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Abstract
This paper explores least squares (LS), median (MED), inverse distance weighting (IDW), distance
weighted estimator (DWE) and three different weighted least squares (WLS) methods for Ultra-Wideband
(UWB) active-passive two-way ranging (AP-TWR) measurement matrix estimation. The proposed
methods were tested with practical experiments in line-of-sight (LOS) and two different non-line-of-
sight (NLOS) conditions, and were benchmarked against an active-only single-sided two-way ranging
(SS-TWR) method.

The results show that the proposed methods MED, IDW and DWE achieve comparable standard
deviation values, while outperforming the root-mean-squared-error (RMSE) of SS-TWR ranging by up to
14.3% in LOS and 19.08% in NLOS conditions. The experiments validate that the MED, IDW and DWE
methods for AP-TWR are NLOS-robust and achieve better RMSE performance than active-only SS-TWR
ranging.
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1. Introduction

During recent years, Ultra-Wideband (UWB) technology based positioning has been considered
as an attractive and one of the most promising method to provide various location-based services.
The increased interest for UWB can be explained by various traits that it offers: in addition to
positioning, it can be also be used for data transfer, it provides high robustness to multipath, it
does not strictly require line-of-sight (LOS) conditions, and it provides high accuracy in the
order of centimeters [1].
Typically, UWB positioning is based on exploiting the propagation time of radio frequency

signals due to the usage of temporally very short pulses. The main time-based methods are Time
of Flight (ToF), which estimates the propagation time between two nodes, and time difference
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of arrival (TDoA), which estimates the differences of arrival time of a signal between multiple
nodes [2].

TDoA offers an air time advantage, where only a single packet per position estimate is needed,
which decreases the overall energy consumption of the system and could theoretically support
a high device density in the service area. The main disadvantage of TDoA is that the anchors of
a system need to be synchronized very accurately, adding to the complexity of the system. Time
of flight (ToF) estimates are typically achieved via two-way ranging (TWR) methods, which
remove the need for tightly synchronized anchors at the expense of additional air time. This in
turn increases the energy consumption and lowers the tag density in the service area [3].
In order to overcome the shortcomings of both methods, a compromise is found by using

passive anchor nodes to assist in the positioning process. The estimates supplied by passive
nodes allow to reduce the number of packets a system has to transmit in a TWR sequence,
effectively allowing to reduce the energy consumption and increase the air time efficiency, while
still benefiting from the relaxed anchor synchronization requirement.
For example, Hepp et al. in [4] provide an anchor-initiated active-passive ranging protocol,

mounted on a quadcopter. Horváth et al. proposed another passive ranging method used in
conjunction with double-sided (DS) TWR with an alternative calculation method for increased
robustness [5]. These methods have been more focused on increasing the air time efficiency.
Although the seminal concept of tag-initiated Active-Passive Two-Way Ranging (AP-TWR)

was published in [6], the concept of generalized tag-initiated AP-TWR was introduced in [7].
This method was further expanded in [8] to include an additional passive ranging method and
assess the performance of AP-TWR in conjunction with different active ranging methods.

Themain idea of AP-TWR is to employ a priori information about anchor locations to calculate
extra passive range estimates in addition to standard TWR estimates, without any additional
impact on the air time. When maximum air time efficiency is not critical, the system can be
scaled such that multiple active anchors are used, so the ranging performance can be increased.
The achieved range estimates can then be arranged in a measurement matrix, which holds all the
ranging data for a single ranging sequence. The previous papers have only utilized averaging
of the measurement matrix rows to provide final range estimates, without looking into other
methods. Additionally, the experiments were exclusively in line-of-sight (LOS) propagation
conditions [7, 8].
In this paper we investigate methods to further improve AP-TWR range estimation via the

manipulation of the resulting measurement matrix. These methods are then compared in various
locations, in LOS and two separate non-line-of-sight (NLOS) propagation conditions. The rest of
this paper is structured as follows: in Section 2 we give the theoretical background for AP-TWR,
Section 3 lists the estimation methods to process the measurement matrix, Section 4 provides
information on the experimental test setup, Section 5 presents the experimental results and the
analysis; finally, the conclusions are drawn.

2. AP-TWR

AP-TWR defines two types of anchors, active-passive and passive-only, the former taking
part of the ranging via standard TWR methods and listening to other transmissions while



not transmitting. The second type of anchors only listen to ongoing transmissions in the air,
providing range estimates without actively partaking in them.

The work in [8] defined separate AP1-TWR and AP2-TWRmethods, where the results showed
that AP2-TWR is the better performing method. Therefore, in the scope of this paper we will
be focusing on this method, while calling it just AP-TWR in order to avoid confusion.

The UWB ranging protocol is pictured in Fig. 1, where tag T initiates a ranging sequence by
starting its internal timer and transmitting an UWB frame to active anchor Ai, which starts its
timer and responds after its processing time 𝑡𝐴𝑖,𝑇. Upon receiving Ai’s reply, T sends out a final
UWB frame after its processing time 𝑡𝑇 ,𝐴𝑖′ . Passive anchor Aj listens in on all the transmissions
during the ranging sequence and records the corresponding times.

All the relevant time intervals for AP-TWR are described in more detail after the introduction
of (1). As per Fig. 1 and [8], the AP-TWR employing Single-Sided Two-Way Ranging (SS-TWR)
active method is described as

𝑡𝑇↔𝐴𝑗|𝐴𝑖 =
⎧⎪

⎨
⎪
⎩

𝑡𝑇 ,𝐴𝑖 − 𝑡𝐴𝑖,𝑇
2

, for 𝑖 = 𝑗

𝑡𝐴𝑖,𝑇 + 𝑡𝑇 ,𝐴𝑖
2

+ 𝑡𝐴𝑖↔𝐴𝑗 − 𝑡𝐴𝑗,𝐴𝑖, for 𝑖 ≠ 𝑗,

(1)

where 𝑡𝑇↔𝐴𝑗|𝐴𝑖 is the calculated time of flight (ToF) between the tag T and the 𝑗-th passive
anchor Aj, while the 𝑖-th active anchor Ai is partaking in the ranging sequence. This distinction
is made because a single passive anchor can produce an estimate of the ToF between T and Aj
following each Ai’s response. In the special case where 𝑖 = 𝑗, only the active range estimate
can be calculated; in this case it is calculated using SS-TWR. This is done by time intervals 𝑡𝐴𝑖,𝑇
- the time interval measured by Ai corresponding to reception of T, and 𝑡𝑇 ,𝐴𝑖 - time interval
measured by T corresponding to the reception of Ai. In other cases, the passive estimate is
calculated using the above mentioned 𝑡𝐴𝑖,𝑇, 𝑡𝑇 ,𝐴𝑖, the known ToF between Ai and Aj - 𝑡𝐴𝑖↔𝐴𝑗,
and 𝑡𝐴𝑗,𝐴𝑖 - the time interval measured by Aj corresponding to the reception of Ai.

Calculating all possible 𝑡𝑇↔𝐴𝑗|𝐴𝑖 values via (1) results in the following 𝑛-by-𝑚ToFmeasurement
matrix T:

𝑇 = [
𝑡𝑇↔𝐴1|𝐴1 … 𝑡𝑇↔𝐴1|𝐴𝑚

⋮ ⋱ ⋮
𝑡𝑇↔𝐴𝑛|𝐴1 … 𝑡𝑇↔𝐴𝑛|𝐴𝑚

] , (2)

where {𝑖 ∈ ℤ ∶ 1 ≤ 𝑖 ≤ 𝑚}, {𝑗 ∈ ℤ ∶ 1 ≤ 𝑗 ≤ 𝑛} and the total number of anchors 𝑛 consists of the
number of active-passive anchors 𝑚 and passive-only anchors 𝑘, such that 𝑛 = 𝑚 + 𝑘.
It can be observed that the ToF estimates achieved via active TWR methods are located on

the main diagonal of T, and the passive estimates of AP-TWR are situated off the main diagonal,
so rows {𝑗 ∈ ℤ ∶ 𝑚 < 𝑗 ≤ 𝑛} contain only passive ToF estimates.
The active SS-TWR method, as a result of its shorter measurement period, provides a lower

relative motion induced error than the effectively longer Asymmetric Double-Sided Two-Way
Ranging (ADS-TWR). The larger error is on account of including the final frame of the tag in
the calculation of the range estimate [9].



It can be observed from Fig. 1 that the duration of the frame exchange regarding the calcula-
tion of the passive range estimates is in the same range as SS-TWR, since the time intervals
incorporating the third UWB frame of the tag are not used in (1). Therefore we can assume
that the relative motion error for AP-TWR passive range estimates is lower than ADS-TWR, for
example.

Figure 1: AP-TWR: Message exchange of tag T and active anchor Ai, while passive anchor Aj listens to
the transmissions.

Moreover, assuming that the total length of the ranging protocol is in the order of milliseconds,
we can infer that the error originating from the tag’s relative movement to the anchors can
altogether be omitted [10, 11].

AP-TWR cases 𝑚 > 1 produce a ToF estimate matrix (2) consisting of more than one column
and row, where the elements of each row are individual estimates of the true ToF between T and
Aj, 𝑡𝑇↔𝐴𝑗. Considering all the above, we can assume that elements of each row are independent
estimates of 𝑡𝑇↔𝐴𝑗, the values of which can be considered as constants for the duration of a
single ranging sequence.

The number of rows show the number of unique distance measurements between the tag and
anchors, and the values in each row are separate estimates of a single anchor-to-tag distance
value. That is, the number of columns represents the number of measurements that can be
processed to provide a final range estimate for that specific anchor. The row values need to be
processed in order to provide a more accurate, precise and robust final distance estimate.
The following section focuses on the methods of estimating the values of 𝑡𝑇↔𝐴𝑗 from the

measurement matrix presented by (2).

3. Estimation methods

This section describes the methods of processing the raw measurement matrix values to achieve
the final distance values as inputs for a positioning system. Many of the described methods



employ estimation of 𝑡𝑇↔𝐴𝑗 via calculating a weighted arithmetic mean, differing by only how
the weights are generated.
The weighted mean (WM) of the 𝑗-th row of the measurement matrix can be expressed as:

𝑊𝑀(𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚) =

𝑚
∑
𝑖=1

(𝑤𝑗,𝑖 ⋅ 𝑡𝑇↔𝐴𝑗|𝐴𝑖)

𝑚
∑
𝑖=1

𝑤𝑗,𝑖

, (3)

where 𝑤𝑗,𝑖 are the non-negative weights corresponding to each of the measurement matrix
element 𝑡𝑇↔𝐴𝑗|𝐴𝑖. The special case where all the weights are equal, the solution simplifies to a
standard arithmetic mean:

𝐴𝑀(𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚) =

𝑚
∑
𝑖=1

𝑡𝑇↔𝐴𝑗|𝐴𝑖

𝑚
, (4)

which will be discussed in the following Section.

3.1. Least Squares

In order to better describe the concept, we deconstruct the measurement matrix (2) to a set of 𝑛
row vectors:

𝑡𝑇↔𝐴1 = [𝑡𝑇↔𝐴1|𝐴1 … 𝑡𝑇↔𝐴1|𝐴𝑚]
⋮

𝑡𝑇↔𝐴𝑛 = [𝑡𝑇↔𝐴𝑛|𝐴1 … 𝑡𝑇↔𝐴𝑛|𝐴𝑚]
(5)

The problem of estimating the value of a constant using Least Squares (LS) is reduced to
finding the mean value of the individual elements of the input vector [12]. The method is
desirable because no additional information of the ToF estimates is needed and thus calculating
weights is not needed.

As stated above, the LS solution for estimating a constant simplifies to calculating the
arithmetic mean by applying (4) to (5):

̂𝑇𝐿𝑆 = [
𝑡𝑇↔𝐴1|𝐴1∶𝑚

⋮
𝑡𝑇↔𝐴𝑛|𝐴1∶𝑚

] , (6)

where ̂𝑇𝐿𝑆 is a vector containing 𝑛 final LS estimates of the ToF between the tag and the anchors.

3.2. Median

Like in the previous section, we adopt the vector notation of (5) to provide the solution of the
next method.

Then the vector of final ToF estimates can be found as the median values of each vector of (5)
as follows:



̂𝑇𝑀𝐸𝐷 = [
̃𝑡𝑇↔𝐴1|𝐴1∶𝑚

⋮
̃𝑡𝑇↔𝐴𝑛|𝐴1∶𝑚

] , (7)

where the tilde accent notes the mathematical operation of median, which does not require
extra information on measurements, while being a more robust estimator in presence of outliers
than LS.

3.3. Inverse Distance Weighting

The Inverse Distance Weighting (IDW) method was introduced by Shepard in [13], which was
devised as an interpolation function to produce a continuous surface from discrete data points.
Following the idea of Shepard, we take the liberty to rewrite the concept of IDW into the

context of the current paper:

𝑡𝑇↔𝐴𝑗 =

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝑚
∑
𝑖=1

(𝑡𝑇↔𝐴𝑗|𝐴𝑖 ⋅ 𝑑−1𝑗,𝑖 )

𝑚
∑
𝑖=1

𝑑−1𝑗,𝑖

, if 𝑑𝑗,𝑖 ≠ 0 for all 𝑖,

𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚, if 𝑑𝑗,𝑖 = 0 for some 𝑖,

(8)

where
𝑑𝑗,𝑖 = |𝑡𝑇↔𝐴𝑗|𝐴𝑖 − 𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚|. (9)

Equation (9) is the first-order distance function of 𝑡𝑇↔𝐴𝑗|𝐴𝑖. Since we are working in one
dimension, the value of the distance function 𝑑𝑗,𝑖 is calculated as the absolute value of the
difference of 𝑡𝑇↔𝐴𝑗|𝐴𝑖 and the arithmetic mean of row 𝑗.

The value of 𝑑𝑗,𝑖 is in turn used in the calculation of the first-order IDW estimate by (8), where
the order is specified by the magnitude of the negative exponent of 𝑑𝑗,𝑖. Larger exponent values
effectively give larger weight to ToF estimates which are closer to the arithmetic mean.

3.4. Distance Weighted Estimator

Dodonov and Dodonova introduced the Distance Weighted Estimator (DWE) in [14], which
provides a robust estimate of central tendency without the need of separately calculating a
mean value.

Adopting our notation to (9) of [14], we get the expression to calculate the DWE weights as
follows:

𝑤𝑗,𝑖 =
𝑚 − 1

𝑚
∑
𝑙=1

|𝑡𝑇↔𝐴𝑗|𝐴𝑖 − 𝑡𝑇↔𝐴𝑗|𝐴𝑙|
(10)



where each of the weights are calculated as the inverse mean distance of 𝑡𝑇↔𝐴𝑗|𝐴𝑖 and other
elements of row 𝑗. These weights are in turn used in (3), to provide the set of final ToF estimates
𝑡𝑇↔𝐴𝑗.

3.5. Weighted Least Squares 1

The solution to Weighted Least Squares (WLS) estimation reduces to weighting the measured
values with their corresponding noise variance, keeping in mind that the noise for each mea-
surement is considered zero-mean and independent [12].
Firstly, we consider the theoretical noise variance values as the basis for the weights to

calculate an estimate for the WLS1 method.
Considering the results of [6, 8], we can assume that active ranging (SS-TWR and AltDS-TWR,

respectively) performs at about 3.2 cm root-mean-square error (RMSE) and passive ranging of
AP-TWR in the range of 5.2 to 5.5 cm RMSE.

The RMSE values are presented in centimeters to reflect the final product of ranging, as
opposed to providing the RMSE in picoseconds for the ToF measurements. Both representations
can be used interchangeably, since the ToF time 𝑡𝑇 𝑜𝐹 and the distance value 𝑑 are related to
each other via the propagation speed 𝑐 (in this case, the speed of light) through the expression
𝑑 = 𝑐 ⋅ 𝑡𝑇 𝑜𝐹.

As the WLS solution employs weighting based on the noise variance, the WLS1 weights for
the measurement matrix can be written as

𝑤𝑗,𝑖 =

⎧
⎪

⎨
⎪
⎩

1
𝜎2𝑎

, for 𝑖 = 𝑗,

1
𝜎2𝑝

, for 𝑖 ≠ 𝑗,
(11)

where 𝜎2𝑎 is the variance of the active measurements, and 𝜎2𝑝 is the variance of the AP-TWR
passive measurements. The calculated weights 𝑤𝑗,𝑖 are in turn used in (3) for the calculation of
the final estimate.
The calculation of RMSE and standard deviation is somewhat similar, where the former is

calculated using the known true value and the latter employing the sample mean value [8].
Therefore when the true value is equal to the sample mean, the RMSE and standard deviation
values are also equal. Assuming the same data, but where the true value is not equal to the
sample mean, the RMSE value is higher than the standard deviation of the data set.

Therefore in the scope of this paper we assume the value of standard deviation for the passive
range estimates at 𝜎𝑝 = 5.5 cm, and for active estimates 𝜎𝑎 = 3.2 cm, inferred from the RMSE
results of previous papers.

3.6. Weighted Least Squares 2

Following the approach of weights calculated using the theoretical variances, we propose the
second method of weighted least squares (WLS2).



Firstly, we find each elements’ distance from their corresponding row mean of the ToF
measurement matrix 𝑇 by adopting (9). By doing so, we formulate a mean-shifted measurement
matrix 𝑇𝑆:

𝑇𝑆 = [
𝑑1,1 … 𝑑1,𝑚
⋮ ⋱ ⋮

𝑑𝑛,1 … 𝑑𝑛,𝑚
] . (12)

Since the newly formed 𝑇𝑆 is centered around its mean values, we can calculate column-wise
variances:

𝜎2𝑖 =

𝑛
∑
𝑗=1

(𝑑𝑗,𝑖 − 𝑑1∶𝑛,𝑖)2

𝑛
, (13)

where 𝑑1∶𝑛,𝑖 is the mean value of column 𝑖 of (12) and 𝜎2𝑖 are the calculated column-wise variances.
Then the according weights can be calculated as

𝑤𝑗,𝑖 =
1
𝜎2𝑖

, for all 𝑗. (14)

The weights calculated by this method are the same for each row of the measurement matrix,
changing only with each successive ranging sequence. Similarly to the previous section, the
resulting weights are then used in (3) for the final ranging estimates.

3.7. Weighted Least Squares 3

In this section, we propose a third method for Weighted Least Squares (WLS3), for which the
noise variance-based weights are also calculated for each row separately.

In order to calculate the final weights, the measurement matrix needs to be centered via (12)
and the column-wise variances calculated, similarly to the previous section. Then the row-wise
variances of 𝑇𝑆 need to be calculated as well:

𝜎2𝑗 =

𝑚
∑
𝑖=1

(𝑑𝑗,𝑖 − 𝑑𝑗,1∶𝑚)2

𝑚
, (15)

where 𝑑𝑗,1∶𝑚 is the mean value of row 𝑗, and 𝜎2𝑗 is the row-wise variance of the measurement
matrix. Following the calculation of 𝜎2𝑖 and 𝜎2𝑗 , we then combine them into 𝜎2𝑗,𝑖 by the following
expression:

𝜎2𝑗,𝑖 =
𝜎2𝑗 + 𝜎2𝑖

2
. (16)

Based on (16), we can then calculate the weights by

𝑤𝑗,𝑖 =
1
𝜎2𝑗,𝑖

, (17)

which are in turn used as weights in (3) for the final AP-TWR ranging estimates.
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Figure 2: Representation of the test room setup in XY-plane. Anchors are marked with red circles and
the test locations of the tag with green triangles.

4. Test Setup

In order to assess the performance of each of the previously specified methods, practical
experiments were conducted. In this section we describe the preliminaries for the experiments.

The tests were ran in a 7.2 m by 6 m university laboratory roomwith concrete-walls, furnished
with desks and computers. The UWB system used for experiments was the Eliko UWB RTLS
[15] consisting of 6 active-passive anchors and a single tag. The active and passive range
estimates were gathered via a laptop connected to the ranging engine of the Eliko UWB RTLS.

The active range estimates were attained using SS-TWR, and the passive estimates via the AP-
TWR passive method described in Section 2. The gathered estimates were post-processed using
a custom script written in R, implementing all the methods described in Section 3. Additionally,
the script also calculates various statistical parameters, including RMSE and standard deviation,
which are the basis for the results presented in Section 5. Apart from the proposed estimation
methods, no additional filtering or trimming was applied to the measurement matrix.

The true coordinates of the anchors and of the tag at various positions were measured with
a Leica Disto S910 laser distance meter [16]. In addition, the anchor-tag true distances were
also verified with the Leica Disto S910, in order to calculate some of the needed performance
parameters.
The data was gathered with a tag installed on a tripod at 5 arbitrarily chosen points in the

room, which are marked on Fig. 2 alongside the locations of the anchors; the anchors are

Table 1
Test setup: anchors (Ax) subjected to NLOS in the 5 test locations (Loc x).

Loc 1 Loc 2 Loc 3 Loc 4 Loc 5
A1, A2, A4, A5 A2, A4 A1, A2, A4, A5 ALL A3, A6



marked with red circles and the locations of the tag with green triangles.
In each location 3 separate tests were conducted: one line-of-sight (LOS) test and two separate

non-line-of-sight (NLOS) tests. The NLOS tests were conducted by disrupting the LOS between
anchors and a tag by either a 40 cm by 20 cm, 0.8 mm thick sheet of metal (NLOS1) or a human
body chest area (NLOS2), placed at a distance of about 5 cm from the tag. Note that for both
NLOS tests, the propagation paths to the same exact anchors were disrupted to have a fair
comparison of the different NLOS conditions. Table 1 gives the details of NLOS tests, i.e. which
anchors have NLOS propagation conditions at each of the test locations.
During each separate test, data from a minimum of 1200 separate ranging sequences were

collected. Considering that the setup consisted of AP-TWR 𝑚 = 6, 𝑘 = 0, this amounts to at a
minimum of 43200 raw range values across all the captured measurement matrices.

5. Experimental Results

The results of the experiments are given in Fig. 3, where the RMSE and standard deviation (SD)
values for each of the test locations is given, depending on the propagation conditions. Fig. 3 a,
b and c give the RMSE values for LOS, NLOS1 and NLOS2, respectively. Fig. 3 d, e, f give the
respective SD values for the same propagation conditions. Additionally, a zoomed-in region of
each of the sub-figures is given four location 4 since the traces can be placed quite densely.
Alongside the seven proposed methods (LS, Med, IDW, DWE, WLS1, WLS2, WLS3), the

performance of active-only (SS-TWR) and AP-TWR passive-only ranging estimates from the
same exact measurements is also given. They are separately pictured in order to give a baseline
comparison of the performance of the proposed methods.

It can be observed from Fig. 3 a - c that the RMSE of passive measurements is almost always
lower than the active-only method, with the exception of locations 1 and 2 in Fig. 3 a. On
the other hand, the results for SD show the opposite: active-only estimates outperform the
passive-only methods in every single test and location by a very slight margin. This is also in
line with the results attained in previous publications regarding AP-TWR [6, 7, 8].
Although in regards of SD, the proposed methods’ performance always places between the

active and passive-only methods, the RMSE values show that many of the proposed methods
provide better results than even the baseline better-performing passive-only estimates.

The average SD across all locations, depending on the method used, is shown as the bars on
Fig. 4. From these results we can again see that the active estimates provide the lowest SD,
while the passive estimates perform the least. The results from all three propagation condition
tests show that utilizing the MED, IDW or DWE methods provide comparable performance to
the most precise active-only estimates.

Across all locations the average RMSE values of LOS, NLOS1 and NLOS2 conditions depending
on the method are given in Fig. 4, pictured by the lines+markers. The following analysis focuses
on the RMSE improvements compared to a active-only SS-TWR method (Active method RMSE
of Fig. 4), which achieved an RMSE of 24.209 cm in LOS, 36.006 cm in NLOS1 and 37.123 cm in
NLOS2.

The WLS3 method provides the lowest RMSE of all the methods in LOS conditions at 20.742
cm (decrease of 14.3%), followed closely by IDW (20.785 cm, decrease of 14.14%) and DWE
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Figure 3: Results of experiments at each individual location. Parts a, b, c present the RMSE of the
proposed methods in LOS, NLOS1 and NLOS2 propagation conditions; parts d, e, f present the respective
standard deviation (SD) values. Lower is better for all of the figures, note the different scales on each
figure.

(20.795 cm, decrease of 14.10%), up to the least performing method of WLS2 (21.064 cm, decrease
of 13.00%). The results show that in LOS conditions all of the proposed methods perform
similarly, with a difference of 0.322 cm between the best and worst performing method.
NLOS1 conditions showed the best performing method to be MED at 29.135 cm RMSE

(decrease of 19.08%), followed by DWE at 29.169 cm (18.99% decrease) and IDW at 29.210 cm
(18.87% decrease), with the lowest performing method WLS1 at 30.727 cm (14.66% decrease). It
can be observed that in NLOS1 the absolute difference of the best and least performing methods,
at 1.592 cm, is larger than in LOS.
NLOS2 conditions produced similar results where MED achieved the best results at 32.183

cm (13.31% decrease), followed by DWE at 32.190 cm (13.29%) and IDW at 32.251 cm (13.12%)
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Figure 4: The average RMSE (lines+markers) and SD values (bars) for the proposed methods across all
locations, depending on the tested propagation conditions. Lower is better.

with WLS1 landing at the last place with 33.157 cm RMSE (decrease of 10.68%). Similar to the
previous result, the absolute difference of the methods is lower than NLOS1 but is still about 3
times as large as in LOS with 0.974 cm.
In terms of RMSE, the LS, MED, IDW and DWE methods show millimeter level differences

between each other in LOS and NLOS, providing essentially the same performance. Coupled
with the fact that MED, IDW and DWE offer comparable SD performance to active estimates, it
can be claimed that the MED, IDW and DWE methods are the best-suited measurement matrix
estimation methods.
Compared to results shown in previous papers reporting on AP-TWR [6, 7, 8], the attained

RMSE values were slightly higher than expected. This is partly due to the fact that earlier
papers ran only LOS tests, so naturally the added NLOS would provide degraded performance
due to the impairment of propagation conditions, but the reported LOS results showed slightly
lower performance as well.
This could be explained by some systematic errors introduced in the system. These errors

could be attributed to imperfect calibration of antenna delays, range bias (effect of signal strength
to the reported ranging value) [17], multipath propagation [18] or even errors originating from
the physical orientation of the devices in regards to each other [19].

6. Conclusion

The experiments validated that all of themethods decrease the ranging RMSE in LOS propagation
conditions, while also showing that NLOS propagation conditions do not break down the
methods but rather increase the performance in demanding propagation conditions.

Results also showed that the selection of the specificmethod is not so critical in LOS conditions,
as all the methods perform equivalently. The two tested NLOS conditions showed that in both,
absolute values and relative decrease of RMSE, are further increased by selecting the appropriate



method, meaning that the choice of methods becomes more crucial for real-life applications
experiencing mixed LOS/NLOS conditions.

In LOS, all the methods perform almost identically - achieving up to 14.3% lower RMSE when
using WLS3 method compared to SS-TWR. NLOS conditions showed that up to 19.08% decrease
of RMSE can be achieved compared to SS-TWR by employing MED to the measurement matrix,
whereas the LS, IDW and DWE methods’ performance lies within a few millimeters of it.

Comparing with the standard deviation of the best-performing SS-TWR active ranging, it
was observed that the MED, IDW and DWE achieve comparable results, implicating that the
precision of these methods is approximately on the same level. Meaning that these methods
offer no significant degradation of the precision when compared to the active-only ranging.

In conclusion, across the tested LOS, NLOS1 and NLOS2 propagation conditions the methods
MED, IDW and DWE showed similar SD, while providing considerably higher RMSE perfor-
mance compared to SS-TWR. Taking into account these results it can be claimed that either
one of the MED, IDW or DWE methods are sufficient for the AP-TWR measurement matrix
estimation, while showing that these methods are also robust in NLOS conditions.
For future work, new experiments could be conducted in larger and more complex en-

vironments with harsher multipath effects present. Moreover, additional locations and tag
orientations should be investigated to average out the device orientation errors and tests with
varying number of active-passive anchors (𝑚) should be conducted to see how it affects the
performance of the proposed methods.
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