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Abstract  
Research on eXplainable AI (XAI) has recently focused on the use of counterfactual 

explanations to address interpretability, recourse, and bias in AI decisions. Many proponents 

of these counterfactual algorithms claim they are cognitively valid in their generation of 

“plausible” explanations using “important”, “actionable” or “causal” features, where these 

features are computed from the model being explained. However, very few of these claims 

have been tested by psychological studies; specifically, claims about the role of different 

feature-types have not been validated, perhaps suggesting that a more considered analysis of 

these knowledge representations is required.  In this paper, we consider the cognitive validity 

of a key representational distinction, between continuous and categorical features, in 

counterfactual explanations. In a controlled user study (N=127), we tested the effects of 

counterfactual and causal explanations on the objective accuracy of users’ predictions of the 

decisions made by a simple AI system, and their subjective judgments of satisfaction and trust 

in the explanations. We found that users understand explanations referring to categorical 

features more readily than those referring to continuous features. We also discovered a 

dissociation between objective and subjective measures: counterfactual explanations elicit 

higher accuracy of predictions than no-explanation control descriptions but no higher accuracy 

than causal explanations, and yet counterfactual explanations elicit greater satisfaction and 

trust judgments than causal explanations. We discuss the implications of these findings for 

cognitive aspects of knowledge representation in XAI. 
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1. Introduction 

The use of automated decision making in computer programs that impact people’s everyday lives has 

led to rising concerns about the fairness, transparency, and trustworthiness of Artificial Intelligence 

(AI) [1,2]. These concerns have created renewed interest in, and an urgency about, tackling the problem 

of eXplainable AI (XAI), that is, the need to provide explanations of AI systems’ decisions. Recently, 

counterfactual explanations have been advanced as a promising solution to the XAI problem because 

of their compliance with data protection regulations, such as the EU’s General Data Protection 

Regulation (GDPR) [3], their potential to support algorithmic recourse [4], and their psychological 

importance in explanation [5,6]. The prototypical XAI scenario for counterfactuals is the explanation 

of an automated decision when a bank customer’s loan application is refused; on querying the decision, 

 
IJCAI-ECAI’22 Workshop: Cognitive Aspects of Knowledge Representation, July 23–29, 2022, Vienna, Austria 
EMAIL: greta.warren@ucdconnect.ie (G. Warren); mark.keane@ucd.ie (M. T. Keane); rmbyrne@tcd.ie (R. M. J. Byrne)  

ORCID: 0000-0002-3804-2287 (G. Warren); 0000-0001-7630-9598 (M. T. Keane); 0000-0003-2240-1211 (R. M. J. Byrne) 

 
©️ 2022 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 

mailto:greta.warren@ucdconnect.ie
mailto:mark.keane@ucd.ie
mailto:rmbyrne@tcd.ie
https://orcid.org/0000-0002-3804-2287
https://orcid.org/0000-0001-7630-9598
https://orcid.org/0000-0003-2240-1211


the customer is told “if you had asked for a lower loan of $10,000, your application would have been 
approved”. These counterfactual explanations appear to be readily understood by humans, while also 

offering users possible recourse to change the decision’s outcome (e.g., by lowering their loan request). 

Although there is now a substantial XAI literature on counterfactuals, because of a lack of user studies 

we know very little about how people understand these counterfactual explanations of AI decisions, and 

which aspects of counterfactual methods are critical to their use in XAI. Many counterfactual algorithms 

aim to explain decisions by referring to “plausible”, “actionable”, or “causally important” features, 

however, it is unclear how to reliably identify these sorts of features, much less how, and which (if any) 

of these characteristics are important to users. In this paper, we focus on the representational distinction 

between continuous and categorical features in a statistically well-powered and psychologically well-

controlled study (N=127), examining how different explanations impact people’s understanding of 

automated decisions. We test explanations of automated decisions about blood alcohol content and legal 

limits for driving using counterfactual explanations (e.g., “if John had drunk 3 units instead of 5 units, 
he would have been under the limit”), compared to causal explanations (e.g., “John was over the limit 

because he drank 5 units”), and descriptions (“John was over the limit”). The study examines not only 

the effects of explanations but also the effects of different types of features – categorical features 
(gender, stomach-fullness) and continuous features (units, duration of drinking, body weight). It 

includes objective measures of the accuracy of participants’ understanding of the automated decision, 

and subjective measures of their satisfaction and trust in the system and its decisions. In the remainder 

of this introduction, we consider the relevant related work in this area on counterfactual explanations 

in XAI (see 1.1), as well as how feature-types (see 1.2), and causal explanations (see 1.3) have been 

handled in these systems, before outlining the current experiment (see 1.4). 

1.1. Counterfactual Explanations 

In recent years, XAI research on the use of counterfactuals has exploded, with over 100 distinct 

computational methods proposed in the literature (for reviews see [7,8]). These various techniques 

argue for different approaches to counterfactual generation; some advance optimisation techniques, 

[3,9] others emphasise the use of causal models [10], distributional analyses [11] or the importance of 

instances [12]. These alternative proposals are typically motivated by claims that the method in question 

generates “good” counterfactuals for end-users; for instance, that the counterfactuals are 

psychologically “good” because they are proximal [3], plausible/actionable [10], sparse [12] or diverse 

[9]. However, most of these claims are based on intuition rather than on empirical evidence. A recent 

review found that just 21% of 117 papers on counterfactual explanation included any user-testing, and 

fewer (only ~7%) tested specific properties of the method proposed [7]. This state of affairs raises the 

possibility that many of these techniques contain functions with little or no psychological validity, that 

may have no practical benefit to people in real-life applications [13].  

    Consider what we have learned from the few user studies on counterfactuals in XAI. Most user 

studies test whether counterfactual explanations impact people’s responses relative to no-explanation 

controls or some other explanation strategy (e.g., example-based explanations or rule-based 

explanations [14]). These studies assess explanation quality using “objective” measures (e.g., user 

predictive accuracy) and/or “subjective” measures (e.g., user judgments of trust, satisfaction, 

preference). In philosophical and psychological research, explanations are understood to be designed 

to change people’s understanding of the world, events or phenomena [5,15]. In XAI, this definition has 

been conceptualised to mean that explanation should improve people’s understanding of the AI system, 

the domain involved in the task and/or their performance on the target task [16]. An explanation is 

effective, therefore, if people objectively perform better on a task involving the AI system by, for 

example, being faster, more accurate, or by being able to predict what the system might do next [14,17–

20]. Concretely, if a person with diabetes is using an application to estimate their blood sugar levels for 

insulin treatments, ideally the system’s predictions would help them better understand their condition 

in the future; for example, their predictions of their own blood sugar levels should improve, when the 

application’s help is not available.  
So far, a handful of studies have shown mixed support for the use of counterfactual explanations in 

improving user understanding in this regard. “What-if” counterfactual explanations have been found to 



improve performance in prediction and diagnosis tasks relative to no-explanation controls, however 

they did not improve performance appreciably more than other explanation options (“why-not”, “how-

to” and “why” explanations) [17]. Visual counterfactual explanations were shown to increase 

classification accuracy relative to no-explanation controls in a small sample of users [18]. In some cases, 

prompting users to reason counterfactually about a decision may impair objective performance. One 

study compared counterfactual tasks, in which users were asked if a system’s recommendation would 

change given a perturbation of some input feature, to simulation tasks, in which users were asked to 

predict the recommendation based on the input features [19]. Counterfactuals elicited longer response 

times, greater judgments of difficulty, and lower accuracy than forward simulation. Another study 

found that people were less accurate when asked to produce a counterfactual change for an instance 

than when asked to predict an outcome from the features [20]. These findings are consistent with the 

proposal that counterfactuals require people to consider multiple possibilities, to compare reality to the 

suggested alternative and to infer causal relations, as is often reported in the cognitive psychological 

literature [21]. They also provide further evidence that counterfactuals aid people to reason about past 

decisions, and prepare for future ones, but require cognitive effort and resources [22-25]. However, 

some caution should be exercised in generalising from the small collection of XAI user studies on 
counterfactual explanations, given the diversity of tasks, domains and experimental designs; some do 

not involve controls, and many others use too few test items or very small numbers of participants to 

be confident about the findings reported. 

XAI research has also focused on whether explanations work subjectively; that is, whether the 

explanation improves people’s trust or satisfaction in the AI system, or whether the explanation makes 

people “feel better” about their interaction with the system, with generally positive results. Users judge 

counterfactuals as more appropriate and fair than example-based [2], demographic-based, and 

influence-based explanations [1]. Providing contrastive explanations in a sales-forecasting domain has 

also been found to increase self-reported understanding of the system’s decisions [20]. However, two 

studies have shown dissociations between objective and subjective measures in XAI. Users shown 

contrastive rule-based explanations self-reported better understanding of the system’s decision than no-

explanation controls, however neither of these groups, nor users shown contrastive example-based 

explanations, showed any improvement in accuracy for predicting what the system might do, and tended 

to follow the system’s advice, even when incorrect [14]. A similar disconnect between objective and 

subjective evaluation measures was found for tasks that systematically increased the complexity of a 

system’s causal rules; although users’ response times and judgments of difficulty also increased, little 

effect of complexity was observed on task accuracy [19]. Thus, in XAI, studies asking users how well 

they understand a system’s decisions or how satisfying they find an explanation, may not accurately 

reflect the true explanatory power of different sorts of explanations, particularly given people’s 

propensity to overestimate their understanding of complex causal mechanisms [26]. Notably, if an 

explanation strategy has no objective impact on understanding but is subjectively preferred by users, 

then concerns about its ethical use could arise. In the current study, we assess the extent to which 

counterfactual and causal explanations increase people’s understanding, using measures that are 

objective (accuracy in predicting what the system will do) and subjective (i.e., judgments of trust and 

satisfaction). 

1.2. Feature-Types in Explanations 

Advocates of counterfactual explanation methods often emphasise the role of different feature-types in 

making explanations “good” or “psychologically plausible”. Many counterfactual methods distinguish 

between the types of features to be used in explanations; arguing that it makes sense to use features that 

are mutable rather than immutable [27] (e.g., being told to “reduce your age to get a loan” is not useful). 

Furthermore, proponents argue that the features used in the counterfactual should be causally important 
[8] and/or actionable [10]; a counterfactual explanation proposing to reduce the size of the requested 

loan is more actionable and therefore better than one telling the customer to modify a long-standing, 

bad credit-rating. However, to our knowledge, there is only one existing study that examines users’ 
assessments of feature-types in XAI [28], which found that while the mutability/actionability of a 

feature is predictive of user satisfaction and (self-reported) understanding, the importance of this factor 



varies depending on the domain. Although such feature-distinctions are made readily in AI models, 

from a cognitive perspective they appear context-dependent and ill-defined [29,30]. For example, the 

different sorts of mutability are more ambiguous than assumed by computational approaches. Indeed, 

psychologically, perhaps there are more fundamental representational distinctions to be made between 

feature properties, such as whether people can understand continuous features (such as income or credit-

score) or categorical features (such as race or gender) equally well. Psychological studies have long 

shown that people do not tend to spontaneously make changes to continuous variables such as time or 

speed, e.g., when they imagine how an accident could have been avoided [31]. This representational 

distinction between continuous and categorical features is important, because if people are less likely 

to manipulate continuous features or have difficulties understanding counterfactuals about them, then 

the potential causal importance or actionability of such features is moot. For example, in algorithmic 

recourse, people may better understand counterfactual advice that says, “you need to change your 

credit-score from bad to good” rather than advice that says “you need to increase your credit score from 
3.4 to 4.6”. To date, the differential impacts of categorical and continuous feature-types has not been 

considered in counterfactual methods for XAI. Most counterfactual generation methods make the 

assumption that users treat and understand continuous and categorical features in the same way (e.g., 
DiCE [9] applies one-hot encoding to categorical feature values). In the present study, we examine 

people’s understanding of counterfactual explanations for different feature-types (continuous versus 

categorical), predicting that explanations focusing on categorical features will be more readily 

understood, leading to greater predictive accuracy based on these features. 

1.3. Causal Explanations 

A third goal of the present work is to compare counterfactual explanations to those using causal rules 

(with respect to feature-types), as the latter are a long-standing explanation strategy in AI. In 

philosophical and psychological research, there is consensus that everyday explanations often invoke 

some notion of cause and effect [15]. Causal explanations and counterfactuals have long been viewed 

as being intertwined in complex ways [27,32,33], although psychologically they differ in significant 

ways. For example, when people create causal explanations, they focus on causes that are sufficient and 

may be necessary for an outcome to occur, whereas when they create counterfactuals they focus on 

causes that are necessary but may not be sufficient [23]. In AI, causal explanations are often cast as IF-

THEN rules (e.g., in expert systems such as MYCIN [34] or decision trees [19, 35]). In XAI, it is 

commonly claimed that such rule-based explanations are inherently interpretable, although some have 

pointed out that this claim may not be accurate [13]. One study reports that when users were given 

causal decision sets for a system, they achieved high accuracy in a prediction task, however in a 

counterfactual task using the same decision sets, participants’ accuracy decreased, while their response 

times and judgments of subjective difficulty increased [19]. Another study found that contrastive rule-

based explanations were effective in helping users identify the crucial feature in a system’s decision 

and increased people’s sense of understanding the system; indeed contrastive rule-based explanations 

were more effective than contrastive example-based explanations [14]. These findings suggest that 

causal rules may be as good as, if not sometimes better than, counterfactual explanations in some task 

contexts. In the cognitive psychological literature, it has been found that when people are asked to 

reflect on an imagined negative event, they spontaneously generate twice as many causal explanations 

as counterfactual thoughts about it [36], consistent with the proposal that causal explanations may not 

require people to compare multiple possibilities in the way that counterfactual explanations do [37,38]. 

Since it has also been shown that people make difficult inferences from counterfactuals more readily 

than they do from their factual counterparts [39], it is plausible that counterfactuals’ evocation of 

multiple possibilities may help users consider an AI system’s decision more deeply. Given the clear 

importance of these two explanation options – causal and counterfactual strategies – both are compared 

to one another in the present study. Considering that their appeal to the purportedly contrastive nature 

of explanation [5] is one of the main arguments for the use of counterfactuals in XAI, and given the 

psychological evidence that counterfactuals are understood by thinking about more possibilities than 
causal explanations, we predict that counterfactual explanations will aid users in understanding the 



system’s decisions more than causal explanations, and that both will outperform mere descriptions of 

an outcome. 

1.4. Outline of Current Study 

The study tested the impact of counterfactual versus causal explanations, and continuous versus 

categorical features, on users’ accuracy of understanding and subjective evaluation of a simulated AI 

system designed to predict blood alcohol content and legal limits. Participants were shown predictions 

by the system for different instances, with explanations (e.g. “If Mary had weighed 80kg instead of 

75kg, she would have been under the limit.”). The study consisted of two phases (i) a training phase in 

which participants were asked to predict the system’s decision (i.e. an individual being over or under 

the legal blood alcohol content threshold to drive a car), and were provided with feedback on the 

system’s predictions and with explanations for each decision, and (ii) a testing phase, in which they 

were asked to predict outcomes for a different set of test instances, this time with no feedback nor any 

explanations. In the training phase, participants considered the system’s predictions and learned about 

the blood alcohol content domain with the help of the explanations, to determine whether this 

experience objectively improved their understanding of the domain. The testing phase objectively 

measured their developed understanding of the system by measuring the accuracy of their predictions. 

Users’ subjective evaluations were also recorded by measuring their judgments of satisfaction and trust.  

2. The Task: Predicting Legal Limits for Driving 

Participants were presented with the output of a simulated AI system presented as an application, 

designed to predict whether someone is over the legal blood alcohol content limit to drive. The system 

relies on a commonly-used approximate method, the Widmark equation [40], that uses five key features 

for blood alcohol content with the limit threshold being set at 0.08% alcohol per 100ml of blood. This 

formula was used to generate a dataset of instances for normally-distributed values of the feature-set, 

from which the study’s materials were drawn (N=2000).      

In the experimental task, participants were instructed that they would be testing a new application, 

SafeLimit, designed to inform people whether or not they are over the legal limit to drive, from five 

features: units of alcohol consumed by the person, weight (in kg), duration of drinking period (in 

minutes), gender (male/female) and stomach-fullness (full/empty). The experiment consisted of two 

phases. In the training phase, participants were shown examples of tabular data for different individuals, 

and asked to make a judgment about whether each  individual was  under or over the limit on each 

screen. Participants selected one of three options: “Over the limit”, “Under the limit”, or “Don’t know” 

by clicking the corresponding on-screen button. The order of these options was randomised, to ensure 

that participants did not merely click on the same button-order each time. After giving their response, 

feedback was given on the next page, with the correct answer highlighted using a green tick-mark, and 

the incorrect answer (if selected) highlighted using a red X-mark (see Figures 1 and 2). Above the 

answer options, participants were also shown an explanation, and which explanation they were shown 

depended on the experimental condition. Figures 1 and 2 show sample materials used in the 
counterfactual and causal  conditions, respectively. Note that in both conditions the explanations draw 

attention to a key feature (e.g., the units drunk) as being critical to the prediction made. In all the study’s 
conditions, a balanced set of instances were used, with eight items for each of the five features 

presented. Upon completing the training phase, participants began the testing phase (see Figure 3). 

Again, they were shown instances referring to individuals (different to those in the training phase), and 

asked to judge if the individual was over or under the legal limit to drive. After submitting their 

response, no feedback or explanation was given, and they moved on to the next trial. For each instance, 

participants were asked to consider a specific feature in making their prediction; for instance, “Given 

this person’s WEIGHT, please make a judgment about their blood alcohol level.” Again, in this phase, 

a balanced set of instances was used, with eight items for each of the five features presented. 
 



  
Figure 1: Feedback for (a) Correct Answer and (b) Incorrect Answer in the Counterfactual condition.  

 

  
Figure 2: Feedback for (a) Correct Answer and (b) Incorrect Answer in the Causal condition. 

 

The objective measure of performance in both phases of the study was accuracy (i.e., correct 

predictions made by participants compared to those of the system). The subjective measures were 

explanation satisfaction and trust in the system, assessed using the DARPA project’s Explanation 

Satisfaction and Trust scales [16] respectively). To assess engagement with the task, participants 

completed four attention checks at random intervals throughout the experiment, and were asked to recall 

the 5 features used by the application by selecting them from a list of 10 options at the end of the session.  

 



 
Figure 3: Example of a prediction task in the testing phase. 

2.1. Method 

We compared the impact of counterfactual and causal explanations, to descriptions of the system’s 

decisions as a control condition, on the predictions people made about the SafeLimit application’s 

decisions. Participants were assigned in fixed order to one of three groups (counterfactual, causal, 

control) and completed the experiment, consisting of (i) a training phase in which they made predictions 

and were given feedback with explanations or descriptions and (ii) a testing phase where they made 

predictions with no feedback and no explanations (for all groups). Hence, any observed differences in 

accuracy in the testing phase should reflect people’s understanding of the AI system based on their 

experiences in the training phase, which differed only in the nature of the explanation (or control 

description) provided. Participants were presented with 40 items in each phase, which were 

systematically varied in terms of the five features used with balanced occurrence (i.e., eight instances 

for each feature). Explanation satisfaction and trust in the system were measured following the training 

and testing phases. Our primary predictions were: (i) explanations will improve accuracy, that is, 

performance in the training phase will be more accurate than performance in the testing phase, (ii) 

counterfactual explanations will improve accuracy more than causal explanations, as they are 

potentially more informative, (iii) predictions about categorical features will be more accurate than 

predictions about continuous features, if people find the former less complex than the latter, and (iv) 

counterfactual explanations will be judged as more satisfying and trustworthy than causal explanations, 

given previous studies showing that they are often subjectively preferred over other explanations. 

2.1.1. Participants and Design 

The participants (N=127), crowdsourced using the Prolific platform (https://www.prolific.co/), were 
randomly assigned to the three between-participant conditions: counterfactual explanation (n=41), 

causal explanation (n=43) and control (n=43). These groups consisted of 80 women, 46 men, and one 

non-binary person aged 18-74 years (M=33.54, SD=13.15); and were pre-screened to select native 

English speakers from Ireland, the United Kingdom, the United States, Australia, Canada and New 

Zealand, who had not participated in previous related studies. The experimental design was a 3 

(Explanation: counterfactual, causal, control) x 2 (Task: training vs testing phase) x 5 (Feature: units, 

duration, gender, weight, stomach-fullness) design, with repeated measures on the latter two variables. 

A further 11 participants were excluded prior to any data analysis, one for giving identical responses 

for each trial, and 10 who failed more than one attention or memory check. Before testing, the power 

analysis with G*Power [41] indicated that 126 participants were required to achieve 90% power for a 

https://www.prolific.co/


medium-sized effect with alpha <.05 for two-tailed tests. Ethics approval for the study was granted by 

the University College Dublin ethics committee with the reference code LS-E-20-11-Warren-Keane. 

2.1.2. Materials and Procedure 

Eighty instances were randomly selected, based on key filters from the 2000-item dataset generated for 

the blood alcohol content domain (based on stepped increments of a feature’s normally-distributed 

values with realistic upper/lower limits). Specifically, the procedure randomly selected an instance 

(query case) and incrementally increased or decreased one of the five feature’s values until its blood 

alcohol content value crossed the decision boundary to create a counterfactual case. For the categorical 

features, gender and stomach-fullness, the inverse value was assigned, while continuous variables were 

incremented in steps of 15kg for weight, 15 minutes for duration and 1 unit for alcohol. If the query 

case could not be perturbed to cross the decision boundary, a different case was randomly selected, and 

the procedure was re-started. If the perturbation was successful, the instance was selected as a material 

and its counterfactual was used as the basis for the explanation shown to the counterfactual group. For 

example, if an instance with units = 4 crossed the decision boundary when it was reduced by one unit 

(to be under rather than over the limit) the counterfactual explanation read “If John had drunk 3 units 

instead of 4 units, he would have been under the limit”. The matched causal explanation read “John is 

over the limit because he drank 4 units”, with the control group given a description of the outcome 

(e.g., “John is over the limit”). This selection procedure was performed 16 times for each feature, a total 

of 80 times, with the further constraint that an equal number of instances were found on either side of 

the decision boundary (i.e., equal numbers under and over the limit). Each instance was then randomly 

assigned to one of two sets of materials, each comprising 40 items, again ensuring an equal number of 

instances were classified as under/over the limit. To avoid any material-specific confounds, the 

materials presented in the training and testing phases were counterbalanced, so that half of the 

participants in each group saw Set A in the training phase, and Set B in the testing phase, and this order 

was reversed for the other half of the participants. After data collection, t-tests verified that there was 

no effect of material-set order. Participants read detailed instructions about the tasks (available at 

https://osf.io/j7rm3/) and completed one practice trial for each phase of the study before commencing. 

They then progressed through the presented instances, randomly re-ordered for each participant, within 

the training and testing phases. After completing both phases, they completed the Explanation 

Satisfaction and Trust scales. Participants were debriefed and paid £2.61 for their time. The experiment 

took approximately 28 minutes to complete. 

2.2. Results and Discussion 

The results show that providing explanations improved the accuracy of people’s predictions, and that 

categorical features led to higher prediction accuracy than continuous features. Participants’ accuracy 

on categorical features was markedly higher in the testing phase than the training phase, whereas their 

accuracy on continuous features remained at similar levels in both phases (an effect that occurred  

independently of the explanation type). Participants judged counterfactual explanations to be more 
satisfying and trustworthy than causal explanations, however counterfactual explanations had only a 

slightly greater impact than causal explanations on participants’ accuracy in predicting the AI system’s 
decisions. The data for this experiment are publicly available at https://osf.io/wqdtn/.  

2.2.1. Analysis of the Accuracy Measure 

A 3 (Explanation: counterfactual, causal, control) x 2 (Task: training vs testing) x 5 (Feature: units, 

duration, gender, weight, stomach fullness) mixed ANOVA with repeated measures on the second two 

factors was conducted on the proportion of correct answers given by each participant (see Figure 4). A 

Huynh-Feldt correction was applied to the main effect of Feature and its interactions. Significant main 

effects were found for Explanation, F(2,124)=5.63, p=.005, ηp
2=.083, for Task, F(1,124)=32.349, 

p<.001, ηp
2=.207, and for Feature, F(3.945, 489.156)=47.599, p<.001, ηp

2=.277. Task interacted with 

https://osf.io/j7rm3/
https://osf.io/wqdtn/


Feature, F(4, 496)=7.23, p<.001, ηp
2=.055. No other effects were significant1. These effects were further 

examined in post hoc analyses. 

First, with respect to the main effect of Explanation, post hoc Tukey HSD tests showed that the 

Counterfactual group (M=.636, SD=.08) was more accurate than the Control group (M=.590, SD=.08), 

p=.003, d=.22. However, the Causal group (M=.614, SD=.09) did not differ significantly from the 

Counterfactual, p=.245, or Control groups, p=.186. Further exploratory analysis indicated there was a 

reliable trend in increasing accuracy with the following ordering of the groups for their accuracy scores 

(Page’s L(40)=1005.0, p<.001): Counterfactual > Causal > Control. These results suggest that providing 

explanations is better than not providing them, for improving accuracy. They also show, as predicted, 

that counterfactual explanations have a greater impact than causal explanations, and compared to a 

control condition given no explanations. Note that these effects were observed for both phases of the 

study overall (Explanation does not interact with Task).  

Second, with respect to the significant Task and Feature main effects, and their significant 

interaction, the decomposition of the interaction revealed that accuracy improves from the training to 

the testing phase for the categorical features (gender, stomach-fullness), but not for the continuous 

features (units, weight and duration). Post hoc pairwise comparisons with a Bonferroni-corrected alpha 
of .002 for 25 comparisons showed that participants made more correct responses in the testing phase 

than the training phase when considering gender, t(126)=5.626, p<.001, d=.50, and stomach-fullness, 

t(126)=4.430, p<.001, d=.39, but not units, t(126)=1.350, p=.179, weight, t(126)=-1.209, p=.229, or 

duration, t(126)=.32, p=.75. The analysis also showed that within each phase of the study, the 

categorical features produced higher accuracy than the continuous features, confirming the prediction 

that people find the former easier to understand than the latter. In the training phase, accuracy for gender 

was significantly higher than accuracy for units, t(126)=4.935, p<.001, d=.44, weight, t(126)=6.824, 

p<.001, d=.61, duration, t(126)=6.332, p<.001, d=.58, and stomach-fullness, t(126)=5.202, p<.001, 

d=.46, all other features did not differ significantly from each other (p>.05 for all comparisons). In the 

testing phase, similar tests found accuracy to be higher for gender than for units, t(126)=8.844, p<.001, 

d=.78, weight, t(126)=10.824, p<.001, d=.96, duration, t(126)=10.81, p<.001, d=.96 and stomach-

fullness, t(126)=4.986, p<.001, d=.44. Furthermore, accuracy for stomach-fullness was significantly 

higher than that for weight, t(126)=4.943, p<.001, d=.44, duration, t(126)=4.959, p<.001, d=.44, and 

units, t(126)=2.853, p=.005, although the latter was not significant on the corrected alpha.2 

Further exploratory analysis indicates it is the diversity in the range of feature values that may lead 

to these effects, rather than some abstract ontological status of the feature. When we rank-ordered each 

of the features in terms of the number of unique values present in the materials, we found that this rank-

ordering predicted the observed trend in accuracy in the testing phase. That is, the rank ordering from 

highest-to-lowest diversity – duration (60 unique values) > weight  (36 unique values) > units (4 unique 

values) > stomach-fullness (2 unique values) = gender (2 unique values) – inversely predicts the trend 

in accuracy: duration (M=.549) < weight (M=.557) < units (M=.615) < stomach-fullness (M=.675), < 

gender (M=.796); Page’s L(127)=6256.5, p<.001.   

 

 
1 No other two-way interactions were reliable, neither Explanation with Task, F(2, 124)=.759, p=.47, 

nor Explanation with Feature, F(7.89, 489.156)=1.14, p=.335, nor was the three-way interaction 

significant, F(8, 496)=1.215, p=.288. 
2 Accuracy for units was significantly higher than weight, t(126)=3.152, p=.002, d=.28 and duration, 

t(126)=3.539, p=.001, d=.31. Accuracy for weight and duration did not differ, t(126)=.385, p=.701. 



 
Figure 4: Mean accuracy (proportion of correct answers) across conditions for each feature in the (A) 

Training and (B) Testing phases of the study. Error bars are standard error of the mean; dashed line 

represents chance accuracy. 

2.2.2. Analysis of the Subjective Measures: Satisfaction and Trust 

All groups completed the DARPA Explanation Satisfaction and Trust scales after completing the two 

main phases in the experiment (see Figure 5). 

 

 
Figure 5: Summed judgments for Explanation Satisfaction and Trust scales. Error bars are standard 
error of the mean. 

 



Satisfaction Measure. A one-way ANOVA was carried out on the summed judgments for the 

Explanation Satisfaction scale to examine group differences in satisfaction levels for the explanations 

provided. Significant differences between the three groups were identified F(2, 126)=6.104, p=.003, 

ηp
2=.09. Post hoc Tukey HSD tests showed that the counterfactual group (M=27.83, SD=6.12) gave 

significantly higher satisfaction judgments than the causal group (M=22.79, SD=6.63), p=.002, d=0.76. 

The control group (M=25.86, SD=7.19) did not differ significantly from either the counterfactual 

(p=.369) or the causal (p=.087) groups. A reliable trend was identified when rank-ordering judgments 

for each item in the order: Counterfactual > Control > Causal, Page’s L(8)=111.0, p<.001, suggesting 

that counterfactual explanations were somewhat more satisfying than descriptions, and descriptions 

were slightly more satisfying than causal explanations. People were less satisfied with causal 

explanations compared to counterfactual explanations or even none at all. 

Trust Measure.  A one-way ANOVA was carried out on the summed judgments for the Trust Scale 

to examine group differences in trust levels for the explanations provided. Significant differences 

between the groups were identified F(2, 126)=8.184, p<.001, ηp
2=.117. Post hoc Tukey HSD tests 

showed that the counterfactual group (M=26.15, SD=6.14) gave significantly higher trust judgments 

than the causal group (M=20.21, SD=6.27), p<.001, d=.88. The control group (M=23.12, SD=7.63) did 
not differ significantly from either the counterfactual (p=.101) or causal groups (p=.115). A reliable 

trend was identified when rank-ordering judgments for each item in the order: Counterfactual > Control 

> Causal, L(8)=112.0, p<.001. Similar to the satisfaction judgments, these results suggest that 

counterfactual explanations were somewhat more trustworthy than descriptions, and descriptions were 

slightly more trustworthy than causal explanations. People placed less trust in causal explanations 

compared to counterfactual explanations or even none at all . 

3. General Discussion, Conclusions and Future Directions 

The present study shows that a knowledge representation distinction between abstract feature-types – 

continuous versus categorical – is cognitively significant in impacting people’s understanding of 

explanations in XAI, a distinction whose significance is not noted in current counterfactual methods. 

The experiment showed  that users’ accuracy in predicting a system’s decisions improved when they 

were provided with explanations compared to none at all, and when they were provided with 

counterfactual explanations compared to causal ones; counterfactual explanations were also 

subjectively preferred compared to causal ones. The experiment also shows that users’ accuracy in 

predicting a system’s decisions improved when they relied on categorical features rather than 

continuous features, with improvements over time between the training and test phases of the study. In 

the following sub-sections, we discuss the implications of these findings for (i) the significance of 

categorical and continuous features in explanations, and (ii) the role of explanations in XAI and the 

relative differences between counterfactual and causal explanations (and descriptions).  

3.1. The Primacy of Categorical Over Continuous Features 

The results described in this paper indicate that users were more accurate in making predictions based 
on categorical features than continuous features within each phase of the experiment. User accuracy 

increased in the testing phase relative to the training one, but this rise was mainly due to improvement 
in making predictions about categorical features (gender and stomach-fullness), an improvement that 

does not occur for continuous features (units, duration, weight). We cannot attribute this effect to the 

provision of explanations (the three-way interaction was not significant); instead it is an improvement 

that emerges as people gain more experience throughout the training phase with the categorical features. 

Current counterfactual methods in XAI do not recognise any functional benefits for categorical features 

over continuous ones. These counterfactual methods transform categorical features to allow them to be 

processed similarly to continuous ones, using one-hot encoding or by mapping to ordinal feature spaces. 

Hence,  no current model recognises that one feature-type might be more psychologically beneficial 
than another. Remarkably, given the 100+ methods in the counterfactual XAI literature, no current 

algorithm gives primacy to categorical features over continuous ones for explanations of the predictions 

of an AI system. Many models consider mutability and actionability as being important to the provided 



counterfactual explanations but neither of these concepts account for the results found here. Recall, the 

results showed improved performance for the gender and stomach-fullness features even though the 

former is immutable and non-actionable (in the context of blood alcohol decisions) and the latter is 

mutable and actionable. Moreover, the results showed less improved performance for the units, 

duration, and weight features, even though they are mutable and actionable (albeit weight in the context 

of blood alcohol decisions is immutable in the short term). Hence, the improvement in accuracy for the 

gender and stomach-fullness  features over the course of the experiment (from training to testing phase) 

is more plausibly due to their simplicity (both have just two possible feature values) compared to the 

more complex continuous features (which have many possible feature values). There are clear 

implications of these results for counterfactual approaches in algorithmic recourse; namely, that it 

would be better to focus on categorical features than on continuous ones when the predictive outcomes 

are equivalent.  

3.2. What Is It That (Counterfactual) Explanations Do? 

The results also have a bearing on cognitive aspects of explanations.  There is an increasing recognition 

that explanations can play one of several roles in XAI. One major role is to improve the user’s 

understanding of the domain, the AI system, or both, manifested by objective performance 

improvements in the task domain when explanations are provided. Measuring effects of explanation on 

objective performance is the guiding proposal in Hoffman’s et al.’s [16] conceptual framework for XAI 

and is a repeated theme in XAI user studies [13,16]. However, a number of studies indicate that 

explanations, especially counterfactual explanations, may not improve objective performance on the 

task [14,19]. Moreover, many studies show that explanations are more likely to impact subjective 

assessments than objective performance; that is, people tend to self-report higher understanding [20] or 

judge decisions to be more fair [1] or appropriate [2]. These considerations combined with the findings 

of the present study, raise potentially serious ethical concerns about the use of explanations. They  

suggest that some explanations may cause people to “feel better” about the AI system, without gaining 

any insight into why it made a prediction or how it works. Explanations may lead the recipient to a 

somewhat false assessment of the value of the system, akin to the “illusion of explanatory depth”, 

wherein people overestimate their understanding of causal mechanisms underlying common 

phenomena [26], potentially leading to inappropriate trust in a system and its decisions. The present 

results help to clarify the role that explanations may take. Overall, the counterfactual group were more 

accurate than the control group, and the causal group’s accuracy lay in-between the other groups. This 

observation suggests that counterfactuals help people reason about the causal importance of the features 

used in the system’s decisions more effectively than mere descriptions of an outcome, and slightly better 

than causal explanations. Moreover, counterfactual explanations improved people’s accuracy in both 

phases, without depending on transfer or learning from the training to the testing phase (i.e., there was 

an effect of Explanation, but this factor did not interact with any other factor). This conclusion is highly 

consistent with key findings in the psychological literature that counterfactuals elicit causal reasoning 

and enable people to  understand causal relations [24,32]. Indeed, these findings also support proposals 

for the use of counterfactuals in algorithmic recourse [3,8], as they seem to better prompt an 

understanding of the predictions made by the system. 

3.3. Future Directions 

The present work emphasises how AI needs to consider the cognitive aspects of knowledge 

representation; it shows that a cognitively-blind AI will miss functional aspects of proposed algorithms 

that have major cognitive effects. Several issues need to be addressed further in future work.  First, the 

categorical features examined here were limited to binary values. Although these kinds of features 

commonly occur in many datasets (such as gender, ethnicity, or Boolean true/false features), categorical 

features can, in theory, have as many potential values as continuous ones. Hence, it is necessary to 
establish whether there is a limit to the number of categorical values that humans can keep track of 

without compromising accuracy (that is, before the categorical features become as challenging as 

continuous features). The differences in accuracy observed between the different types of features 



suggests that users may be able to monitor up to at least four categories (given that accuracy for units 

was higher than that for weight and duration), but further investigation is needed to test this hypothesis. 

A further question is whether people find categorical features easier to reason about because of feature-

value diversity or some other property of categorical features. Overall, the findings motivate a more 

psychologically-grounded approach to counterfactuals in XAI, to design methods that reflect the 

demonstrated cognitive benefits of categorical features, based on experimentally corroborated 

hypotheses rather  than on untested conjectures.   
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