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Abstract
Tiny Machine Learning (TinyML) is a novel research area aiming at designing machine and deep learning
models and algorithms able to be executed on tiny devices such as Internet-of-Things units, edge devices
or embedded systems. Smart pervasive devices are rapidly becoming omnipresent in our every-day life,
and TinyML and its paradigm of executing everything on-device (and thus not moving the data from
where they are collected) has been crucial in designing algorithms and applications that enhance the
privacy of users.

From this perspective, radar sensors are currently emerging as a valid alternative to common sensors
(e.g. microphones, cameras...). Given the impossibility to recognize precisely the identity of the user, they
can be used in cases where it is important to recognize the presence or the behaviour of human beings
while guaranteeing at the same time to preserve their privacy. UltrawideBand (UWB), in particular, is a
radar technology that is particularly promising for use in pervasive systems. Indeed, its precision, low
energy consumption and fastness are particularly suitable for privacy-preserving embedded applications.

We introduce here, for the first time in the literature, a TinyML solution integrating pre-processing
and tiny convolutional neural network for subject recognition (i.e., recognizing the age-class of the
target) through the analysis of UWB-radar data.

The proposed solution has been successfully tested on a real-world application of in-car subject
recognition.
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1. Introduction

In recent years the diffusion of tiny devices, such as Internet-of-Things (IoT) units, edge devices
and embedded systems, representing the technological asset of the “computing everywhere"
paradigm [1][2], have been constantly rising. From this perspective, the scientific trend is to
move the processing (and in particular the intelligent processing) as close as possible to where
data are generated to increase the autonomy of tiny devices, reduce the latency and the required
transmission bandwidth they require, while increasing the energy efficiency [3][4]. The new
Machine and Deep Learning solutions (MDL) able to be executed on these tiny devices must
take into account the severe constraints on memory (the available RAM is in the order of the
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MB), computation (the MCU frequency is in the order of the MHz), and power consumption
(typically < 0.1 W) of these devices.

The role of Tiny Machine Learning (TinyML) is to design, develop and deploy MDL models and
algorithms for tiny devices. TinyML solutions present in the literature typically introduce tiny
MDL architectures and approximate-computing solutions (such as quantization [5], pruning[6],
and early-exit mechanisms[7][8]) to fit the severe technical constraints characterizing these
tiny devices.

The aim of this paper is to introduce a TinyML solution for subject recognition (i.e., recogniz-
ing the age-class of a person) on UWB-radar data. The proposed solution, which extends what
introduced in [9] for person detection in UWB-radar data, relies on a preprocessing phase to
highlight relevant features and on a suitably-defined tiny convolutional neural networks based
on tiny dilated convolutional blocks and quantization of the CNN architecture to reduce the
computational and memory demands (of both weights and activations).

The proposed solution has been successfully tested on a real-world in-car subject recognition
application. In particular, the proposed UWB-based TinyML solution for the in-car presence-
detection has been successfully deployed and tested in real-world conditions on an ESP32
microcontroller unit (4 MB of flash memory, 512 KB of S-RAM memory), equipped with a
UWB-radar module comprising only one pair of antennas.

The paper is organized as follows. Section 2 describes the related literature, while Section
3 introduces the proposed TinyML solution for UWB-based subject recognition. Section 5.0.3
details the problem definitions and the experimental results for the in-car presence detection
scenario. Finally, Section 6 draws the conclusion and describes the future research directions in
this field.

2. Related literature

This section describes the related literature in the field of TinyML (Section 2.1) and the available
UWB-radar solutions for presence detection and activity recognition (Section 2.2). Given the
novelty of the proposed problem, no solution is present in the literature for subject recognition.
We emphasize that, the only TinyML solution able to process UWB-radar data available in the
literature is our previous work on presence detection[9].

2.1. TinyML

The research in the field of machine learning for embedded systems and IoT units is mainly
addressed from two different point of view: the development of custom hardware and the design
of approximated MDL solutions. We here concentrate on approximated MDL solutions.

The design of approximated machine/deep learning solutions capable of addressing the strict
technological constraints of embedded and IoT units is a relevant and continuously-growing
research field. The techniques introduced in this area can generally fall within the field of TinyML
[10][11]. Most of the related literature focuses on the approximation of Convolutional Neural
Network algorithms. For example, in [12] a methodology to explore sparse CNN architectures
that could be executed on Microcontroller units (MCUs) was introduced, whereas [13] proposed
Bonsai, a decision tree-based technique to perform CNN-inference efficiently on Arduino boards.



In addition, pruning of channels and layers of CNNs has proven to be a successful [14][15] in
reducing the memory and computational demand.

A different approach to approximate CNNs is to reduce the memory required by the solution
through the use of quantization, which exploits limited-precision data types [16][17] for the
CNN weights and, possibly activations. In such a direction, [18] combined both task dropping
and precision scaling techniques to design approximated CNNs able to be executed in IoT units.

Other solutions focus on reducing the mean inference time of deep neural networks. Adaptive
Early Exit [8] and Gate-Classification CNNs [7] are an example of such solutions.

2.2. UWB-radar usage

The literature about the usage of artificial intelligence with UWB-radar data mainly concentrates
on tasks similar to person detection and human activity recognition (HAR). UWB-radar were
used also for human sensing and vital parameter estimation. In this related literature, we focus
our attention on UWB-radar solutions that rely on a single receiving antenna.
Presence detection

Most of the solutions for presence detection based on uwb-radar relies on thresholds or statistical
approaches to distinguish between empty records and records where a human is present [19][20].
These solutions are usually heavily dependant on the dataset, and thus fails to generalize. Finally,
anti-abandon systems for cars based on radar can be also found in the literature [21][22] but
they do not rely on uwb-radar and they are only meant to detect the presence of a general
subject in a car.
Human Sensing

Of particular interest is the work of [23], who has used UWB radar data for wireless human
sensing and personal identification. In this field, the possibility to recognize the breath and
heartbeats of the targets is proven also in [24] and [25]. Nevertheless, in each of these researches
the target is standing in front of the radar without the possibility of moving, making it very
difficult to generalize in a general use-case scenario.

3. Problem formulation and motivation

3.1. Acquiring and processing UWB-radar data

Let 𝑆 ∈ R𝑁×𝑀 , with 𝑀,𝑁 ∈ N, be the output of the UWB-radar receiving-antenna installed
on the device, being 𝑁 the collected number of radar scans and 𝑀 the number of “bins" charac-
terizing the acquisitions of the antenna. In more detail, the value 𝑆 [𝑖, 𝑗] with 𝑖 = {1, . . . , 𝑁}
and 𝑗 = {1, . . . ,𝑀} represents the energy acquired by the 𝑖-th scan at the 𝑗-th bin. We empha-
size that 𝑁 = 𝑊 · 𝑓𝑟 , being 𝑓𝑟 the UWB-radar frame rate (i.e., the number of acquisitions per
seconds) and 𝑊 the acquisition time horizon (in seconds), while 𝑀 represents the number of
“quantized" distances in the acquisition range, i.e., from MIN_RANGE to MAX_RANGE, of the
UWB-radar antenna1. An example of the acquisition of 𝑆 is shown in Figure 1.

1Each value represents the amount of energy of the reflected radar wave. MIN_RANGE, MAX_RANGE and 𝑀 are
parameters depending on the specific radar device used and on its configuration.



Figure 1: The acquisition of matrix 𝑆 by the UWB-radar antenna.[9]

Figure 2: The acquisition campaign for this experimental analysis[9]

3.2. Dataset collection

For this work, the dataset presented in [9] was extended with new data. In all the recordings
the device was deployed above one of the back lateral windows of the car (the radar can detect
subjects in a ±60∘ cone from where it’s directed). The dataset contains records with 0, 1, 2
or all 3 seats occupied by a target. The total amount of acquired samples is 429, divided into
163 records with a child present in the first seat, 220 records with the first seat empty, and 46
records with an adult in the first seat. Figure 2 describes the positioning and the cone of view
of the device during the data-collection phase.

3.3. Recognizing subjects through UWB-radar data

A high number of studies have enlighted the possibility to reliably estimate the breathing
frequencies of human targets with the use of UWB-radar data [25, 23].

The standard breathing frequencies of each age category at rest have been estimated as
illustrated in the table 1, where the data have been taken from [26].

From this perspective, the breath frequencies of the targets from UWB-radar data could
be used to to distinguish among different age-classes (to recognize subjects). Since the radar
module makes scans at a frequency of 5Hz, it is possible to match each frequency bin of the



Class Avg. respiratory rate at rest

birth to 6 weeks 30-40 breaths per minute
6 months 25-40 breaths per minute
3 years 20-30 breaths per minute
Adults 15-18 breaths per minute

Elderly ≥ 65 years old 12-28 breaths per minute

Table 1
Average respiratory rates

Class Avg. respiratory rate at rest Hz Expected bins

Children 20-40 breaths per minute 1/3 - 2/3 Hz 8,33 - 16, 66
Adults 15-18 breaths per minute 1/4 - 0.3 Hz 6,25 - 8

Table 2
Average respiratory rates and expected bins

Fast Fourier Transform (FFT) data with a frequency range, calculated as:

dimension of each frequency bin =
5Hz
128

= 0.039 ≈ 0.04

For example, the Hz range of the first bins will be 0 - 0.04 Hz, while the last one will be 4.96-
5 Hz

From these estimations, the table 1 have been updated to include the bins where it is possible
to expect the breathing frequencies to be recognizable.

In order to check these hypotheses, for each class the FFT data of some scans belonging to the
dataset used for the experiment in section 5.0.3 have been visualized as a heatmap, searching
for peaks in energy around the expected bins.

The following visualizations represent the euclidean norm of the real and imaginary parts
of the FFT data of specific scans, in which only one target is present. The first bins have been
artificially set to 0 in order to better display the interesting portion of data.

Note that in order to better display the peaks, in the visualizations the scale is not fixed.
In Figure 3 the data of two scans containing only one Adult in the first seat are reported.

Around bins 6-8, in which the breathing frequency of the target should reside, it is possible to
observe some peaks in the data, but overall, especially in the second record, they are not easily
distinguishable.

The visualizations have been repeated also for children (Figure 4). In these visualizations
it is much more difficult to clearly distinguish peaks traceable to the breathing frequencies of
toddlers and babies (expected bins 8-17). It’s also interesting to note that in that visualization
the scale is almost an order of magnitude smaller with respect to the adults’ records: this could
mean that the breathing is not absent, but that it is much more difficult to distinguish among
records of people with different age-class it from the noise of the recording. Nevertheless, the
magnitude of the signal could in principle be a relevant aspect for the classification of the record.



Anyway, even in the same class of records, there are significant differences between one record
and another. There is no clear unique behaviour for the same type of data, or at least is hardly
recognizable by watching the graphs.

Figure 3: Euclidean norm of FFT of two adult-0-0 scans.

Figure 4: Euclidean norm of FFT of two toddler-0-0 scans.

4. The proposed TinyML solution for UWB-radar based subject
recognition

The proposed TinyML solution for subject recognition based on UWB-radar comprises two
main modules: a pre-processing module and and tiny deep convolutional neural network called
TyCNN-C. These two modules, which are detailed in the sequel, have been jointly designed
and developed to maximize the recognition accuracy, while satisfying the strict technological
constraints of tiny devices.



Figure 5: The general architecture of the tiny convolutional neural networks TyCNN-C.

4.1. Pre-processing

The pre-processing module comprises the following three steps: Fast-Fourier Transform, low-
pass frequency selection and data normalization. This module has not been substantially
modified from the TyCNN for presence detection implementation, and thus we remand to [9]
for the detailed description.

The first step of pre-processing aims at computing the FFT 𝑆𝑓 of 𝑆. The considered FFT
algorithm is the Cooley-Tukey algorithm [27]. The FFT is computed on all the 𝑀 rows of 𝑆.

The second step aims at selecting only a sub-range of the frequencies in 𝑆𝑓 to reduce the
memory and computational demands of the next tiny convolutional neural network (see Section
4.2). Being 𝑓𝑙 < 𝑓𝑟/2 the selected cut-off frequency, the goal of this module is to remove from 𝑆𝑓

the rows corresponding to the frequencies larger than 𝑓𝑙. In this application setting, assuming
the relevance of the breathing frequencies discussed in section 3.3, 𝑓𝑙 can be scaled down (with
a negligible loss of accuracy) to roughly 2Hz.

Finally, the last pre-processing step comprise a log-scale transformation and a Z-score normal-
ization (where mean and standard deviation are computed on the training set of the TyCNN-C).

4.2. TyCNN-C: deep convolutional neural network

We introduce here TyCNN-C, which is the TinyML CNNs for subject recognition with UWB-
radar data. The proposed solution, which extends the TyCNN design proposed in [9] for person
detection, has been carefully designed to satisfy the technological constraints on the memory
footprint �̄� (in KB) and computation �̄� (number of operations) of the target tiny devices.

An overview of the TyCNN-C is shown in Figure 5, while the TyCNN-C architecture and the
quantization mechanism are summarized in what follows.

Being 𝑋𝐼 the input of the TyCNN-C, the processing layers can be summarized as follows:
4.2.1. A 2× 2 Max Pooling layer

this layer aims at reducing the size of the input 𝑋𝐼 . In more detail, the goal of this layer is to
reduce the memory demand of intermediate activations as well as the number of operations



required by the TyCNN-Cs to compute the inference.
4.2.2. A sequence of𝐾 Tiny Convolutional Blocks

the Tiny Convolutional Blocks (TCBs) introduced for the TyCNN, were reused for the TyCNN-Cs
architecture. Each block comprises the four following steps:

• two convolutional layers comprising 𝑛 square 𝑟× 𝑟 dilated filters with dilation rate equal
to 2;

• the ReLu activation function;
• a 2× 2 Max Pooling layer.

In the considered subject-recognition application described in Section 5.0.3, the following
configuration of the TBCs have been considered: 𝐾 = 2, 𝑛 = 14 and 𝑟 = 7.
4.2.3. A fully-connected layer

The aim of this last layer is to provide the final classification of the TyCNN-C. In more detail, this
layer is composed of a flattening layer, a dropout layer (with dropout rate equals to 0.3), and a
single dense layer. Differently from the previous TyCNN design, the dense layer is characterized
by softmax activation.

For the training we considered the Categorical Crossentropy as loss function, while Adam
was selected as optimizer. The learning rate was set to 0.3e-4, while the number of training
epochs was set to 400. Given the fact that the distribution of the classes in the training set were
really skewed, the errors on each record were weighted, using weights inversely proportional
to the representation of the corresponding class in the dataset. Once the TyCNN-C has been
trained, the full-integer post-training weight quantization algorithm introduced in [28] has been
used to transform the 32-bit floating-point weights into 8-bit integers. The same quantization
scheme has been also applied to inputs and activations.

5. Experiments results
5.0.1. The target device

The considered tiny device is based on an ESP32 Microcontroller unit (MCU). Following the
notation introduced in [9], we considered a RAM memory limit of �̄� = 100 KB, and set a limit
on the execution time of the algorithm of 1 s. The device was used for both collecting the data
and deploying the proposed solution.
5.0.2. Data description

The input matrix 𝑆 is characterized by M = 53, N = 200, each acquisition is W = 20 s long, and
the frame rate was fixed to 𝑓𝑟 = 10 Hz. 𝑓𝑙 has been set to 1.66 Hz, such that the dimensions of
𝑆𝐼 are M = 53 and L = 86.
5.0.3. Experimental results

For the experimental results the dataset has been randomly split into 75% for the training and
25% for the testing, four runs have been considered (in a cross-testing fashion) and the average
classification results is reported. Furthermore, the standard deviation was computed and used
to estimate confidence interval (95% confidence).



Table 3
The detailed memory footprint (with an 8-bit data type) and the number of operations of the TyCNN-C
for the in-car scenario. To optimize the memory, two arrays only are used to store the activations (an @
marks the activations re-using such arrays).

Memory Footprint n operations c
𝑆𝐼 @53 · 86 · 1 = 4558 -

Pool0 (Weights) - -
𝑆𝐼–Pool0 (Activations) @26 · 43 · 1 = 1118 2 · 2 · 53 · 86 = 18232

Conv1_00 (Weights) 364 -
Conv1_00 (Activations) 15652 391300

Conv1_01 (Weights) 4914 -
Conv1_01 (Activations) 15652 5.478.200

Pool1 (Weights) - -
Pool1 (activations) @3822 4472

Conv2_00 (Weights) 4914 -
Conv2_00 (Activations) @3822 1337700

Conv2_01 (Weights) 4914 -
Conv2_01 (Activations) @3822 1337700

Pool2 (Weights) - -
Pool2 (activations) @840 1092

FC Classifier (Weights) 2523 -
FC Classifier (activations) @3 2520

Total 48933 8571216

Table 4
Comparison of the results of the TyCNN-C and the baseline algorithm.

Network Accuracy m (kB) c (106)

naive baseline 0.513 / /
TyCNN 0.783 ± 0.076 47.79 8.57

Table 3 report the detailed memory footprint and the number of operations of the network
on a per-layer basis, while table 4 describes the classification abilities of the proposed solution
together with the memory footprint 𝑚 and the computational load 𝑐 for the subject-recognition
scenario.

As a baseline we considered a simple algorithm that assigns the most represented class in the
training dataset to every test data point.

Furthermore, since the imbalances in the dataset make the accuracy not the best metrics to
evaluate the performance of the algorithm, the confusion matrix is here reported:

True \Pred absent (0) child (1) adult (2)

absence (0) 182 (82.72%) 34 (15.45%) 4 (1.83%)
child (1) 31 (19.01%) 113 (69.32%) 19 (11.67%)
adult (2) 0 (0%) 7 (15.22%) 39 (84.78%)

The proposed solution completely matches the technological constrains with 𝑚 = 47.8 and
𝑐 = 8.57𝑒6. We measured experimentally the execution time of the solution on the ESP32 board.
The total execution time is 940 ms, divided in 230 ms for preprocessing data and 710 ms to
perform the inference with the TyCNN-C. Preprocessing required 27136 B to be executed in



memory, and thus can be executed in the same memory space of dimension 𝑚𝑎^ = 31304 B where
the activations of the networks will be stored, hence not influencing the memory footprint.

6. Conclusions

The aim of this paper was to introduce, for the first time in the literature, a TinyML solution for
subject-recognition based on UWB-radar. To achieve this goal we used TyCNN-C, an adapted
version of the TyCNN network design used for presence detection. The effectiveness and
efficiency of the proposed solution have been successfully evaluated on a real-world scenario
for in-car subject recognition.

Future works will encompass comparisons with other state-of-the-art architectures, always-
on scenarios for the proposed solutions, incremental learning mechanisms to support the
on-device learning and the extension of the use of UWB-radar to human activity recognition.
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