transition, observation and reward

during look ahead simulations. The resulting diagnostic policies reproduce reasoning errors which have

only been described informally in the medical literature. We plan to use this formal representation in the

future to inversely detect and classify biased reasoning in actual diagnostic trajectories obtained from

physicians.
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1. Introduction

Medical diagnostic reasoning is exposed to incomplete and uncertain information. No physician

will ever be able to know everything about a patient. Likewise, no physician can be 100% certain

that the chosen diagnosis - given the limited amount of information - is correct. Medical experts

face the problem of hypothesis weighting nearly every day and problem complexity scales

with the quality of evidence. While modern laboratory tests may deliver robust, isolated hints

towards one diagnostic option or the other in some medical domains, diagnosing transient loss

of consciousness remains a challenging and highly prevalent problem. “Almost 10% of people

will experience at least one seizure over a lifetime” [1, p. 1]. These seizures can originate from

various causes ranging from one-time explanations like sleep deprivation and mental overload

to potentially life-long diagnoses like epilepsy. The three main di�erential diagnoses to consider

are an epileptic seizure, a syncope and a psychogenic non-epileptic seizure (PNES) [2, p. 96]

and to prioritize one cause over the other can be seriously complex. At the time of writing, no
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gold standard tests exists to con�dently con�rm or rule out epilepsy as a diagnosis candidate [3,

p. 144]. Additionally, the isolated presence or absence of a semiological feature cannot warrant

a diagnostic decision towards or against epilepsy [3]. Information is mainly obtained through

subjective, personal dialogue rather than objective test results [4] and consequently, evidence

quality su�ers from inaccurate memory retrieval and miscommunication. The diagnosis of

seizure-like events is thus a prime example of the initially mentioned incompleteness and uncer-

tainty inherent to medical decisions. Today, the most successful approach to diagnose epilepsy

and thus solve the medical decision problem is e�cient knowledge exploration, i.e., detailed

history taking, critical eyewitness report analysis and conservative test result interpretation

[3, 5, 4]. By that, experts learn to maneuver in the space of retrievable medical evidence. The

sequence of questions they ask, features they query and tests they issue de�nes one possible

diagnostic trajectory through this space and the overall goal is not to cover everything but

everything relevant.

In the endeavour to ease diagnostic pressure on physicians in highly complex domains like

these, clinical decision support systems (CDSS) provide assistance in various ways for both

doctors and patients [6, 7]. Some try to increase the certainty of information by tracking and

storing features about speci�c seizures [8, p. 98]. Others facilitate information integration.

They act as di�erential diagnosis generators which accept a set of present medical �ndings and

test results and output candidate diagnoses along with their respective probability [9, 10, 11].

What these state-of-the-art systems lack is an explicit model of their user. They can be queried

for additional information but are agnostic to the reasoning process in the physician’s mind.

Thus, some argue that the development paradigm of clinical decision support systems should

shift from resembling an additional uncertain source of information (i.e., “Is the system output

correct?”) towards facilitating the process itself in a clinical reasoning support system [12].

This is especially evident in the fact that most diagnostic errors are not rooted in insu�cient

medical knowledge or expertise, but rather in structural causes like time pressure and cognitive

biases like premature closure [13, 14]. Additionally, reasoning errors are especially prevalent

in areas of high subjectivity like epilepsy. It su�ers from an interobserver variation, where

multiple practitioners don’t agree in their diagnosis of the same patient. Misdiagnosis rates are

estimated around 23% or even higher in everyday practice [5].

Taken all together, the goal of this paper is to formally de�ne the relation between a speci�c

cognitive bias (i.e., premature closure, con�rmation bias and availability bias) and the erroneous

knowledge exploration trajectory leading up to the diagnostic reasoning error that may result

from it. Premature closure describes the tendency to submit an unjusti�ed diagnosis too early

while a con�rmation bias leads to a skewed interpretation of observations [15]. Even con�icting

evidence is seen as in line with the current beliefs. An availability bias causes physicians to

favor what is familiar by overestimating the likelihood of hypotheses that “readily come to

mind” [15, p. 777]. We capture this faulty reasoning in a partially observable Markov decision

process (POMDP) by altering rewards and observation likelihoods during belief update and

policy computation. Here, the idea of a biased policy computation is based on the premise that

planning always involves a predictive component of what happens next after executing some

action. If the understanding of the world is in itself biased, mental action execution during

planning will lead to biased world states which will manifest in biased action assessment and

thus in a biased policy. To explain this approach in more detail, Section 2 presents related
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work on the formalization of diagnostic processes and cognitive biases in diagnostic reasoning.

Section 3 introduces the cognitive modeling work and how each bias can be integrated into

it. Section 4 presents the resulting policies under each bias and Section 5 concludes with a

discussion of the results, potential shortcomings and next steps.

2. Related work

In general, POMDPs “model sequential decision making problems where the agent must act under

partial observability of the environment state. POMDPs consider both uncertainty in action e�ect

(i.e., transitions) and observations, which are usually incomplete and noisy information related to

the state” [16, p. 2]. They are are a well known and frequently used formalism to operationalize

medical decision-making in various domains. In practice, Zhang et al. [17] model the diagnostic

process and subsequent management of chronic diseases in the example domain of coronary

heart disease by maximizing the patient’s total expected quality-adjusted life years (QALYs).

They focus on deriving structural properties like diagnostic thresholds and the optimal age for

a screening. Similarly, Zhang et al. [18] propose a non-stationary POMDP to model medical

screening for prostate biopsy referral decisions. Their model maximizes expected quality-

adjusted life years as well and incorporates prostate-speci�c antigen test results as observations

within the formalism. Li et al. [19] motivate the usage of a partially observable Markov chain to

assess di�erent screening strategies during colonoscopy. By optimizing parameters like initial

screening age or screening frequency, they aim to increase the diagnostic accuracy of colorectal

cancer. Arruda et al. [20] try to mathematically de�ne a stochastic shortest path policy of

tests to con�rm or discard a disease hypothesis. Their approach uses Bayesian inference to

turn an a priori disease probability into posterior probabilities that warrant either immediate

treatment or a not-ill diagnosis. Partially observable Markov decision processes are also used to

infer a suitable medical treatment policy. Here, Bazrafshan et al. [21] use a �nite-horizon MDP

to formalize the problem of planning chemotherapy and optimal drug administration to treat

gastric and gastroesophageal cancers. Hauskrecht et al. [22] employ the POMDP framework

“to model and solve the problem of the management of patients with ischemic heart disease” [22,

p. 221]. Ibrahim [23] use the decision framework in two separate phases. A �rst POMDP model

formalizes the physicians explorative process to understand how sensitive the patient reacts

to a medication with warfarin. Then, a second MDP model is used to calculate the optimal

treatment policy of the patient with warfarin based on the beliefs and sensitivities derived from

the �rst stage.

We adopt these previous approaches in which the potential state of the patient forms the

state space [17, 18, 19]. Sequential action selection is based on the current subjective belief

in each possible patient state and obtained medical information updates the belief after each

action using the Bayes calculus. Using a POMDP enables us to represent the current belief

and its update in an e�cient and transparent manner at each time step. We share the view of

Arruda et al. [20] to frame a diagnosis as a stochastic shortest path problem of information

retrieval actions up to a diagnosis submission as the point at which “su�cient justi�cation” is

reached. This connects to our idea of economically exploring the space of available medical

knowledge to only query features that are relevant at this point in time and neglect redundant
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or insigni�cant ones. This trade-o� between acquiring more information to increase certainty

and making a diagnosis as fast as possible to decrease su�ering is implicitly represented in the

policy computation.

Diagnostic errors induced by cognitive biases are an increasingly explored �eld of research.

The shortcomings of the pioneering work on modelling diagnostic reasoning as a whole by

Elstein et al. [24] back in 1978 led to a general discussion about the cognitive representation of

medical knowledge and expertise in themind of a trained physician. Improvement ideas gave rise

to non-analytical reasoning processes like pattern recognition [25, p. 440] and recently proposed

models of clinical reasoning acknowledge the presence of such heuristic shortcuts mostly

framed as System 1 thinking [26]. Thus, there is a tight connection between proposed models of

reasoning in the medical domain and Kahnemann’s book on "Thinking, fast and slow" [27] up

to the point that it inspired Coughlan et al. to publish a review on "Diagnosing, fast and slow"

which ultimately concludes that “Cognitive biases are ubiquitous, even among experts. Doctors

do not di�er in this regard” [28, p. 5]. More detailed analyses have identi�ed approximately

50 di�erent biases a�ecting a physician during clinical reasoning [29]. Among these the ones

which have been studied most extensively in the �eld of diagnostics are an availability bias

[30, 14, 31, 32, 33, 34, 15], con�rmation bias [14, 35, 15, 34], premature closure [14, 13, 15, 36],

overcon�dence [37, 14, 34, 35], anchoring bias [38, 15, 34, 36, 32] and a representativeness

heuristic [39, 38, 15, 32, 34, 40].

Moving away from the descriptive and empirical level to examine cognitive biases, little

research has been conducted on a formal decision-theoretic formalization of each one. In

a resource allocation problem called police patrol hour assignment, Wu et al. introduce “a

general framework for deceiving adversaries with bounded rationality in terms of the obtained

reward minimization” [41, p. 6] by leveraging prospect theory [42] to compute a biased reward

function of a human opponent. Then a MDP-based control policy is derived to exploit the

di�erences between the environments objective and the adversary’s subjective reward for

maximal deception. Zhang et al. [43] apply deceptive kernel functions to observations emitted

in a POMDP model to trick the agent in establishing false beliefs about the environment. And

Bilinski et al. speculate on demonstrating bias in a cyber deception game by “exploration of game

parameters [...] to associate the outcome of algorithms to that of human decision-making biases”

[44]. More speci�cally, they suggest adaptations to their domain to potentially incorporate a

gambler’s or sunk cost fallacy.

Overall, there is a growing interest in understanding and measuring cognitive biases during

medical diagnosis over recent decades. While research on this topic is extensive on the descrip-

tive level, and rising on the empirical level, our approach is - to the best of our knowledge - the

�rst to operationalize cognitive biases in a formal decision-theoretic framework like Markov

decision processes with the goal to deliberately reproduce cognitive reasoning errors during

medical diagnosis.

3. Modeling diagnostic reasoning

The idea behind the modeling approach is to capture the problem of medical diagnosis in a

POMDP and then exploit the transparency in the formalism to integrate biased components
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Figure 1: Schematic view on the diagnostic process model.

into the decision problem representation. As sketched in Figure 1, the agent can decide to

query speci�c medical information which is then sampled from the medical domain model.

The obtained information updates the belief through its likelihood to be observed given each

diagnosis and the agent simulates possible next queries to choose the most suitable one at the

current step in the process. This cycle of information retrieval repeats until the agent submits

a diagnosis. Biases can manifest either in the retrospective evaluation of observations in the

belief update or the prospective assessment of potential actions. As visualized in Figure 1 both

cases are tied to the generator model. With this broad overview at hand, Section 3.1 sheds light

on how the medical domain model is de�ned and used for sampling, Section 3.2 de�nes the

resulting POMDP with all of its components and Section 3.3 elaborates on the modi�cations

made to the generator model for each cognitive bias.

3.1. Medical domain model

We use a Bayesian network to model the medical domain stochastically. In general, Bayesian

networks represent a joint probability distribution over a �nite set of discrete random variables

and enable �exible inference of prior or conditional distributions over node values [45]. Our

network de�nes how medical features in�uence others, i.e., how diseases are caused and how

diseases present themselves in form of symptoms. While there is a causal connection between

disease and �ndings, observations might di�er from patient to patient. It therefore makes sense

to model the e�ect of a disease with a joint probability distribution over possible diagnoses

and medical �ndings. The structure of the network is derived from the work of Richens et

al. [46] who propose a three layer disease model where the top layer describes medical risk

factors, the mid layer all diseases and the bottom layer potential symptoms. The nodes for

risk factors and symptoms are derived from the work of Wardrope et al. [2]. They conducted

a study on the prevalence of medical features among patients su�ering from either epileptic

seizures, syncopes or psychogenic non-epileptic seizures. Through an iterative random forest

approach, they calculated that 36 features were enough to optimally predict the disease of a

patient. Each of these features is adopted as one binary node in the network - except whether

or not the patient had a brain tumor because the sample size was too low. Features concerning
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Figure 2: The Bayesian network used as medical domain model for the di�erential diagnosis between

epileptic seizures, psychogenic non-epileptic seizures and syncopes. The structure is derived from [46],

nodes and parameters are derived from [2]. All nodes are binary with values yes or no except for the

diagnosis node that holds all three diseases.

the general medical history of the patient count as risk factor in the top layer, other features

about the semiology of a speci�c seizure count as symptom in the bottom layer. Having su�ered

from febrile seizures in the childhood is thus considered a risk factor while violently shaking

during a seizure is a symptom. The parameters of each node are calculated as a maximum

likelihood estimate from the prevalence data presented in the paper [2]. This ensures, that the

�nal medical domain model (see Figure 2) captures actual medical relations from the real world.

With this model at hand, we can run the variable elimination algorithm [45] to �exibly compute

the likelihood P (fn+1|d, f1, . . . , fn) of any feature fn+1 given a speci�c diagnosis d and a set

of already known features f1, . . . , fn.

3.2. Diagnostic process model

We use a POMDP to model the diagnostic reasoning process. It is formally de�ned as the tuple

〈S,A,O, T, Z,R, γ〉, where S is a set of states,A is a set of actions andO a set of observations.

T de�nes the transition model from one state to the next, Z de�nes the probability of emitting

an observation given the current state and action and R likewise describes the probability

of emitting reward given the current state and action. γ is a discount factor to decrease the

in�uence of reward collected far in the future.

In our context, a diagnosis is understood as the sequential exploration of medical �ndings up

to a point where the agent is su�ciently certain to commit itself to one of multiple options. The

agent holds an initially uniform belief distribution over all three diagnostic options. Then, the

agent is able to query for medical information (i.e., risk factors and symptoms in the medical

domain model) and obtains uncertain observations (i.e., a sampled value for this node from the

medical domain model). The crucial decision to make at each step is which medical feature to

query next. Solving the POMDP for a diagnostic policy thus de�nes one trajectory through

the space of available medical knowledge. After receiving the feature observation the agent

updates its belief state depending on the likelihood of observing such a feature value in a patient

given each diagnosis and the interaction loop starts again (see Figure 1). At any point in time,

the agent can submit a speci�c diagnosis and by that end the whole process. Derived policies

are therefore expected to exhibit a trade-o� between gathering valuable information about
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the patient to reduce uncertainty and keeping the diagnostic process as short and e�cient as

possible.

We solve the POMDP problem via partially observable upper con�dence bounds for trees in

Monte-Carlo planning (PO-UCT) [47] using the Python library pomdp_py [16]. This algorithm

is essentially an adapted version of a Monte-Carlo tree search where state nodes in the tree

are replaced by histories and the greedy action selection is adjusted for already encountered

nodes in the tree. For unknown nodes, we use a uniform random action selection. At each

time step, the agent runs simulations by sampling a current state from its belief state and

then repeatedly using a generator model to simulate transitioning to state s′ and obtaining

observation o and reward r after executing action a in state s in each trajectory. After all

simulations, the agent executes the action that reached the maximum expected return in the

search tree. In the following, we will introduce each POMDP component in more detail.

State space Each state s ∈ S is de�ned by the true diagnosis the patient is su�ering from (i.e.,

epileptic seizure, syncope or psychogenic non-epileptic seizure) and a predicted diagnosis by the

agent. This predicted diagnosis is null as long as the process is running and is set accordingly

once the agent commits itself. Thus, states where the true diagnosis and the predicted diagnosis

are set are terminal states.

Action space Each action a ∈ A has one of two types. There are query actions to ask for

speci�c information (one query action for each risk factor and symptom) and submit actions

to commit oneself to one option (one for each disease). For example, executing query febrile

seizures means to ask the patient whether he has ever su�ered from febrile seizures.

Observation space Each observation o ∈ O is associated with a node in the medical domain

model. After query actions, the observation holds the queried feature and a value of that feature.

Observing febrile seizures = no thus means that the patient has not su�ered from febrile seizures

in the past. After submit actions, the observation just holds the submitted diagnosis as the

process ends.

Transition model Query actions do not change the state. Submit actions lead to a determin-

istic transition into a terminal state, where the predicted diagnosis is set accordingly. Once the

agent is in a terminal state, no transitions are possible.

Observation model The likelihood P (o|s′, a) of obtaining observation o after transitioning

to state s′ via query action a is computed using the medical domain model. The distribution

over all values of the queried feature is conditioned on the true diagnosis d in the state and the

medical evidence o1, . . . , on obtained thus far from previous observations. The next feature

value for observation on+1 is then sampled from P (on+1|d, o1, . . . , on). Observations after
submit actions are deterministic.

Reward model Executing query actions triggers a reward of −1 to incentivise a short

diagnostic trajectory that does not query more features than necessary. Submit actions are
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rewarded with+100 for a correct diagnosis (i.e., true and predicted diagnosis in the state match)

and −100 for a wrong one.

Generator model The generator model is used during simulations to generate a successor

state s′, an observation o and a reward r when mentally executing action a in state s. It reuses

the observation model to infer the likelihood of a feature value P (o|s′, a) to sample from it.

Query actions again lead to a reward of−1. As the agent cannot know the true diagnosis during

simulation, the reward for submit actions di�ers from the true reward model. Here, reward

is dependent on the entropy in the belief state. If the agent submits the diagnosis it is most

convinced of and the normalized entropy in its belief state is below 0.25, then it collects a reward

of +100 and −100 otherwise to penalize unjusti�ed diagnoses under high uncertainty.

3.3. Modeling cognitive biases

We simulate cognitive biases with the diagnostic policy via adjustments to the generator model

during planning with PO-UCT. As mentioned earlier, the agent determines the next action

to execute at a given time step by running multiple simulations from the current belief state.

The evolution of these simulated trajectories is determined by the generator model G. Now if

the environment de�nes a ground truth transition model T , observation model Z and reward

model R, then cognitive biases manifest themselves in conceptual deviations from T , Z and

R in G. In a cognitive sense, the agent exhibits a biased policy because its understanding of

the environment and thus its mentally derived action outcomes are biased. To exemplify the

e�ects of biases in the generator model, we integrate three of the most common cognitive biases

associated with medical diagnoses: an availability bias, a con�rmation bias and premature

closure (see Section 2). In the following, we will explain the integration of each in more detail.

Availability bias “The disposition to judge things as being more likely, or frequently occurring,

if they readily come to mind. Thus, recent experience with a disease may in�ate the likelihood of

its [sic] being diagnosed” [15, p. 777]. Neurologists may overestimate the prevalence of epileptic

seizures where clinical psychiatrists tend to see psychogenic non-epileptic seizures as both draw

expertise from past experience with either disease. We implement this bias during belief updates

by using a skewed observation likelihood in the generator model. Before applying the update,

each likelihood is scaled according to how “readily the corresponding diagnosis hypothesis

comes to mind”. The bias always targets one of the three options. Observation likelihoods given

this diagnosis are scaled by 0.4 and others are scaled by 0.3, expressing a constant preference

towards one available diagnosis.

Confirmation bias “This entails underestimating information that does not �t one’s hypothesis”

[14, p. 3]. Because this bias again a�ects the integration of new evidence into the current belief

state, it is implemented similarly to the availability bias. We again target the agent’s belief

update by skewing the likelihood of observations in the generator model, but this time the

likelihood of an observation given a speci�c diagnosis is not scaled by a �xed amount, but by

the current belief of the agent in that particular diagnosis. Thus, it is harder for new evidence to
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Bias Mean trajectory length

None 17.8± 12.5

Availability bias 17.0± 10.5

Confirmation bias 5.3± 1.1

Premature closure 5.5± 2.6

Table 1

The length of the diagnostic trajectories (i.e., the number of queried features) for all agent variants.

alter the current belief states. Con�rming observations are over- and contradictory observations

are underestimated.

Premature closure “The tendency to apply premature closure [...] accepting a diagnosis before

it has been fully veri�ed” [15, p. 778] This bias manifests in the process if the agent commits itself

to one diagnosis although the entropy in the belief state is too high to justify that. Consequently,

we implement this bias by increasing the normalized entropy threshold in the generator model

at which the agent is able to collect positive reward for a diagnosis submission from 0.25 to 0.75.

This leads to the submission of unveri�ed, uncertain diagnoses early in the process.

4. Experiments

To demonstrate the resulting policies under each bias, we run and track 30 diagnostic trajectories

(10 for each di�erential diagnosis) for each possible variant of the agent: unbiased, availability

biased towards epileptic seizures, availability biased towards psychogenic seizures, availability

biased towards syncopes, con�rmation biased and a�ected by premature closure. For computing

the next action to execute, we run 200 simulations at each time step via PO-UCT planning with

a maximum depth of 50 during tree search, an exploration constant of 1.0 and a discount factor

of 0.9.

Unbiased Among all variants, the unbiased agent achieves a diagnostic accuracy of 86.7%

(see Table 2) which is comparable to the 86.0% reported by Wardrope et al. [2] on the same data

set that has been used to learn the parameters of the medical domain model. During diagnosis,

the agent exhibits no particular preference for speci�c risk factors or symptoms (see Figure 3)

and revises its diagnostic belief over time by changing its main hypothesis (see Figure 4).

Availability bias In contrast to unbiased policies, agents with an availability bias focus

on a subset of features during knowledge exploration (see Figure 3). While the length of

each diagnostic process is comparably long to not having any bias (see Table 1), a previous

familiarity with epileptic seizures leads to a focus on limp limbs and oral automatisms. A similar

e�ect is observable for psychogenic seizures (focused on deja-vu and impaired awareness)

and syncopes (focused on poor coordination and rapid head turning) but the e�ect remains
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strongest for epileptic seizures. Concerning diagnostic performance, an agent primed towards

epileptic seizures misdiagnoses nearly all cases of psychogenic seizure (9/10) and vice versa

the agent primed towards psychogenic seizures even declares all cases of epileptic seizures

as psychogenic. This e�ect is absent for the diagnosis of syncopes which may be caused by

the closer similarity between epileptic and psychogenic seizures. Wardrope et al. [2] report a

similar e�ect concerning confusion matrices between all three diagnoses, where all syncopes

are identi�ed correctly while epileptic and psychogenic seizures are mixed up more often.

Bias ES PNES S Accuracy

None 90.0% 70.0% 100.0% 86.7%

Availability bias 63.3% 63.3% 86.7% 71.1%

Confirmation bias 20.0% 70.0% 80.0% 56.7%

Premature closure 70.0% 70.0% 90.0% 76.7%

Table 2

The number of correctly identified seizures grouped by epileptic seizures (ES), psychogenic seizures

(PNES), syncopes (S), and the overall diagnostic accuracy of all agent variants.

Confirmation bias A con�rmation bias leads to short and unsuccessful diagnostic processes

(see Table 1 and 2). The agent typically follows its �rst main hypothesis and after a few steps

con�rms itself more and more into wrong diagnoses. As opposed to the unbiased model, the

policy is not able to recover from misleading belief states, that would need to be reverted upon

contradictory information (see Figure 4).

Premature closure Similar to a con�rmation bias, trajectories a�ected by premature closure

are very short. But resulting policies still perform remarkably well in terms of accuracy (see

Table 2). In a vital di�erence to the con�rmation bias, the diagnostic process is therefore not

impaired at the stage of information integration, the agent simply does not collect enough

information to integrate.

5. Conclusion

In conclusion, this paper proposes that cognitive biases are rational behaviour in misunderstood

environments. Formalizing a cognitive bias during diagnostic reasoning means distorting the

true environment to render the biased policy as optimal policy. We achieve these distortions by

skewing rewards and observation likelihoods during belief updates, but any modi�cation to

the environment would be viable in principle. Agents could neglect parts of the state or action

space or dynamically grow the proportions of action they know. We justify this perspective by

the fact that planning in itself always requires some mechanism for mental outcome prediction.

If these outcome predictions are based on wrong assumptions, planning will produce biased

strategies.
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Figure 3: Number of queries by feature in 30 di�erent diagnostic trajectories. Blue bars indicate the

number of trajectories in which a certain feature was queried by the unbiased model, likewise orange

bars indicate the same for the model that was availability biased towards epileptic seizures. The unbiased

model queries each feature rather uniformly between 12 - 16 times, while the biased model shows

selective preference towards limp limbs and oral automatisms while neglecting postictal relief.

As we have shown, partially observable Markov decision processes in combination with

Monte-Carlo planning methods have proven as a suitable framework to implement these ideas

in an explainable fashion. By manipulating the generator model, biases due to skewed Bayesian

reasoning can be explicitly represented. Agents with an availability bias are deceived into

misdiagnoses of similar diseases (epileptic vs. psychogenic seizures), con�rmation biased

physicians tend to arrive at a fast and mostly wrong diagnosis and premature closure can
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be induced by rewarding prematurely. But the approach in general is at a rather early stage

and will need much more investigation. How this approach relates to modeling the proposed

System 1 and 2 processes during diagnosis [28] explicitly will require further research especially

with regard to cognitive plausibility. At the moment, a simplistic Bayesian network as medical

domain model is used, where only 35 features are integrated and each feature can only be

present or absent. The patient always su�ers from one of three diseases. We plan to enhance

the current approach with an empirical study to collect diagnostic trajectories from physicians.

Analyzing their queries and diagnostic strategies will enable improvements to both the medical

domain model and the process model. Overall, the presented work contributes to empowering

diagnostic reasoning support systems to detect and potentially classify erroneous diagnostic

reasoning. As we can only �x what we understand, identifying the error cause is a �rst important

step towards resolving misdiagnoses altogether.
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Figure 4: Diagnostic belief change over time for the unbiased model (top) and the confirmation biased

model (bottom) for a patient su�ering from an epileptic seizure. Each bar composed of blue, orange and

green represents the belief state distribution at one time step. Time (and thus the belief) evolves over

the x axis with each new feature queried. While the unbiased model can recover from a state where a

psychogenic seizure looked more probable (top, step 3), the confirmation biased model simply confirms

itself more and more into the wrong diagnosis.
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