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Abstract

This contribution discusses a flexible modeling approach that proposes to develop class diagrams starting
from object diagrams. On the one hand, the contribution explains in a general way the benefits of flexible
visual modeling by allowing a lively development process through relaxing the formal requirements
for artefacts in the work process. On the other hand, the contribution shows a concrete example and
explains an implementation in a tool, in particular how to cover whole-part relationships, generalization
and an improved handling for association multiplicities. The aim is to give developers the option to let
their ideas flow in a free way with few creativity restrictions by a tool. Flexibility may be gained by
transitioning in the work process between specific, instance-based visual models and generic, type-based
visual models where both kinds of models allow for incompleteness or inconsistency.
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1. Motivation

There is no doubt that precision plays a fundamental role in all good engineering. It is particularly
significant in software engineering, which is founded to a great extent on applied mathematical
logic.

In essence, precision implies the elimination of ambiguity, which is typically a source of
uncertainty and can ultimately lead to invalid or inappropriate design decisions. In engineering,
precision is typically achieved by the application of some type of formal mathematical methods.
By means of formal mathematical constraints and validity rules, it is possible to define elements
of a design in a way that eliminates subjectivity or the possibility of misinterpretation.

However, this level of precision does not come easily. Often it is only possible if we have
sufficient understanding of the topic. And therein “lies the rub”; reaching an understanding of
some complex aspect takes time. One of the most effective means for reaching understanding is
direct experience with the subject matter. This typically involves trial and error, so that we can
appreciate not only what works and why, but equally important, what does not work and why.
For this reason, prototyping is essential to most complex engineering projects.
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In this process of forming an understanding through trial and error, introducing formal
constraints too early in this process can create a kind of “bureaucratic” hurdle that can stand in
the way of not only understanding but also creativity. Innovative ideas often start off in vague
and imprecise form, and need to be refined gradually before an informed decision can be made
whether to adopt them or discard them. Consequently, formal methods should only be applied
when sufficient information (i.e., understanding) has been attained.

Based on the above, at the core of the work described here is the idea of a flexible design ap-
proach, which allows formality and, hence, precision, to be introduced gradually and selectively,
as design and understanding progress. Thus, we may start off with an early informal model of a
proposed design. This initial model may suffer from incompleteness and even inconsistency,
but it may still be useful in helping designers gain an understanding of its properties. If this
ambiguos model appears promising, we may then decide to apply formal approaches selectively,
to help us gain confidence. This “mild” level of formality might reveal fundamental flaws in the
design, at which point it may be amended or even discarded due to serious flaws. Over time and
as the design is refined, the degree of formal checking can be gradually increased, ultimately
reaching the fullest extent possible.

One of the advantages of such an approach is early detection of design flaws in what may
have seemed as a promising approach. This is because the overhead involved in “full” formal
validation is avoided. This overhead involves specifying the full set of details required to avoid
incompleteness and inconsistency errors even of an early putative model is eliminated. On the
other hand, by allowing selective application of formal checking, it allows designers to detect
key flaws in those areas where they may be most uncertain. The end result is likely to be a
faster path to the ultimate solution.

The paper is structured as follows. Section 2 discusses the technical context of our contribution.
In Section 3 we present our view and positions on flexible visual modeling. In Section 4 we
put forward the technical content of a recent tool extension. The paper closes with a short
summary, some conclusions and future work.

2. Context

A key ingredient to a high level of productivity and product quality as promised by Model-Based
Engineering (MBE), e.g., with UML [1, 2, 3], is computer-supported automation. But practical
experience with current MBE tools indicates that we are still far from this ideal. Typically, tools
are difficult to learn and use and are complex. Frustrating situations where the tools are forcing
users into workarounds and constrained operating modes are frequent. This is contrary to free
expression of ideas. For achieving effective tool support, the transition between an informal,
provisional mode and a formal, precise mode is crucial. This contribution is a further step into
that way of working with tools.

To enable a development process that includes an ability that is similar to informal diagrams
sketched “on a napkin”, we are working on a flexible modeling approach [4, 5], which focuses
on objects [6]. Starting with incomplete or even inconsistent UML object diagrams, we have
developed an automated transformation of these into class diagrams, as a plugin for the USE
tool 7, 8]. Both the object diagrams as well as the class diagrams use a flexible syntax which



comes close to an informal drawing tool while still following an internal meta-model. In the
work process, developers have the option to incrementally create the object diagram while
receiving feedback from the resulting class diagram. This paper extends on the technical side the
previous work [4, 5] by handling whole-part relationships and inheritance as well as an improved
handling for association multiplicities. The current extension of the USE tool has been applied
for smaller teaching projects, in particular by students developing course projects; a systematic
study is planned for future work. The paper also presents an extension on the conceptual side
by summarizing the benefits of our approach and its potential to the development process.

Related approaches for flexible development of systems and transformations have been pro-
posed: Related works on example based modeling include [9, 10, 11, 12]; flexible transformations,
partly on an example focused basis, are [13, 14, 15]; uncertainty and partiality in modeling
has been studied in [16, 17, 18, 19]. General dimensions of flexible modeling together with
concrete application options are presented in [20]. The work in [21] discusses flexible typing.
[22] concentrates on flexibility in domain-specific modeling. The Typing Requirements Models
(TRM) in [23] permit a high degree of variability and flexibilty for typing model transformations
and lead to improved reuse options.

3. Positions on and Benefits of Flexible Modeling

Visualization techniques and methodologies: Our approach utilizes mainstream modeling
visualization techniques with slight modifications and proposes a particular methodology for
their application. Basically, we start from conventional UML class and object diagrams, and
we extend them to what we call “imperfect” class and object diagrams. That means our class
and object diagram do not follow strictly the conventional UML metamodel, but an extended
one that allows incomplete and inconsistent diagrams. This opens in the work process to
developers the option to let their ideas flow in a free way without having to obey conventional
metamodel restrictions (e.g., “Attributes must have a type”) and typical tool requirements
(e.g., “Only class diagrams valid w.r.t. the conventional UML metamodel can be stored”). The
principle of modifying and relaxing a language metamodel to allow for incompleteness and
inconsistency can be applied to other UML sub-languages as well. For example, allowed UML
operation call sequences that are abstracted to UML protocol state machines could be relaxed to
“imperfect” UML operation call sequences (where, e.g., not all all calls of a fixed operation have
the same number of parameters) and “imperfect” UML protocol state machines (where, e.g., not
all operation calls have a corresponding operation in the class diagram).

Visualizing errors in models: In our approach we have implemented a particular way of
handling incompleteness, inconsistency and incorrectness (we call them the three “incos”), as
displayed in Fig. 1. Currently, the focus is on class and object diagrams, but the principles can
be extended to other UML diagrams, or more generally to other kinds of models. Incompleteness
is indicated by elements with a plus mark or by dashed elements in our object diagrams. In
our class diagrams a question mark indicates an incomplete specification. Inconsistency is
put forward by elements marked with an exclamation in our class diagrams. Incorrectness
is presented with dashed elements in our class diagrams. The technical realization and the
justification for the different kinds of representation will be discussed and become clear in the
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Figure 1: Idealized work process with imperfect instance- and type-based models.

following section. We emphasize that these additional language features (for the three incos) in
our diagrams extend the conventional UML notation.

To our knowledge, the three “incos” have not been formally defined, and it is impossible to
do so. Nevertheless, we want to state an informal explanation on how we view these three,
overlapping notions. Incompleteness refers to the observation that an important aspect is yet
missing in the model or description. Inconsistency expresses that there are at least two details in
the model that contradict each other. Incorrectness comes in our view in two shades, namely
syntactic and semantic incorrectness: Syntactic incorrectness means that the model does not
meet its metamodel, and semantic incorrectness means that the model does not completely
meet the real-world excerpt that it is intended to describe.

Collaborative development with human-in-the-loop: Our approach relies on model
improvement through iteration: we start with an imperfect object diagram and from this we
derive a first imperfect class diagram; by adding more possibly improved object diagrams
or object diagram for further scenarios and through repeating the (object,class) transitions,
ultimately a settled class diagram describing correctly all developed scenarios is achieved. As
mentioned already, the (object,class) transitions could be generalized to instance-based artefacts
alternated by type-based artefacts, e.g., by transitioning between example command sequences
and protocol state machines.

Imperfect artefacts: In any case, our aim is to give developers the option to let their
ideas flow in a free way with few creativity restrictions by a tool and the implicit steps in
the work process. Fexibility may be gained by transitioning in the work process between
specific, instance-based visual models and generic, type-based visual models where both kinds
of imperfect models allow for the three incos: incompleteness, inconsistency, and incorrectness.

4. Whole-Part Relationships, Generalization, Multiplicities

This section discusses the newly designed and implemented tool functionality by means of an
example. Figure 2 shows the formation of the (incomplete) output class diagram in the right side
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Figure 2: Utilizing Features for Whole-Part Relationships and Generalization

on the basis of the (incomplete) input object diagram in the left side. The input object diagram
specifies incomplete objects (e.g., the attribute ‘name’ is present in the object ‘austria’ but
missing in the object ‘germany’) and incomplete aggregation and composition links (e.g., role
names are present for the left ‘CountryRiver’ link but are partly missing for ‘CountryRange’). In
the input and in the output, graphical elements drawn using continuous, solid lines and contours
represent fully specified entities, whereas those drawn using dashed lines and contours stand
for entities with somewhat incorrect specification, i.e., incomplete or inconsistent information.
The intention of our approach is that such incomplete, even inconsistent object diagrams may
be used when new ideas and concepts are introduced into the models (e.g., typically in the early
phases of the software development process). Developers should have the freedom to let their
ideas flow in a natural way, even if their diagrams do not (yet) meet all formal requirements of
the underlying modeling language or tool.

There are four cases w.r.t. available information in the object diagram for mapping objects
and links to classes and associations (more specifically to aggregations and compositions).

Complete, consistent information: The composition ‘CountryTown’ can be completely de-
rived (obtaining composition name and role names), given the complete and consistent
object diagram information.

Incomplete, consistent information: The aggregation ‘CountryRiver’ can also be com-
pletely derived, although some links in the object diagram are only partially specified.
The incomplete object diagram information can be matched against the more complete
class diagram information.
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Figure 3: Exact and Standard Multiplicities

Complete, inconsistent information: The object diagram information for class ‘Country’ is
complete, but inconsistently specified (contradicting attribute datatypes). This contradic-
tion is highlighted in the resulting class diagram; i.e., the dashed rectangle of the class
‘Country’ flags it as a ‘to-be-improved’ element.

Incomplete, inconsistent information: The aggregation ‘CountryRange’ is incomplete, as
role names on the ‘Country’ side are missing in the object diagram. The object diagram
information is inconsistent because of mutually contradictory role names (‘mountain’ vs.
‘range’) on the other aggregation side. The aggregation ‘CountryRange’ is also flagged as
‘to-be-improved’, using the dashed aggregation link.

We have decided to use the same visual elements (i.e., for the ‘incos’ incompleteness, in-
consistency, incorrectness) in the object and class diagram (or to say it more generally for the
instance-based description and the type-based description). In the specific situation with deriv-
ing a class diagram from object diagrams, basically only the object diagram can be manipulated
by the developer and the class diagram is automatically derived from the object diagram. In
an even more flexible (but also more complicated) approach, both descriptions could be edited.
To sum up in simple words, the plus (in the object diagram) and question mark (in the class
diagram) stands for incompleteness, the exclamation mark for inconsistency, and the dashed
elements for incorrectness resp. for items that still need more work.

The specification of inheritance in the object model is indicated by allowing the name of a
superclass (as a type) in the name field of the object’s rectangle. The determination of attributes
of the superclass is done by prototypical objects. For example, in Figure 2, there is one such
unnamed prototypical object whose type is the superclass ‘Named’. This object has an attribute
‘name’, whose value is specified as an empty String value. Superclasses could also be identified
(maybe in an even smoother way) by a refactoring process after a number of objects have been
constructed. This is currently not possible in the tool.

The handling of multiplicities (as in Fig.3) has been improved compared to earlier versions
of the tool. In the output class model there is now a new option to either use multiplicities as
exactly stated in the object model (e.g. ‘0..1° or ‘2’) or to use only multiplicities from a fixed
collection of frequently applied standard multiplicities (‘0..1°, “1°, ‘0., “1.).



5. Conclusion and Future Work

The contribution has shown how principles of flexible modeling can be applied and how an
existing approach for flexible visual modeling can be extended. A central goal was the early
detection of design flaws avoiding the overhead of “full” formal validation. Incompleteness and
inconsistency are temporarily accepted through selective application of formal checking giving
designers the option to detect key flaws in those areas where they may be most uncertain.

Much more work on other modeling aspects (e.g., transitioning from prototypical behavior
models in the form of example command sequences to complete protocol state machines)
remains to be done. The principle of transitioning between instance-based and type-based
imperfect descriptions and models can probably be carried over to more modeling areas. In a
collaborative modeling context, different objects and links from different developers could be
presented and handled differently. Last but definitively very important, user studies must give
more feedback about the applicability of the approach.
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