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Abstract
Optimising object order in stacking problems remains a hard problem for cognitive robotics research.
In this paper, we continue our work on using the spatiotemporal relationships called image schemas
to represent affordance spaces founded on object properties. Based on object properties, we intro-
duce a stacking-order algorithm and describe the action descriptors using an image-schematic event
segmentation format by describing a small subset using the Image Schema Logic ISL𝐹𝑂𝐿.
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1. Introduction and Problem Space

Despite the past decades progress in developing increasingly sophisticated software and hard-
ware, research in artificial intelligence and cognitive robotics is still struggling to accurately
represent and execute tasks that are learned by a human children in early infancy, a phenomenon
known as Moravec’s paradox [1]. One such task is the pick-and-place task. Appearing decep-
tively simple, the task includes visual mastery of gaze control, understand spatial depth and
positioning, as well as object recognition and object permanence. It requires object manipu-
lation abilities for moving the agent’s own body (or body parts), understand the spatial and
force-dynamic relationships of grasping objects. Additionally, it needs to be able to identify
object properties and reason how their affordances behave under particular conditions. In this
paper, we look at a particular complex pick-and-place task by focusing on how to stack object
on the vertical axis. In addition, to the complexities of the pick-and-place task, stacking objects
require a deeper understanding of the properties and affordances of the objects being stacked.
For instance, it is not possible to stack heavy objects on top of flexible objects, nor it is (under
normal circumstances) possible to stack a flat object onto a convex surface.
The motivation for this research agenda is the common occurrence of stacking objects in
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household activities. Kitchen utensils are stacked on top of one another in the cupboard and
objects are carried on trays in particular arrangement.

To provide the household robots with a more intelligent understanding for stacking, we will
use inspiration from cognitive science that demonstrate how human children core down object
properties and action segments into meaningful components. We will then proceed to utilise
these components by formally representing action descriptors involved in stacking and present
an ordering algorithm that takes the object properties into account to provide a stable stack.

2. Foundation and Related Work

2.1. Theoretical Foundation

Our work is based on the hypothesis that there exists a finite number of conceptual building
blocks that represent the salient features of object relations, including those providing balance
and stackability. These are often referred to as image schemas and encompass spatiotemporal
relationships between objects, agents and their environments1 [2, 3]. The theory stems from
the notion of embodied cognition, a common theoretical framework in cognitive robotics
research (e.g. [4, 5]) which assumes that intelligent behaviour, in all its forms, stems from
the body’s sensorimotor experiences in its environment. Within this framework the image
schemas represent the atomic yet salient features that distinguish one particular situation from
another. For instance, the image schema Contact is present in a situation in which two objects
are physically touching and the image schema Link defines objects that (may or may not be)
touching but have a causal relationship to one another. The salient difference is that in Contact,
moving one object will not necessarily affect the other object, but if they are Linked, moving
one object will automatically move the other object as well. Likewise, the salient features of an
object like a cup is defined by its ability to Contain liquids, and objects with flat sturdy surfaces
like a tray are defined by their affordance to Support other objects. In most cases, an event like
stacking objects can be described as a combination of different vertical pick-and-place tasks
(Verticality + Source_Path_Goal) with the Support and Containment constraints of any
involved objects.

Due to the conceptually-rich content of image schemas and their finite number, combinations
of them can be argued to describe all kinds of spatiotemporal situations and events [6, 7]. For
robotic research, this means that it is possible to formally represent the physical states of both
the initial state and the goal state of particular actions, but also in detail describe the changes
over time that constitute the actions that leads to these changes. In previous work we have
investigated this for different scenarios (see [8, 9]) and in Section 4 we will demonstrate this for
stacking using ISL𝐹𝑂𝐿.

1The theory was originally developed in cognitive linguistics to explain the high number of spatial metaphors
in abstract language, but has become a common hypothesis in many research areas dealing with semantic relevance
in relation to spatial reasoning. Not all research fields would agree on defining them as spatiotemporal relationships,
but it is a useful delimitation in cognitive robotics.



2.2. Formal Framework

The representation language ISL𝐹𝑂𝐿: We base our representation on the expressive com-
bination language the Image Schema Logic ISL𝐹𝑂𝐿 [3]. Following a popular temporalisation
strategy (as in [10]), temporal structures are the primary model-theoretic objects, in turn based
on Linear Temporal Logic over the reals (LTL). At each moment of time, we allow for the employ-
ment of secondary semantics to represent complex propositions. These atomic representations
are topological assertions in 3D Euclidean space based on the Region Connection Calculus
(RCC) [11], relative movement dimension using Qualitative Trajectory Calculus (QTC) [12] and
relative object position using Ligozat’s Cardinal Directions (CD) [13]. Quantification is used to
separate different sortal objects, whilst otherwise the syntax of the language follows a standard
multi-modal logic paradigm. For more details on the logic we refer to [3, 14].

The robotics framework: While preliminary, the robotics framework we utilise is based on
KnowRob [15], a knowledge representation and reasoning system. Knowrob uses Web ontology
language (OWL) based on description logics to represent the knowledge. Prolog, a logic-based
programming language is used to reason over the knowledge base and to assert new facts that
are computed. We use the formal affordance model defined in [16] and represented in SOMA
[17]. The formal model comprises of concepts including Affordance, Disposition and Role where
Dispositions are properties of objects that takes on the role of a bearer and acts as a description
of Affordance. With the model defined in [16], for an event requiring a certain affordance to
execute a task, the task can be executed only if there is a presence of two suitably disposed
objects with a trigger and a bearer role in the environment. This model is used in the algorithm
for stacking.

2.3. Previous Work

Image-schematic event representation for robotics: In [7], the authors demonstrate how
it is possible to divide the event of cracking eggs into bowls into image-schematic components.
In previous work, we looked at how robotic action descriptors could be cored down into their
image-schematic relationships. In [8], we defined image-schematic relations like Verticality,
Source_Path_Goal, Containment, Link, Contact, Support to describe the action of cutting.
The functional properties of objects and scene description defined using image schema concepts
are used in [18] to construct a simulation of the scene and estimate the parameters necessary
for performing the action of pouring. While in [19], the author uses qualitatively described
functional object relations in a spatial arrangement to enable the agent to understand the causal
structure embedded in the scene.

Object stacking: Robotics research on object manipulation comes in many forms, including
work on stacking objects with a focus on the complexity of balancing objects on top of one
another. Themajor challenge is to learn the physics of how shapes of different level of complexity
can be stacked on top of one one another without falling. [20] approach the problem by using a
neural network to learn the geometric affordances. In [21], a reinforcement learning algorithm



was used to train a system how to stack a series of complex shapes while simultaneously
ignoring irrelevant object features such as colour.

In more domestic environments, in which household items are to be stacked for more practical
reasons, other challenges presents themselves. In [22], the authors introduce a method for
stacking objects on shelves based on crowd sourced data.

Learning functional relationships and affordances: To perform a successful stacking, it
is important to reason about the object affordance property. There are works (e.g. [20, 23, 24])
using machine learning to learn the extracted features representing the physical properties
of objects in a scene to be able to reason about the individual object behaviour and how they
behave in pairwise object interactions. But the problem is the machine learning models does
not enable an understanding of how the object features relate to functional properties. There
needs to be a semantic component as in image schemas to perform object stacking and also be
able to explain in case of failure, when certain objects do not in the stack or failure in action
when a robot executes the task of object stacking.

3. Stacking order algorithm

Computing the stacking order is a search problem to find a stable configuration that can be
stacked from the given set of objects in a scene. The search space of this problem is n!, where n
is the number of objects. Only rigid objects are considered in this work and the stack height is
limited to 5 objects.

Algorithm 1 presents the stacking order by computing the disposition properties of the objects.
By Turvey’s [25] definition of dispositions, there needs to be two objects whose disposition
properties complement each other, for the affordances of the objects to be realised if the situation
demands. For the task of stacking to be performed, one of the objects assumes the role of a
bearer with the ability to support other objects and the second object with a trigger role can be
placed on top of other objects. The roles of the objects can be interchanged, with the object
that is in need of support acting as a bearer and the supporting object acting as a trigger. The
important aspect is the presence of two suitably disposed objects that can enable stacking. The
Rule onTopOf is used to verify if the considered objects satisfy the condition to be stacked and
does not mean that the object 𝑂1 is placed on top of 𝑂2. The rule is defined below,

∀𝑂1, 𝑂2 ∶ 𝑜𝑛𝑇 𝑜𝑝𝑂𝑓 (𝑂2, 𝑂1) ↔ ∃𝐷1, 𝑅1 ∶ 𝑂𝑏𝑗𝑒𝑐𝑡(𝑂1) ∧ 𝑂𝑏𝑗𝑒𝑐𝑡(𝑂2) ∧ 𝐷𝑖𝑠𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛(𝐷1)∧
𝑅𝑜𝑙𝑒(𝑅1) ∧ ℎ𝑎𝑠𝐷𝑖𝑠𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛(𝑂1, 𝐷1) ∧ ℎ𝑎𝑠𝑇 𝑟 𝑖𝑔𝑔𝑒𝑟(𝐷1, 𝑅1)∧
ℎ𝑎𝑠𝑅𝑜𝑙𝑒(𝑂2, 𝑅1) ∧ 𝑐𝑎𝑛𝑆𝑡𝑎𝑐𝑘(𝑂1, 𝑂2) (1)

It comprises of the unary predicates Object, Role and Disposition which are used to assert
that 𝑂1 and 𝑂2 are instances of Object, 𝑅1 is of type Role and 𝐷1 is a Disposition. The predicate
ℎ𝑎𝑠𝐷𝑖𝑠𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 relates the object 𝑂1 with a suitable disposition 𝐷1, similarly hasTrigger is a
relation between 𝐷1 and the role type 𝑅1 that can act as a trigger for 𝐷1 and hasRole relates
the object 𝑂2 to role 𝑅1 if the object can take on the role. The last predicate canStack is used



Figure 1: Object set: Bowl, Plate, Spoon

to perform geometric reasoning if the objects 𝑂1 and 𝑂2 playing the trigger and bearer roles
afforded by the disposition 𝐷1 can be stacked.
The rule above explains how to check if two objects can be stacked. When a set of objects

is considered, they are of separated into two groups based on their disposition property. The
separation of the objects is done with the reasoning that any object that can support or contain
other objects with the disposition Deposition and Containment respectively, should be placed
at the bottom of the stack. Likewise, objects without such dispositions such as spoons, as well
as spherical objects that has the property of Rollability, are at the top.
The objects are modelled with their top facing the positive Z-axis (height) and the length

along the X-axis and the width along the Y-axis, see Figure 1. This is identical to how they are
to be placed on a surface to ensure stability. To avoid comparing each object with the rest of the
objects, we use a simple heuristic of sorting the objects based on their diagonal length along
the XY plane. This is motivated with how it ensures the object with a large bottom surface is at
the bottom of the stack.
Consider an example scenario with an ordered list of objects comprising of a plate, a spoon

and a bowl as shown in Figure 1. First, we will apply Rule 1 to the plate and the bowl. The plate,
having the disposition property of Deposition, needs a trigger role of type DepositedObject, as the
flat nature of the plate affords to Support other objects when placed on top of it. Based on its
physical features, the bowl can play the role of a DepositedObject and the relation canStack holds
as well. Thus, the bowl can be placed on the plate. Continuing, with the bowl and the spoon,
the bowl with the disposition property of Containment needs a trigger of type ContainedObject,
as the concave shape allows Containment of objects inside. If the spoon can be contained in
the given bowl then the task of Stacking can be realised2. The obtained stack is similar to the
left stack in Figure 2. The unstable arrangement of objects is one of the configurations that will
not be considered by the algorithm as the spoon placed at the bottom will not offer any support
to other objects or contain other objects.
In the next section, we define the actions necessary for stacking. Stacking is performed by

transporting the objects in the order provided by the algorithm. The defined action sequence
has to be performed recursively until all the objects are stacked.

2Note that dispositions often correlate with their image-schematic representations, but that we have chosen to
keep their syntactic representation in the text.



Figure 2: Stacking objects with two different arrangements, stable and unstable stack

4. Action representation of stacking

In order to be able to execute successful object stacking, the event of stacking one object on
top of another needs to be cored down and explained in terms of each of the individual actions.
Stacking is a repetition of the task of transporting objects until all objects in our set have been
placed on top of one another following the stacking algorithm.

The actions are classified into atomic and compound as described in the taxonomy of actions,
see [26]. An atomic action is defined as below,

Definition 1. An action causing a single change in the image schematic relation is an atomic
action.

For example, consider the action of Lifting, before the action is executed an object is in contact
with the robot gripper and is supported by a surface. Once the action is executed, there exists
no contact between the surface and the lifted object and the support is offered by the gripper.
The Lifting action leads to a change in Support relationship, hence, Lifting is an atomic action.
Compound actions are a composition of atomic actions or compound actions. By that definition,
an action like transporting is a compound action comprising of two other compound actions:
picking up and placing. Each of the compound action consists of smaller atomic descriptors
that can be described in image-schematic terms.
Further, the pre- and post scene of the compound action is defined in terms of the spatial

relations between the involved objects. The defined spatial relations and the object roles must
hold for a successful task execution. By defining the pre- and post scene of an action, it is
possible to infer the necessary sequence of actions to execute a task. The representation of the
action with its initial and the terminal scene has the following syntax:
Action(𝐼) ↔ (InitialScene(𝑇1) → TerminalScene(𝑇2)), where 𝑇1, 𝑇2 are time points and 𝐼 is an
interval which begins at 𝑇1 and ends at 𝑇2 during which the action happens.

This means that to execute an Action, the InitialScene is a prerequisite and once the action is
performed, it results in the TerminalScene, the goal state of the Action. The action takes place
during the time interval 𝑇 resulting in the end state at 𝑇2, given the prerequisite is satisfied at
some time point 𝑇1. The ’→’ does not point to implication, it rather means that the defined goal
state is achieved if the action is successfully executed under the given context. The initial scene
of an action comprises of objects that can take on suitable roles and relevant spatial relation



Algorithm 1 Rules for Stacking
Input 𝑂𝑏𝑗𝑒𝑐𝑡 𝑙𝑖𝑠𝑡 ← given set of objects in scene
Output 𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑂𝑏𝑗𝑒𝑐𝑡𝑠 ← Stacking order of given objects
𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑁 𝑜𝑡𝐼 𝑛𝑆𝑡𝑎𝑐𝑘 ← Objects that are not part of the stack
1: procedure ComputesOrderedObjectList
2: OrderedObjects ← 𝜙
3: Sortedlist ← Objectlist sorted based on their diagonal length in descending order ignor-

ing the height
4: /* considers objects that can support other objects */
5: for object O in 𝑆𝑜𝑟 𝑡𝑒𝑑𝑙𝑖𝑠𝑡 do
6: if hasDisposition(𝑂, 𝐷) and D in [Deposition, Containment] then
7: Remove O from Sortedlist
8: if OrderedObjects is empty then
9: OrderedObjects ← OrderedObjects ∪ O
10: else
11: /* Apply the Rule 1 */
12: if 𝑜𝑛𝑇 𝑜𝑝𝑂𝑓 (𝑂, 𝑇 𝑜𝑝) then
13: OrderedObjects← OrderedObjects ∪ O
14: end if
15: end if
16: end if
17: Top ← OrderedObjects[N-1], N← size of OrderedObjects
18: end for
19: /* considers objects that cannot support other objects */
20: Top ← OrderedObjects[N-1], N ← size of OrderedObjects
21: for object O in 𝑆𝑜𝑟 𝑡𝑒𝑑𝑙𝑖𝑠𝑡 do
22: /* Apply the Rule 1 */
23: if 𝑜𝑛𝑇 𝑜𝑝𝑂𝑓 (𝑂, 𝑇 𝑜𝑝) then
24: Sortedlist.pop()
25: OrderedObjects← OrderedObjects ∪ O
26: end if
27: end for
28: ObjectsNotInStack = ObjectList - OrderedObjects
29: Return OrderedObjects, ObjectsNotInStack
30: end procedure

among objects. Note that when the action is executed, the relationships between the objects
and the roles the objects initially have, can change.

For a transporting action to happen, the prerequisite is the presence of a Support relation
between two physical objects taking the roles of Deposit and DepositedObject at a time point
𝑇1 . When the task is completed successfully, there is again a Support relation between the



transported object and an object with the Deposit role at a time point 𝑇2. The transporting
predicate is parameterised by 3 objects and a time interval, 𝑂1, 𝑂2, 𝑂3 and 𝐼, where 𝑂1 is
transported from 𝑂2 to 𝑂3 during 𝐼. The predicate hasInterval relates the TimeInterval 𝐼 instance
with the starting time point 𝑇1 and the end point 𝑇2.

∀𝑂1𝑂2, 𝑂3, 𝐼 ∶ transporting(𝑂1, 𝑂2, 𝑂3, 𝐼 ) ↔(∃𝑇1, 𝑇2 Object(𝑂1) ∧ Object(𝑂2) ∧ Object(𝑂3)∧
Timepoint(𝑇2) ∧ Timeinterval(𝐼 ) ∧ 𝑇2 > 𝑇1∧
hasInterval(𝐼 , 𝑇1, 𝑇2) ∧ hasRole(𝑂1, 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑𝑂𝑏𝑗𝑒𝑐𝑡)∧
hasRole(𝑂2, 𝐷𝑒𝑝𝑜𝑠𝑖𝑡) ∧ supportedBy(𝑂1, 𝑂2, 𝑇1)
→ hasRole(𝑂3, 𝐷𝑒𝑝𝑜𝑠𝑖𝑡) ∧ supportedBy(𝑂1, 𝑂3, 𝑇2))

Picking up comprises of several atomic actions: LookingFor, LookingAt, MovingTo, Grasping
and Lifting. LookingFor and LookingAt are movements that are necessary to perceive the object.
MovingTo is a movement towards the object so that the object is reachable. Lifting and Grasping
involve interaction with objects, the gripper of the agent comes in contact with the object in
Grasping and in Lifting, the agent is in control of the object and is being supported by the
gripper. Similar to transporting, there needs to be a Support relation before and after the action
is executed successfully. For picking up of 𝑂1 from 𝑂2 to happen, there needs to be a Support
relation between the object and the surface. There is an agent 𝑂3 involved in picking up and
the object 𝑂1 is supported by the agent once the action is complete. The action happens over a
time interval which starts at 𝑇1 and ends at 𝑇2.

∀𝑂1, 𝑂2, 𝐼 ∶ pickingUp(𝑂1, 𝑂2, 𝐼 ) ↔(∃𝑇1, 𝑇2 ∶ Object(𝑂1) ∧ Timepoint(𝑇1) ∧ Timepoint(𝑇2)
∧ Timeinterval(𝑇 ) ∧ 𝑇2 > 𝑇1 ∧ hasInterval(𝐼 , 𝑇1, 𝑇2)∧
Object(𝑂2) ∧ hasRole(𝑂2, 𝐷𝑒𝑝𝑜𝑠𝑖𝑡)∧
hasRole(𝑂1, 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑𝑂𝑏𝑗𝑒𝑐𝑡) ∧ supportedBy(𝑂1, 𝑂2, 𝑇1)
→ ∃𝑂3 Agent(𝑂3) ∧ hasRole(𝑂3, 𝐴𝑔𝑒𝑛𝑡𝑅𝑜𝑙𝑒)∧
supportedBy(𝑂1, 𝑂3, 𝑇2))

We provide the definition of the actions involving objects using ISL logic. The operator 𝑈 is
Until from Temporal Logic, ↩ and ⇝ are used as in Qualitative Trajectory Calculus to denote
the movement of the object away from, and towards the other object respectively. Grasping
defined below is a combination of the image-schematic aspects of Link and Containment.
When the grasping action is performed, the object 𝑂1 and gripper 𝑂2 are initially disconnected
and eventually the object becomes a part of the gripper and there exists a contact force between
the gripper and the object.

∀𝑂1 ∶ grasping(𝑂1) ↔ ∃𝑂2 Object(𝑂1) ∧ Gripper(𝑂2)∧
𝐷𝐶(𝑂1, 𝑂2)𝑈 (𝑇𝑃𝑃(𝑂1, 𝑂2) ∧ 𝑓 𝑜𝑟𝑐𝑒(𝑂1, 𝑂2))

Lifting is equivalent to a combination of image schema concepts namely Up, Source_Path and
Support. During the execution of Lifting, the object 𝑂1 to be lifted is supported by the arm 𝑂2
while the arm supporting the object, moves along an upwards path 𝑃 away from the support



surface 𝑂3. The execution is complete when the arm lies above the support surface and there is
no contact between the object and support surface.

∀𝑂1 ∶ lifting(𝑂1) ↔ ∃𝑂2, 𝑂3, 𝑃 Object(𝑂1) ∧ Arm(𝑂2) ∧ Object(𝑂3)∧
𝑃𝑎𝑡ℎ(𝑃) ∧ 𝑇𝑃𝑃(𝑂1, 𝑂2) ∧ 𝑓 𝑜𝑟𝑐𝑒(𝑂1, 𝑂2)∧
((𝑂1 ↩ 𝑂3 ∧ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑂1, 𝑃)) 𝑈
(¬(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑂1, 𝑃)) ∧ ¬(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑂2, 𝑂3)) ∧ 𝐴𝑏𝑜𝑣𝑒(𝑂1, 𝑂3)))

Placing The placing action is performing picking up in reverse order, which comprises of
the following atomic actions: MovingTo, Lowering, Releasing, MovingAway. MovingTo is the
action of an agent moving towards the object to achieve reachability and MovingAway is the act
of moving away from the object once it is placed stable on a surface. Again, we define Lowering
and Releasing actions which involve objects using ISL. The condition necessary for placing to
be executed is the existence of a Support that is provided by the agent 𝑂2 to an object 𝑂1 at
some time point 𝑇1. When the placing action is performed successfully during the time interval
𝐼, there exists no contact between the agent and the object, and there is a Support relation
between the placed object 𝑂1 and the object 𝑂3 that can afford to support at time point 𝑇2.

∀𝑂1, 𝑂2, 𝐼 ∶ placing(𝑂1, 𝑂2, 𝐼 ) ↔(∃𝑂3, 𝑇1, 𝑇2 Object(𝑂1) ∧ Timepoint(𝑇1) ∧ Timepoint(𝑇2)∧
Timeinterval(𝐼 ) ∧ 𝑇2 > 𝑇1 ∧ Agent(𝑂3)∧
hasInterval(𝐼 , 𝑇1, 𝑇2) ∧ hasRole(𝑂1, 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑𝑂𝑏𝑗𝑒𝑐𝑡)∧
hasRole(𝑂3, 𝐴𝑔𝑒𝑛𝑡𝑅𝑜𝑙𝑒) ∧ supportedBy(𝑂1, 𝑂3, 𝑇1)
→ Object(𝑂2) ∧ hasRole(𝑂2, 𝐷𝑒𝑝𝑜𝑠𝑖𝑡)∧
supportedBy(𝑂1, 𝑂2, 𝑇2))

Lowering, an atomic action of Placing is a combination of , Path_Goal and Support. As in
Lifting, there exists a contact force between the object 𝑂1 and the arm 𝑂2 during the execution
phase and the arm moves towards the supporting surface 𝑂3 along a path 𝑃. The action is
successfully completed, if at the end, there exists a contact between the object held by the
gripper and the object with a supporting surface.

∀𝑂1 ∶ lowering(𝑂1) ↔ ∃𝑂2, 𝑂3, 𝑃 Object(𝑂1) ∧ Arm(𝑂2) ∧ Object(𝑂3)∧
Path(𝑃) ∧ 𝑇𝑃𝑃(𝑂1, 𝑂2) ∧ 𝑓 𝑜𝑟𝑐𝑒(𝑂1, 𝑂2)∧
((𝑂1 ⇝ 𝑂3 ∧ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑂1, 𝑃) ∧ 𝐴𝑏𝑜𝑣𝑒(𝑂1, 𝑂3)) 𝑈
(¬(𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑂1, 𝑃)) ∧ (𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑂2, 𝑂3)))

The next action is Releasing, which begins with a contact between the gripper 𝑂2 and the object
𝑂1 and ends with the gripper and the object being disconnected. Once the action is complete,
the object has no contact with the agent.

∀𝑂1 ∶ releasing(𝑂1) ↔ ∃𝑂2 Object(𝑂1) ∧ Gripper(𝑂2)∧
(𝑇𝑃𝑃(𝑂1, 𝑂2) ∧ 𝑓 𝑜𝑟𝑐𝑒(𝑂1, 𝑂2)) 𝑈 𝐷𝐶(𝑂1, 𝑂2)



5. Discussion and Future Work

The complexity of designing methods for cognitive robots to successfully stack objects, extends
the problem for efficient manipulation. Performing a successful manipulation, requires an
understanding of how the objects behave in a particular arrangement. In this paper, we utilised
object affordances and introduced an algorithm for intelligent stacking based on individual
object properties, and a rule that acts on objects pairwise to check if on top of relation holds
between them. Taking inspiration from human cognition, we argue that stacking objects of
different properties require the agent to understand the underlying rules pertaining to how a
particular object interacts with one another. Our inclination to use object affordances stems
from the fact that they can be described to relate to spatiotemporal relationships, image schemas,
which also constitute the fundamental steps in action execution. Further, we showcase how
image-schematic event representation in the format of ISL𝐹𝑂𝐿, can be used to describe the action
descriptors. The described action descriptors can then be used for failure monitoring and also
in case of failures in execution, for explaining the reason behind a failure. For example, with the
image-schematic definition of Lifting, there needs to be a support relation between the lifted
object and the gripper involved in lifting and the gripper in contact with the object must be
moving away from the supporting surface in such a way the gripper lies above the supporting
surface. In case of an object slipping while lifting, this can be detected with our definition of
lifting as the support relation between the lifted object and the gripper is violated.

Muchwork (e.g. [27, 23]) has used simulation as ameans to understand the scene. Considering
an instance of stacking performed only with a physics simulator, the number of random samples
required by the simulator to understand the object properties when they interact with other
objects is huge. Also a part of the generated samples might consist of spatial arrangement
of objects that violates what the object affords. For example, in Figure 2, there is an object
constellation with spoon at the bottom with a bowl on the top.However, this is an invalid
combination according to our qualitative description while this is a completely valid sample
considered by the simulator. Generating samples that respect our qualitative descriptions of the
scene and object properties can significantly reduce the number of samples needed.
Due to the current theoretical nature of the work, evaluations of the underlying ideas are

still lacking. In the future, we will rectify this, by investigating how the formalised image
schemas can be used by the robot control programs. To use image-schema formalisms along
with robot control programs, it is necessary to represent and quantify the defined spatiotemporal
relations using physics based simulators. The image schematic event segmentation defined in 4
can be used to infer the sequence of actions that the robot has to repeat to perform stacking
until all the objects received from the algorithm 1 are in the stack. To execute the inferred
actions successfully, we need failure handling. With the action descriptors defined in ISL logic,
failure monitoring can be performed. To combine the action sequence for stacking and failure
monitoring in a modular fashion, behaviour trees will be used. For instance, a behaviour tree
can be generated with a parallel node consisting of two children, one for performing the action
execution and the other monitoring the failures based on the action executed. The action
execution node consists of a child node for each atomic action to be executed and will execute
the actions in sequence until all of them succeed. We intend to use Giskard, [28], a constraint-
based robot controller for executing the stacking task. As Giskard already uses behaviour trees



for planning and executing the goals, it is relatively less complex to integrate our approach with
Giskard. And with regards to the rules of stacking, we are interested in a long term research
goal of extracting the rules by letting the agent interact with the environment. For this we want
to use observational data for modelling the relation between the physical attributes of the object
that influence the stacking stability and also collect intervention data by allowing the agent to
interact with the environment similar to a curiosity-driven exploration in simulation [29].
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