
Engineering Bidirectional Model Transformations
(Short Paper)
Thomas Buchmann1, Bernhard Westfechtel1

1Applied Computer Science I, University of Bayreuth, D-95440 Bayreuth, Germany

Abstract
Bidirectional transformations have been studied in a wide range of application domains. In model-driven
software engineering, they are required for roundtrip engineering processes. We present a pragmatic
approach to engineering bidirectional model transformations that assists transformation developers by
domain-specific languages, frameworks, and code generators and provides for conciseness, expressive-
ness, and scalability. We also discuss different variants of transformation development processes as well
as their advantages and drawbacks.

Keywords
Model-driven software engineering, roundtrip engineering, bidirectional transformation

1. Background

Bidirectional transformations (bx) occur in different application domains, including e.g. databases,
programming languages, and software engineering [1]. Programming bidirectional transfor-
mations in a conventional programming language is both laborious and error-prone: Both
transformation directions have to be programmed separately, and consistency of forward and
backward transformations has to be checked by testing.
In response to these problems, a wide variety of bx approaches have been developed in

research [2]. In functional approaches, a bidirectional transformation is defined by a function
operating in one direction; the opposite direction is derived automatically [3, 4]. In relational
approaches, a bidirectional transformation is defined by a set of relations between source and
target elements [5, 6]. In grammar-based approaches, a set of grammar rules defines consistent
pairs of source and target models [7, 8].

A recurring theme driving bx research are roundtrip properties, also referred to as bx laws [9].
Roundtrip properties are constraints on the interplay of forward and backward transformations.
The goal of many bx approaches consists in the construction of bidirectional transformations
that are provably correct with respect to roundtrip properties.

However, our empirical evaluations [8, 10, 11] demonstrate limitations of bx approaches with
respect to expressiveness, i.e., the capability to solve a given bx problem. These limitations
follow from the conditions that transformations have to satisfy in order to guarantee roundtrip
properties. Additional shortcomings were observed with respect to conciseness — the ability

Tenth International Workshop on Bidirectional Transformations (BX 2022), July 08, 2022, Nantes, France
Envelope-Open Thomas.Buchmann@uni-bayreuth.de (T. Buchmann); Bernhard.Westfechtel@uni-bayreuth.de (B. Westfechtel)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Thomas.Buchmann@uni-bayreuth.de
mailto:Bernhard.Westfechtel@uni-bayreuth.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Transformation
code (BXtendDSL)

Handwritten code
(BXtend)

Generated code
(BXtend)

Framework code
(BXtend)

+

Transformation code
(BXtend)

Transformation
developer

Source model Correspondence
model Target model

Variants:
1. Hand written code + framework code (BXtend)
2. Transformation code + handwritten code

+ generated code + framework code (BXtendDSL)
3. Transformation code + generated code

+ framework code (BXDSL)

Figure 1: Layered approach to bidirectional transformations

to provide for short solutions with respect to size metrics — and scalability — the ability to
perform transformations efficiently on large data sets.

2. Contribution

Based on our experience gained from empirical evaluations, we have been developing frameworks
for engineering bidirectional model transformations [12]. Our goal is to support transforma-
tion developers in the specification and implementation of bidirectional transformations in
the context of model-driven software engineering [13]. Thus, the artifacts that are subject to
transformations aremodels of software systems; the Eclipse Modeling Framework [14] serves as
the underlying technological ecosystem. In particular, we focus on roundtrip engineering (e.g.,
between model and code), where the source model and the target model are considered as peers
and updates may be propagated in both directions. While roundtrip properties are guaranteed
to a certain extent, we have addressed primarily conciseness, expressiveness, and scalability.
In our work, bidirectional transformations share the following features: (1) Bidirectional

transformations are symmetric inasmuch as source and target model are considered as peers
(rather than asymmetric transformations, working on sources and views). (2) Each transforma-
tion execution is directed, i.e., it reads the source model and updates the target model (or vice
versa). (3) Each transformation is executed on demand only (no live propagation of changes).
(4) Transformations are correspondence-based, a correspondence model is stored persistently to
allow for precise change propagations. (5) Finally, transformations are state-based, i.e., they rely
on model states only rather than on operational deltas.
As illustrated in Figure 1, we provide a layered approach to developing bidirectional model

transformations. This approach, which is called BXTendDSL, combines declarative with im-

perative programming and is labeled as number · in Figure 1. Before, we briefly present its
precursor BXtend [15], which entirely relies on imperative programming (number ¶). Finally,
we discuss a potential purely declarative approach (BXDSL), which is subject to current and
future work (number ¸).

2.1. BXtend

The acronym BXtend is composed from BX (bidirectional transformations) and Xtend, an
object-oriented programming language that is based on Java [16]. The BXtend framework
[15] provides an internal domain-specific language (DSL) for bidirectional transformations. An
internal DSL offers an application programming interface in a host language; it is easier to
implement than an external DSL and does not require the transformation developer to learn a
new language. Xtend was selected as a host language because it offers high-level support for
object-oriented, procedural, and functional programming.
Programming bidirectional transformations from scratch is laborious. BXtend reduces this

effort considerably by providing a generic framework on top of which specific code for imple-
menting transformation rules has to be written. The framework includes an implementation of
a correspondence model as well as algorithms for incremental model transformations in both
directions. The evaluations which we conducted so far confirm conciseness, expressiveness, and
scalability. In the Families to Persons benchmark published in [8], the BXtend solution is the
only one that passes all test cases. Furthermore, BXtend proves to be scalable. Even conciseness
is reasonable although both transformation directions have to be programmed manually.

2.2. BXtendDSL

The BXtend framework shows two shortcomings: First, a transformation definition written
in the BXtend internal DSL contains redundant code, i.e., similar code fragments in forward
and backward direction. Second, roundtrip properties may be ensured by testing only. In
response to these problems, we developed BXtendDSL [12, 17] that adds a declarative layer on
top of the imperative layer. At the declarative layer, the transformation developer specifies the
transformation in a purely declarative language (reflected in the suffix of the acronym); here, we
decided to provide an external DSL with a short and intuitive syntax. After code generation, the
transformation developer employs the internal DSL to complete the transformation definition.
The external DSL is a small and light-weight relational language that is based on rules

describing relations between corresponding source and target patterns. Intentionally, the DSL
is computationally incomplete: In all of the transformation cases that we have studied so far,
the declarative code needs to be supplemented with imperative code that offers the required
flexibility to solve the transformation case at hand. In this way, the external DSL can be kept
small, avoiding the reimplementation of functionality that is available in the BXtend internal
DSL anyway. Accordingly, code generation is partial, as e.g. in the EMF code generator [14],
which generates incomplete code from a structural metamodel.

In the external DSL, a transformation is defined by a sequence of rules that may depend on
each other. The DSL allows to declare 𝑚 ∶ 𝑛 dependencies between source and target objects,
as well as 𝑚 ∶ 𝑛 dependencies at the level of structural features (attributes and references).

Furthermore, the transformation developer may define extension points that have to be filled
with imperative code if the mapping cannot be handled by generated code alone.

Furthermore, the external DSL guarantees roundtrip properties under certain restrictions.
Roughly following [18], correctness means that a transformation restores consistency among the
participating models, and hippocraticness implies that models that are already mutually consis-
tent are not updated. Correctness and hippocraticness are guaranteed under well-behavedness
conditions that are defined by means of OCL [19] constraints on transformation definitions in
the declarative DSL.

Our benchmark evaluations [12] reconfirm conciseness, expressiveness, and scalability. Com-
pared to BXtend, both expressiveness and scalability are not affected adversely. Furthermore,
solutions in the layered framework (comprising the manual code written on both layers) are
considerably more concise than the corresponding BXtend solutions (and solutions in other
tools/languages).

2.3. BXDSL

BXtendDSL offers two main advantages over BXtend: conciseness and guarantee of roundtrip
properties (under well-behavedness conditions). However, it exhibits two shortcomings: First,
the transformation developer has to switch between different levels of abstraction. Second, the
well-behavedness conditions are restrictive; each of the transformation cases we have studied
so far violates at least one of these conditions, implying the need for imperative programming.
Thus, the question arises whether it is possible to design a declarative language (with the
fictitious name BXDSL) that is computationally complete (and thus does not require imperative
code as a supplement) and relaxes the well-behavedness conditions such that a wider range of
transformations can be specified that are provably correct.
So far, we have not achieved these goals. Currently, we are working on an extension of

BXtendDSL so that more work can get done at the declarative layer [20]. However, the new
language version is not powerful enough to solve bx transformations completely, and still
requires complementary imperative code, thus retaining the layered approach described above.
Based on the experiences we have gained so far in bidirectional transformations, we consider
it unlikely that a single bx language may be designed that guarantees round-trip properties
without restrictions on the use of the language. Furthermore, the fictitious language would
have to include unidirectional language constructs, as they are already present in BXtendDSL
and were proposed e.g. in [21] as extensions to the relational bx language QVT-R [5].

3. Conclusion

In this paper, we summarized our research in the bx domain. Our approach aims at engineering
bidirectional model transformations by offering domain-specific languages, frameworks, and
code generators. In this way, we intend to reduce the amount of work that transformation
developers have to invest. Our main focus lies on the quality attributes conciseness, expres-
siveness, and scalability. We also discussed different variants of transformation development
processes. So far, we consider the layered approach of BXtendDSL the best choice in terms of
concisensess, expressiveness, and scalability. Altogether, our research complements other bx

research that primarily focuses on roundtrip properties and provably correct transformations.
These issues have been addressed to a limited extent in BXtendDSL, as well, but have not been
the major driving force of our research, which rather follows the modest goal of making the life
of bx transformation developers easier.

References

[1] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, J. F. Terwilliger, Bidirectional
transformations: A cross-discipline perspective, in: R. F. Paige (Ed.), Proceedings of
the Second International Conference on Theory and Practice of Model Transformations
(ICMT 2009), volume 5563 of Lecture Notes in Computer Science, Springer-Verlag, Zurich,
Switzerland, 2009, pp. 260–283.

[2] S. Hidaka, M. Tisi, J. Cabot, Z. Hu, Feature-based classification of bidirectional transforma-
tion approaches, Software and Systems Modeling 15 (2016) 907–928.

[3] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt, Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem,
ACM Transactions on Programming Languages and Systems 29 (2007) 17:1–17:65.

[4] H. Ko, T. Zan, Z. Hu, BiGUL: a formally verified core language for putback-based
bidirectional programming, in: M. Erwig, T. Rompf (Eds.), Proceedings of the 2016
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, ACM, 2016, pp. 61–72. URL:
https://doi.org/10.1145/2847538.2847544. doi:10.1145/2847538.2847544 .

[5] OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, for-
mal/2015-02-01 ed., Needham, MA, 2015.

[6] A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio, JTL: A bidirectional and change
propagating transformation language, in: B. Malloy, S. Staab, M. van den Brand (Eds.),
Proceedings of the Third International Conference on Software Language Engineering
(SLE 2010), volume 6563 of Lecture Notes in Computer Science, Springer-Verlag, Eindhoven,
The Netherlands, 2010, pp. 183–202.

[7] A. Schürr, Specification of Graph Translators with Triple Graph Grammars, in: G. Tinhofer
(Ed.), Proceedings of the 20th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 1994), volume 903 of LNCS, Springer-Verlag, Herrsching, Germany,
1994, pp. 151–163.

[8] A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin, H. Ko, R. Eramo, G. Hinkel, L. Samimi-
Dehkordi, A. Zündorf, Benchmarking bidirectional transformations: theory, implemen-
tation, application, and assessment, Software and Systems Modeling 19 (2020) 647–691.
URL: https://doi.org/10.1007/s10270-019-00752-x. doi:10.1007/s10270- 019- 00752- x .

[9] F. Abou-Saleh, J. Cheney, J. Gibbons, J. McKinna, P. Stevens, Introduction to bidi-
rectional transformations, in: J. Gibbons, P. Stevens (Eds.), Bidirectional Transfor-
mations - International Summer School, Oxford, UK, July 25-29, 2016, Tutorial Lec-
tures, volume 9715 of Lecture Notes in Computer Science, Springer, 2016, pp. 1–28. URL:
https://doi.org/10.1007/978-3-319-79108-1_1. doi:10.1007/978- 3- 319- 79108- 1_1 .

[10] T. Buchmann, B. Westfechtel, Using triple graph grammars to realize incremental round-

https://doi.org/10.1145/2847538.2847544
http://dx.doi.org/10.1145/2847538.2847544
https://doi.org/10.1007/s10270-019-00752-x
http://dx.doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1007/978-3-319-79108-1_1
http://dx.doi.org/10.1007/978-3-319-79108-1_1

trip engineering, IET Software 10 (2016) 173–181. URL: http://digital-library.theiet.org/
content/journals/10.1049/iet-sen.2015.0125.

[11] B. Westfechtel, Case-based exploration of bidirectional transformations in QVT relations,
Software and Systems Modeling 17 (2018) 989–1029. doi:10.1007/s10270- 016- 0527- z .

[12] T. Buchmann, M. Bank, B. Westfechtel, BXtendDSL: A layered framework for bidirectional
model transformations combining a declarative and an imperative language, J. Syst. Softw.
189 (2022) 111288. URL: https://doi.org/10.1016/j.jss.2022.111288. doi:10.1016/j.jss.2022.
111288 .

[13] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, Model-Driven Software Development:
Technology, Engineering, Management, John Wiley & Sons, Chichester, UK, 2006.

[14] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF Eclipse Modeling Framework,
The Eclipse Series, 2nd ed., Addison-Wesley, Boston, MA, 2009.

[15] T. Buchmann, Bxtend - A framework for (bidirectional) incremental model transformations,
in: S. Hammoudi, L. F. Pires, B. Selic (Eds.), Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD 2018, Funchal,
Madeira - Portugal, January 22-24, 2018., SciTePress, 2018, pp. 336–345. URL: https://doi.
org/10.5220/0006563503360345. doi:10.5220/0006563503360345 .

[16] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend, Packt Publish-
ing, Birmingham, UK, 2016.

[17] M. Bank, T. Buchmann, B.Westfechtel, Combining a declarative language and an imperative
language for bidirectional incremental model transformations, in: S. Hammoudi, L. F.
Pires, E. Seidewitz, R. Soley (Eds.), Proceedings of the 9th International Conference on
Model-Driven Engineering and Software Development, MODELSWARD 2021, Online
Streaming, February 8-10, 2021, SCITEPRESS, 2021, pp. 15–27. URL: https://doi.org/10.
5220/0010188200150027. doi:10.5220/0010188200150027 .

[18] P. Stevens, Bidirectional model transformations in QVT: Semantic issues and open ques-
tions, Software and Systems Modeling 9 (2010) 7–20.

[19] OMG, Object Constraint Language, formal/2014-02-03 ed., OMG, Needham, MA, 2014.
[20] O. Hacker, BXtendDSL 2: Weiterentwicklung einer hybriden Sprache für bidirektionale

Modell-zu-Modell Transformationen, 2022. Master thesis (in German), University of
Bayreuth, Germany.

[21] B. Westfechtel, A case study for evaluating bidirectional transformations in QVT Relations,
in: J. Filipe, L. Maciaszek (Eds.), Proceedings of the 10th International Conference on the
Evaluation of Novel Approaches to Software Engineering (ENASE 2015), SCITEPRESS,
Barcelona, Spain, 2015, pp. 141–155.

http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2015.0125
http://digital-library.theiet.org/content/journals/10.1049/iet-sen.2015.0125
http://dx.doi.org/10.1007/s10270-016-0527-z
https://doi.org/10.1016/j.jss.2022.111288
http://dx.doi.org/10.1016/j.jss.2022.111288
http://dx.doi.org/10.1016/j.jss.2022.111288
https://doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0006563503360345
http://dx.doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0010188200150027
https://doi.org/10.5220/0010188200150027
http://dx.doi.org/10.5220/0010188200150027

	1 Background
	2 Contribution
	2.1 BXtend
	2.2 BXtendDSL
	2.3 BXDSL

	3 Conclusion

