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Abstract
Perceptron operators have been recently introduced in Description Logics: they define a concept by listing
features of the concept together with associated weights, as well as a threshold that needs to be reached
to classify an individual as a member of the defined concept. These formal operators have been shown
to be useful in simplifying the representation of complex classifications and for defining combinations
of concepts. In this paper, we discuss how perceptron operators can provide a tool to capture some of
the complex relationships that arise in the conceptual use and definition of a variety of mereological
relations. We here study the use case of the concept of “bike” as a mereologically/structurally complex
object, analyse the most relevant difficulties that emerge from the modelling approach using percepton
operators, and propose several starting points to overcome these difficulties.
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1. Introduction

In the field of knowledge representation, and in particular in Description Logics (DLs), concepts
are the central element of the languages. Thus, the problem of classification, that is, of recog-
nising whether an individual is an instance of a certain concept, is an interesting and relevant
task in these languages. Recently, perceptron operators (or tooth operators) [1, 2, 3] have been
proposed in the DL literature as a tool for introducing weights in the definition of concepts:
a perceptron operator gives a weight to the features that an individual instantiates and, if a
threshold is reached, then the individual is classified under the defined concept. The tooth
operator introduced in [1] is an expression of the form:

∇∇𝑡
(︀
𝐶1 : 𝑤1, . . . , 𝐶𝑝 : 𝑤𝑝

)︀
where ∇∇ is the symbol of the operator, 𝑡 is a numerical threshold and 𝐶1, . . . , 𝐶𝑝 are sub-
concepts with the associated weights 𝑤1, . . . , 𝑤𝑝. The expression defines a concept which is
interpreted by the weighted sum of the sub-concepts: intuitively, an individual is classified as
belonging to the defined concept if and only if the sum of the weights 𝑤𝑖 of the listed concepts
𝐶𝑖 it satisfies is greater or equal than the threshold 𝑡. For example, one can define the concept
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of Elephant as ∇∇1.4
(︀
HasTrunk : 1.0, IsBig : 0.4, IsGrey : 0.4

)︀
: if we have an individual

dumbo which HasTrunk and IsGrey, then the sum of weights meets the threshold and it will
be classified as Elephant.

With respect to the definition of concepts, in recent years mereology and mereotopology,
that is, the study of the part-whole relation and additional (spatial) relations, has gained great
attention and has became quite developed [4, 5, 6]. In this regard, we propose to use mereology
in order to make classifications using perceptron operators: the idea is to take as input the
mereological structure of an object and, on the basis of its similarity to a prototypical structure,
decide if it is an instance of a particular concept. However, given a number of complex aspects
related to mereology, realising a combination of these approaches is not trivial. The goal of this
paper is to discuss this general idea, to point out some of the problems that emerge from this
approach at the theoretical level, and to begin studying possible solutions.

In particular, in the next section we will propose and discuss a simple example of an informal
application of the tooth operator to a mereologically complex object, namely a bicycle. The goal
is to show how the operator works and to see more clearly what the limits in modelling are
when applying the standard operator to a structured object. Then, we will discuss the problems
emerging from a more technical point of view, referring explicitly to classical mereology, which
is the standard formalisation of the parthood relation. This then allows us to sketch a DL
formalisation of the proposed setting that can work as a starting point for a more detailed
technical discussion.

2. A simple classification game

In order to study the problems of modelling mereological relations using perceptron opera-
tors [1], we introduce a simple scenario for our task in the form of an elementary game. We will
start with a simplified scenario and gradually move towards the limits of this operator when it
is used for classification using mereological relations.
The game consists in deciding if an object is or is not a bicycle according to the parts we know
it has. The rules of the game are simple: (i) we have to decide what kinds of parts a bicycle has,
(ii) we give to these kinds of parts a weight, indicating how important each of them is in order
to classify the object composed of them as a bicycle, and (iii) we need to set a threshold, this
will indicate when we can consider the object a bicycle and when we cannot.
In a formal way, this corresponds to the use of the perceptron operator as:

∇∇𝑡
(︀
𝐶1 : 𝑤1, . . . , 𝐶𝑝 : 𝑤𝑝

)︀
where, as above, ∇∇ is the symbol of the operator, 𝑡 stands for the threshold and 𝐶1 : 𝑤1 are
the concepts, in this case the kinds of parts, with the associated weights.

For example, let us consider a bicycle like the one sketched in Figure 1. It can reasonably be
considered a bicycle since the most essential kinds of parts of a bicycle are present. Intuitively,
we can define something an essential kind of part if by removing it, we are not willing to consider
the whole as a bicycle anymore. In this case, we have only three essential kinds of parts, namely
the frame, the handlebar grip, and the wheels.



Figure 1: A sketch of a bicycle with its most essential parts.

It is important to notice that we are interested in the kinds of parts we have, i.e. the concepts
we see instantiated in the actual parts being present.

Now we can attribute the weights. As we have said, these are all essential kinds of parts for a
bicycle, so it is reasonable to give to all of them the same weight. We can decide arbitrarily for
a weight of 5.
Lastly, we have to set the threshold. Again, considering that we are dealing with essential kinds
of parts we want to make all of them indispensable for classifying the object in Figure 1 as a
bicycle: therefore, we can set the threshold to 15, i.e., to the sum of the weights of the three
kinds of parts.

Intuitively, this means that we can add other parts to it and still consider the whole a bicycle,
because the threshold will be reached by having even only these kinds of parts. However, notice
that atypical bike feature might receive negative weights, meaning that exhibiting essential
feature is not always enough to fall under a concept. Further, this means that if we change the
definition of a concept by adding some new kinds of parts or features, with certain weights, we
also need to recompute the weight of the features we considered necessary, so that they are still
essential from the numerical threshold perspective.

With the above tooth notation, we can represent the concept of Bicycle in this example as:

∇∇15
(︀
∃hasPart.Frame : 5, ∃hasPart.Handlebar_grip : 5, ∃hasPart.Wheel : 5

)︀
(1)

2.1. Counting instances

This classification can be further refined: for instance, in the previous game session, we deliber-
ately overlooked the fact that a bicycle should have two wheels, that is, two parts of the same
kind. In fact, with the previous representation, an object with a frame, a handlebar grip and
only one wheel can still be classified as a bicycle, because the three kinds are still all there.

We could solve this by quantifying over the instances: that is, we say that the weight is
computed if we have at least two parts that are wheels. We can proceed analogously with the
inverse issue, the one about having at most two parts that are wheels. In doing this, however, we
should divide the weight between the two new ‘kinds’, that is having_at_least_two_wheels



and having_at_most_two_wheels, attributing to them a weight of 2.5.
We can update also our example formalisation in formula (1):

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 = ∇∇15
(︀
∃hasPart.Frame : 5,∃hasPart.Handlebar_grip : 5, (2)

⩾2 hasPart.Wheels : 2.5,⩽2 hasPart.Wheels : 2.5
)︀

2.2. Parts of parts

For a more precise representation, considering that we are dealing with parts, we would like
to consider the transitivity of the parthood relation: intuitively, we want to provide assertions
also over parts of parts. For example, we can characterize “bicycle wheels” as having spokes:
thus, we can assign a weight for the spokes of the wheels, say 4. We are not interested in the
number of spokes, therefore we can consider them as a whole for the moment. Following the
procedure we have described above, the refined definition of our concept becomes:

Bicycle = ∇∇15
(︀
∃hasPart.Frame : 5, ∃hasPart.Handlebar_grip : 5, (3)

⩾2 hasPart.Wheels : 2.5, ⩽2 hasPart.Wheels : 2.5,

∃hasPart.Spokes : 4
)︀

where the threshold is exceeded by 4 for our example bike.
We obtain that the object is still classified as a bicycle: however, the weight of the spokes

does not influences the contribution of the weights of the wheels. The intuition behind this idea
is that if we considered the contribution of a kind of part to the classification of the composite
object, then we should already consider inside that contribution also the contribution of all the
kinds of sub-parts of that kind of part.

The solution to this problem is not trivial. A first step can be to consider the ‘hierarchy’ of
kinds of parts in the attribution of the weights, by starting from the mereological atoms (that is,
parts with no parts) with an arbitrary attribution, and then compute the other weights climbing
up the hierarchy. But this does not solves the central problem of how to avoid to consider two
times the contribution of the same kind of part, an issue related to problems with multiple
inheritance in ontology.

2.3. Overlapping parts

The problem becomes even more complex when we consider the case of overlapping parts, that
is, in cases where we have two parts that have a part in common. In this case, the information
that we are counting two times the same part is more ‘hidden’: we need to look at the parts of
parts and then to recognise when they are parts of the same part. The situation would be that
of Figure 2, where the grey connections show where there is an overlap.

A concrete example could be, in a more complex bicycle, that of the shifter (the part of the
bicycle that allows to control the gearing mechanisms). It could be considered both as part of
the total shift system (composed of the shifter, the gearing mechanism and the cables going
from the former to the latter) and of the handlebar. Now, if we are computing the weights of



Figure 2: Schema of a structure with two overlapping parts; connections stand for the parthood relation.

the handlebar and of the shift system for the classification, we would like to take into account
the fact that the shifter is a part of both: thus, in a certain sense, we are considering its weight
two times.

2.4. Scattered and re-arranged parts

A more general problem is that so far we are assuming that the parts we are considering are
structured in a way that allows us to consider them a bicycle. However, in the procedure we
described there is no explicit reference to this aspect. Consider for example Figure 3.(a): here
we have all the same parts of Figure 1, but we could be reluctant to consider it a bicycle.

(a) Scattered bicycle (b) Rearranged bicycle

Figure 3: Scattered and rearranged bicycle.

An easy way to resolve this problem is simply to make explicit that when we speak of
the parthood relation we are assuming that the parts are connected. However, we can have
cases such as the one in Figure 3.(b), where the parts are indeed connected, but where they
are arranged in a way that does not allow us to classify the whole as expected, in our case,
as a bicycle. Intuitively, a solution is to consider in addition to the parthood relation also a
relation that allows us to represent the connection of the parts among each other. However,
this solution needs a description of the object that has to be quite fine grained. In fact, consider
again Figure 3.(b): if we consider the same parts as above, i.e. the frame, handlebar grip, wheels
and spokes, the connections remain the same as in Figure 1. That is, they are represented in the



Figure 4: A schema of the connections among the parts of a bicycle as represented in Figure 1 and 3.(b).

schema of Figure 4. Therefore, even if the solution seems quite straightforward, its application
even (or especially) to simple cases is not trivial.
The discussion so far focused generally on the approach we would like to pursue. However,

there are also more specific problems and issues that are due to the specific choices made for
the formalisation of the parthood relation.

3. Classification and classical mereology

In the following, we introduce the axioms that define our understanding of the parthood relation.
The classical theory that formalises the parthood relation is called classical mereology [4].
Generally, it is based on five types of axioms: the first three are called ordering axioms, namely
irriflexivity, asymmetry and transitivity, the fourth one is called decomposition axiom and the
fifth the composition axiom. There are different equivalent versions of classical mereology: here
we are using the one proposed in [4, section 2.4.1] for proper parthood. Using this version, we
can identify the more problematic axioms for our goals as the last three, which in this version
are called Transitivity, Weak Supplementation and Unrestricted Fusion′.

3.1. Transitivity

Considering 𝑃𝑃 as the proper parthood relation, transitivity is formulated as:

∀𝑥∀𝑦∀𝑧((𝑃𝑃𝑥𝑦 ∧ 𝑃𝑃𝑦𝑧) → 𝑃𝑃𝑥𝑧). Transitivity (PP)

We are using proper parthood as a primitive for convenience: proper and improper parthood
are inter-definable, thus we do not lose generality. The problem with transitivity is essentially
what we have discussed above in terms of parts of parts in Section 2.2. However, about the first
step we mentioned above, i.e. to exploit the hierarchy of parts, we can define a new parthood
relation. The idea is to use it for the computation of the weights starting from the atomic parts,
therefore we should consider only the parts of the ‘level’ immediately before. Consequently,
the relation we define is that of immediate parthood: it defines an immediate part as a proper
part which is not a proper part of another proper part. Formally:

𝐼𝑃𝑥𝑦 :≡ 𝑃𝑃𝑥𝑦 ∧ ¬∃𝑧(𝑃𝑃𝑥𝑧 ∧ 𝑃𝑃𝑧𝑦). Immediate part



Figure 5: A schema of the parthood relations of the bicycle example.

Using our example again, the spokes are immediate parts of the wheel, but not of the bicycle,
because they are proper parts of a proper part (namely, the wheel) of the bicycle. It is important
to notice that immediate parts are antitransitive

∀𝑥∀𝑦∀𝑧((𝐼𝑃𝑥𝑦 ∧ 𝐼𝑃𝑦𝑧) → ¬𝐼𝑃𝑥𝑧). Antitransitivity (IP)

This is desirable in our case: in fact, antitransitivity “blocks the access” to other levels of the
mereological hierarchy.

3.2. Decomposition

In our formalisation of classical mereology, the axiom regulating decomposition is called weak
supplementation. Quite intuitively, this axiom states that if one removes a proper part from a
whole, then there is another, distinct proper part that remains. Formally:

∀𝑥∀𝑦(𝑃𝑃𝑦𝑥 → ∃𝑧(𝑃𝑃𝑧𝑥 ∧𝐷𝑧𝑦)), Weak Supplementation

where 𝐷𝑧𝑦 means that 𝑧 and 𝑦 have no parts in common

𝐷𝑧𝑦 :≡ ¬∃𝑥((𝑃𝑃𝑥𝑧 ∧ 𝑃𝑃𝑥𝑦) ∨ (𝑥 = 𝑧 ∧ 𝑥 = 𝑦)). Disjointness

To see what the problem is for our approach, consider the schema in Figure 5 representing
the parthood relations in the bicycle example. Note that wheels have only spokes as a kind of
part. This is not directly a problem given the fact that we are still moving at the conceptual
level, whereas the parthood relation holds among the individuals. However, the bicycle we have
described so far can have a model with only one spoke, or with an individual corresponding to
spokes in the sense of a plural or mass object: in this case weak supplementation would not be
respected.

3.3. Composition

The axiom that regulates composition is unrestricted fusion′:

∃𝑥𝜙𝑥 → ∃𝑧𝐹 ′
𝜙𝑧 Unrestricted Fusion′



with 𝐹 ′
𝜙𝑧 defined as

𝐹 ′
𝜙𝑧 :≡ ∀𝑥(𝜙𝑥 → 𝑃𝑥𝑧) ∧ ∀𝑦(𝑃𝑦𝑧 → ∃𝑥(𝜙𝑥 ∧𝑂𝑦𝑥)). Fusion′

The axiom simply states that there is a “fusion” of everything, where a fusion is the whole
comprising all the things that are 𝜙 and that has as parts only things that have at least a part in
common with the things that are 𝜙. In fact, 𝑂𝑦𝑥 means that 𝑦 and 𝑥 have at least one part in
common:

𝑂𝑧𝑦 :≡ ∃𝑥((𝑃𝑃𝑤𝑦 ∧ 𝑃𝑃𝑤𝑥) ∨ (𝑤 = 𝑦 ∧ 𝑤 = 𝑥)). Overlap

To understand what the problem is with respect to our approach, consider again the schema
in Figure 5. Let us assume that 𝜙 corresponds to 𝑏𝑒𝑖𝑛𝑔_𝑎_𝑓𝑟𝑎𝑚𝑒 ∨ 𝑏𝑒𝑖𝑛𝑔_𝑎_ℎ𝑎𝑛𝑑𝑙𝑒𝑏𝑎𝑟_𝑔𝑟𝑖𝑝.
For Unrestricted Fusion′, there needs to exist a fusion corresponding to the things that satisfy
(𝑏𝑒𝑖𝑛𝑔_𝑎_𝑓𝑟𝑎𝑚𝑒∨𝑏𝑒𝑖𝑛𝑔_𝑎_ℎ𝑎𝑛𝑑𝑙𝑒𝑏𝑎𝑟_𝑔𝑟𝑖𝑝), that in our case are the frame and the handlebar
grip. But we do not have such a fusion, because the second conjunct of the definition of a fusion,
namely ∀𝑦(𝑃𝑦𝑧 → ∃𝑥(𝜙𝑥 ∧𝑂𝑦𝑥)), is not respected. In fact, the only whole composed by the
frame and by the handlebar grip is the bicycle, but it has two parts, namely wheels and spokes,
which do not overlap with the parts satisfying 𝜙.

These are the main problems we identified for the merging of classical mereology and perceptron
operators for classification tasks. We note that there is an easy way to avoid the difficulties with
the decomposition and the composition axioms: one can assume that the mereological structure
we are trying to classify already respects classical mereology. In such a case, we are excluding
models that could be classified as bicycles according to the conceptual structure described by the
operator, but which are not compatible with classical mereology. Therefore, the true difficulty
for our goal is the transitivity of parthood.

4. Encoding mereology in weighted description logics

The problem we are interested in to solve is classification by mereological similarity: that is, given
a prototypical mereological structure defining a concept, such as (the concept of) a bicycle, we
want to describe how to define such a concept via the perceptron operator in DLs by computing
the weights to be assigned to each kind of part.

In this section, we will sketch a formalisation of this setting that can work as a starting point
for a more involved technical discussion.

Given a DL signature Σ = NC ⊎NR ⊎NI, we consider the role hasImmediatePart ∈ NR
to represent the immediate parthood relation and its inverse isImmediatePartOf ∈ NR. Here,
the idea is to use immediate parthood instead of the classical parthood or proper parthood in
order to have already an initial coarse “control” over the hierarchies of parts.

Our definitions will be based on immediate parthood, but for convenience we also assume
the role hasPart ∈ NR (with inverse isPartOf ∈ NR) to represent the (proper) parthood
relation. Thus, we assume that hasImmediatePart ⊑ hasPart (and isImmediatePartOf ⊑
isPartOf) and that hasPart is transitive. As noted above, transitivity of parthood is one of
the more problematic elements: here we maintain it for the sake of simplicity.



In our setting, we assume to have a given DL knowledge base defining objects (among
other properties) via the immediate parthood relation. Thus, we assume to consider a
knowledge base of the form 𝒦 = ⟨𝒯 ,𝒜⟩ where elements of the ABox 𝒜 are state-
ments about individuals using roles and concepts. I.e. they may be defined in terms of
hasImmediatePart and isImmediatePartOf as for example in the assertions of the kind
hasImmediatePart(bike, wheel) and hasImmediatePart(wheel, spoke), describing the
structure of an individual bike. But also, we may have other descriptions using concepts,
such as Wheel(wheel), Spoke(spoke), Bike(bike) and so on. The TBox 𝒯 contains, as usual,
terminological knowledge about the domain in the form of general concept inclusions, such as
Bike ⊑ Vehicle, etc.

The mereological prototype we want to consider can be specified at a conceptual level
in another TBox 𝒫 . Concepts of 𝒫 are described exclusively in terms of the immediate
part relations: thus for example we have, Wheel ⊑ ∃isImmediatePartOf.Bike, Spoke ⊑
∃isImmediatePartOf.Wheel etc. In other words, 𝒫 provides the representation of the perfect
mereological match for the prototype: our goal now is to provide, using the perceptron operator,
a way to relax the strict requirements of this DL description and allow for the classification
of elements that “satisfy enough” of the mereological structure of the prototype. In terms of
the game in Section 2, we can see this procedure as fixing the ideal bicycle that will be used to
compare to the actual instances we are checking: then, we need to set how we can decide if the
instances resemble enough the prototype to be classified as a bicycle, even if not necessary a
perfect one.

The “approximate” version of the concept can be expressed via the perceptron operator, as
shown intuitively in Section 2: the question then is how, starting from the structure of the
mereological prototype, we can assign weights to the components in a way that is compatible
with the mereological properties. For example, a naive bottom-up method for the computation
of the weights in the tooth expression can be defined as follows. Let us denote with NC𝒫 ⊆ NC
the set of atomic concepts appearing in 𝒫 . For every concept 𝐶 ∈ NC𝒫 , we consider the set:

𝑟𝑒𝑙(𝐶) = {𝐷 ∈ NC𝒫 | 𝐷 ⊑ ∃isImmediatePartOf.𝐶 ∈ 𝒫 }

We also use 𝑟𝑒𝑙*(𝐶) to denote the closure of this set (i.e. all the concepts that are reachable via
isImmediatePartOf by 𝐶). For each 𝐶 ∈ NC𝒫 , we define its weight as:

𝑤(𝐶) =
∑︁

𝐷∈𝑟𝑒𝑙(𝐶)

𝑤(𝐷) + 1

Note that the weight of each part is computed “bottom-up” from the leaves of the mereological
structure (the concepts describing atomic parts) to the top concept (the concept describing the
whole object). Of course, this measure is quite rough: for example, it provides more weight to
the parts that are more detailed in terms of sub-parts. A more refined computation, for example,
could proceed by levels of the part-hood hierarchy, so that composite parts (e.g. a bicycle wheel)
have always more weight than the their single components (e.g. the spokes and tire of the
wheel).

If 𝐸 ∈ NC𝒫 is the top concept of the mereology (i.e. the one defining the whole prototypical
object we are describing), the total cost of 𝐸 should be 𝑤(𝐸). Then the “similarity degree” can be
defined as 𝐶 ∈ NC𝒫 is 𝑑𝑒𝑔(𝐶) = 𝑤(𝐶)/𝑤(𝐸), with the limit case 𝑑𝑒𝑔(𝐸) = 𝑤(𝐸)/𝑤(𝐸) = 1.



Thus we can use these measures to express the “approximate” definition of the prototypical
object as:

∇∇𝑡(∃hasPart.𝐶1 : 𝑑𝑒𝑔(𝐶1), . . . , ∃hasPart.𝐶𝑛 : 𝑑𝑒𝑔(𝐶𝑛) )

with {𝐶1, . . . , 𝐶𝑛} = 𝑟𝑒𝑙*(𝐸) and 𝑡 ∈ [0, 1] a threshold defining the level of similarity.
Referring again to our simple game in Section 2, now we are able to define our ideal bicycle

(the mereological prototype in 𝒫) and we have a way to decide (by the encoding in a tooth
expression) if what we have is a bicycle or not for very easy cases. However, for the situations
where the issues discussed in Section 3 emerge, this simple solution is still not enough.

5. Conclusions

In this paper, we introduced the possibilities and issues of using mereological definitions for
classification via perceptron operators. We first described an example to show informally how
the perceptron operator works. Then, by moving towards the limits of the application of the
operator to mereological wholes, we discussed some of the problems that emerge. In particular,
these limits include counting instances of the same concept, computing the weights of parts
of parts (i.e., considering the transitivity of the parthood relation) and of overlapping parts,
and managing situations where the parts are scattered or re-arranged. We then discussed some
issues due to the adoption of classical mereology as the reference formalisation for parthood:
the issue of transitivity emerged also in this case, but we noted also new issues caused by the
decomposition and composition axioms. Finally, we proposed a DL formalisation for the basic
scenarios of the approach, which can be used as a starting point for future discussions in order
to find more general or more appropriate technical solutions for the emerged problems.

Our future work in this direction will be mainly focused on overcoming the difficulties
discussed above. This has to be done both from the point of view of the definition of the
operator, for example as relating to the options to faithfully compute the weights, and regarding
the open issue which mereological theory to adopt. In this respect, a deeper consideration
of the declination of classical mereology in DLs is needed (see e.g. [6]), a theory which in
its more expressive versions can only be fully formulated in first- and/or second-order logic.
Moreover, some research on alternatives of classical mereology that, for example, do not accept
transitivity of parthood would be useful. As a related direction, we are also currently studying
how some notion of exception in DLs (like the one used in [7, 8]) can be used in combination
with perceptron operators, in particular in relation to graded or multi-relational definitions of
defeasibility [9, 10].
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