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Preface

The Semantic Web enables intelligent agents to create knowledge by interpreting, integrating
and drawing inferences from the abundance of data at their disposal. It encompasses approaches
and techniques for expressing and processing data in machine-readable formats. All these tasks
demand a human-in-the-loop; without them, the great vision of the Semantic Web would hardly
be achieved. Meanwhile, visual interfaces for modeling, editing, exploring, integrating, etc., of
semantic content have not received much attention yet.

The size and complexity of ontologies and Linked Data in the Semantic Web constantly
grows and the diverse backgrounds of the users and application areas multiply at the same time.
Providing users with visual representations and intuitive interaction techniques can significantly
aid the exploration and understanding of the domains and knowledge represented by ontologies
and Linked Data.

Ontology visualization is not a new topic and a number of approaches have become available
in recent years, with some being already well-established, particularly in the field of ontology
modeling. In other areas of ontology engineering, such as ontology alignment and debugging,
although several tools have recently been developed, few provide a graphical user interface, not
to mention navigational aids or comprehensive visualization and interaction techniques.

In the presence of a huge network of interconnected resources, one of the challenges faced
by the Linked Data community is the visualization of multidimensional datasets to provide
for efficient overview, exploration and querying tasks, to mention just a few. With the focus
shifting from a Web of Documents to a Web of Data, changes in the interaction paradigms are
in demand as well. Novel approaches also need to take into consideration the technological
challenges and opportunities given by new interaction contexts, ranging from mobile, touch,
and gesture interaction to visualizations on large displays, and encompassing highly responsive
web applications.

There is no one-size-fits-all solution but different use cases demand different visualization and
interaction techniques. The evaluation of such interfaces and techniques poses another relevant
concern given the specific challenges of visualizing data imbued with semantic complexity.
Ultimately, providing better user interfaces, visual representations and interaction techniques
will foster user engagement and likely lead to higher quality results in different applications
employing ontologies and proliferate the consumption of Linked Data.

These and related issues are addressed by the VOILA! workshop series concerned with
Visualization and Interaction for Ontologies and Linked Data. The seventh edition of VOILA!
was co-located with the 21th International Semantic Web Conference (ISWC 2022) and took
place as a half-day virtual event on October 23, 2022. It was organized around scientific paper
presentations and discussions.

The call for papers for VOILA! 2022 attracted 8 submissions in different paper categories. At



least three reviewers were assigned to each submission. Based on the reviews, we selected 6
contributions for presentation at the workshop.

We thank all authors for their submissions and all members of the VOILA! program committee
for their useful reviews and comments. We are also grateful to Marta Sabou and Raghava
Mutharaju, the workshop chairs of ISWC 2022, for their continuous support during the workshop
organization.

October 2022 Bo Fu,
Patrick Lambrix,

Catia Pesquita

VOILA! 2022
http://voila2022.visualdataweb.org

http://voila2022.visualdataweb.org
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Shacled Turtle: Schema-Based Turtle
Auto-Completion
Julian Bruyat1, Pierre-Antoine Champin1,2,3, Lionel Médini1 and Frédérique Laforest1

1Univ Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205, F-69621 Villeurbanne, France
2W3C, Sophia Antipolis, France
3University Côte d’Azur, Inria, CNRS, I3S (UMR 7271), France

Abstract
Producing RDF documents has always been a tedious task. To make it easier, most approaches propose
an abstraction like forms to produce the data. In this paper, we propose Shacled Turtle, a method and a
tool to ease the editing of RDF documents with auto-completion, based on RDFS and/or SHACL schemas.
We also describe an experiment with volunteers to evaluate the usefulness of the tool, and we discuss its
results.

Keywords
RDF, Auto-completion, SHACL

1. Introduction

Producing RDF data is a widely studied problem. In real life, most RDF datasets are either
generated by tools to convert other formats to RDF or from data filled in a form by the user.
However, the lack of good RDF editors is identified by the EasierRDF group as one of the
many issues that can refrain developers from using RDF1. Indeed, many usages require to
write relatively small pieces of RDF by hand: teaching the basics of RDF, describing ontologies,
building graph patterns in SPARQL queries, declaring R2RML mappings [1]. . . Meta-ontologies,
such as RDF Schema [2] (RDFS) or the Web Ontology Language [3] (OWL), have always played
a central role in the RDF ecosystem. Recently, the necessity to validate RDF data appeared,
giving birth to SHACL [4] and ShEx2 to check the validity of graphs. But to the best of our
knowledge, the literature has barely explored the ability to use inferential schemas or validating
schemas to help users explicitly write RDF graphs.

Our research hypothesis in this work is that schemas can be used to provide useful suggestions
to users when writing an RDF document. We developed Shacled Turtle3 [5], a tool that uses
RDFS and SHACL schemas to provide auto-completion for writing Turtle documents [6]. The
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purpose of this work is not the validation of documents, for which tools already exist, but only
the assistance to the users in writing them.

The rest of this paper is structured as follows. In Section 2, we review the different available
tools to produce RDF data. In Section 3 we present Shacled Turtle through a concrete example
to give an intuition about the tool. In Section 4 we describe the architecture used to provide
suggestions based on the chosen schema graph that is then detailed in Sections 5 and 6. In
Section 7 we evaluate Shacled Turtle style of suggestions against the kind of suggestions
provided by other similar tools from a user perspective. In Section 8 we discuss our contribution,
the results and the experimental protocol. Finally, in Section 9 we conclude with the possible
improvements.

2. Where do RDF Triples come from?

To produce RDF data, most approaches use some kind of abstraction, convert existing data or
directly write programs that output RDF data.

2.1. RDF data production

The most popular abstractions are forms. Protégé [7] requires the user to fill forms to build their
ontology and then generate the corresponding RDF file. The SHACL specification explicitly
mentions the possibility to generate forms from property shapes, which has been implemented
by systems like Schimatos [8]. Form generators have also been developed for the other shape
language ShEx.
Converting non-RDF data is also a popular way to produce RDF data. Many tools have been de-
veloped: R2RML maps relational databases and tabular data to RDF by using mappings provided
by the user, RML [9] extends the latter to support other kinds of data sources, RDF123 [10] aims
to produce RDF data by using spreadsheets as an abstraction, JSON-LD [11] transforms JSON
documents to RDF and is the way recommended by Google to add metadata to a website in
order to improve its SEO (Search Engine Optimisation).

Even by using these approaches, users may still have to write RDF documents: the R2RML
mappings must be described in RDF, users may want to fine tune the ontology produced by
Protégé.

2.2. Current editors

Plugins for popular code editors have been developed, like LNKD. tech Editor 4 and RDF and
SPARQL 5 for the JetBrain suite. A language server for Turtle has recently been developed by
Stardog Union6. But all these plugins mainly focus on syntactic checking and coloration.

In [12], Rafes et al. list some of the expected features from a SPARQL auto-completion module.
They identify 3 major categories: suggestion of snippets, prefix declaration and auto completion
for Internationalized Resource Identifiers (IRIs). Snippets suggestion is described as being mostly

4https://plugins.jetbrains.com/plugin/12802-lnkd-tech-editor
5https://sharedvocabs.com/products/rdfandsparql/
6https://marketplace.visualstudio.com/items?itemName=stardog-union.vscode-langserver-turtle
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requested by experienced users “and can be seen as the step after suggesting terms”. Prefix
auto-completion is deployed by most editors, through the use of the prefix.cc API7.

To the best of our knowledge, IRI suggestions in all RDF document editors, like RDF and
SPARQL and Yasgui [13] are limited to proposing all the terms that exists in a given ontology.
Yasgui filters the list of suggestions depending on the position: for example if the current term
is a predicate, all properties in the ontology are displayed and other terms are discarded. This
approach is best suited for small ontologies, as for big ontologies, like schema.org8, the number
of suggestions can reach hundreds, making it impractical for users.

Some SPARQL editors like the Flint Sparql Editor9 or the one presented by Gombos and Kiss in
[14] uses intermediate SPARQL queries to help users write their queries. Sparqlis [15] also uses
this approach but goes further by exposing an interface in natural language, removing the need
for the end-user to know SPARQL. In [16], De la Parra and Hogan first compute the relationships
between all types and predicates in the graph, and use the result of this computation to provide
auto-completion when the user builds their SPARQL query. All these approaches resort on
using the actual data to produce the effective schema of the graph. But in our case, as we are
interested in writing new data, these kinds of approaches are not applicable. Hence instead of
using the effective schema of the graph we will rely on the expected schema as specified by an
RDFS ontology or a set of SHACL shapes.

3. Shacled Turtle usage example

Shacled Turtle is implemented as a Code Mirror 610 extension that provides support for the
Turtle language.

The selling key-point of Shacled Turtle is the auto-completion module. While most advanced
editors suggest all terms from the ontology, Shacled Turtle narrows the list to the parts of the
ontology that are related to the currently edited resource. We consider that most resources
in an RDF graph must be typed. When the type of a resource is known, it is likely that the
predicates related to the known types will be used to describe it. Figure 1 shows a concrete
usage example: we defined that ex:alice is a s:Person and then we start to write a new
triple. The suggestion engine considers that we probably want to use a predicate related to
persons, like s:nationality or s:name, and does not suggest terms like s:numTracks or
s:measurementTechnique that are related to other types.

4. Shacled Turtle general architecture

Figure 2 shows the general architecture of Shacled Turtle.

0. Before the interaction starts, a preprocessing phase is performed. The content of a schema
graph is converted into inference rules and suggestion rules by the schema to rules converter.
This schema can be written either in RDFS, in SHACL or a mix of both.

7https://prefix.cc
8https://www.schema.org
9http://fr.dbpedia.org/sparqlEditor
10https://codemirror.net/6/
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Figure 1: For a subject of type Person, Shacled Turtle only suggests predicates related to this type in
the Schema ontology

1. When the user is writing an RDF graph, the inference engine uses all complete triples to
deduce the types of all resources and the list of shapes that they should comply with.
These results are stored in the meta graph.

2. When the user is writing a new incomplete triple, after the subject has been written, i.e.
on writing the predicate or on writing the object, the suggestion engine queries the meta
graph for the list of all the types and shapes of the subject. It will then return to the user:

• If the incomplete triple only has a subject, the list of all predicates related to the
types and shapes of the subject.

• If the incomplete triple has a subject and a predicate, a list of resources depending
on the types and shapes of the subject and the predicate11.

We will first describe the basics of all the components used by the interaction loop in Section 5,
in particular describe how the rule systems used by the inference engine and the suggestion
engine work. Then we will describe how the preprocessing translates the schema graph into
inference and suggestions rules in Section 6.

5. The interaction loop

The interaction loop comprises all operations performed when the user uses the editor.

11Note that for some predicates like rdf:type, the suggestion may be independent of the list of types and shapes of
the subject.
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Figure 2: The different components of Shacled Turtle

5.1. The graphs

During the interaction loops, two different graphs are used:

• The currently written graph is the graph in the text editor. It is composed of two different
parts:

– The completed triples, triples for which the subject, the predicate and the object are
known. These triples are used to power up the inference engine and produce triples
for the meta graph.

– The incomplete triple that the user is currently editing. If the subject of this incomplete
triple is known, the suggestion engine and the meta graph will be requested to provide
a list of suggested terms. If other triples are incomplete, they are ignored by the engine.

• The meta graph is the graph that stores triples produced by the inference engine. Its role
is to store, for each resource, the list of all known types, and the list of shapes that the
resource should comply with. The content will then be used by the suggestion engine, in
particular to know the list of types and shapes of the subject of the incomplete triple.

Shacled Turtle: Schema-based Turtle Auto-Completion



5.2. The inference engine

We want our system to be able to deduce both the deducible types from an RDFS ontology and
to be able to list the shapes a resource must comply with.

These inferences are specified by inference rules (see Table 1 and 3). These rules go beyond
the ones traditionally used for RDFS, but do not need to capture the full semantics of SHACL as
we are not aiming at validating the graph.

Each inference rule has the form:

𝐷𝑎𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒? 𝑆𝑜𝑢𝑟𝑐𝑒𝑀𝑒𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒?

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑀𝑒𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒

where:

• The body can require
– 𝐷𝑎𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒?: 0 or 1 complete triple from the currently written graph.
– 𝑆𝑜𝑢𝑟𝑐𝑒𝑀𝑒𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒?: 0 or 1 triple from the meta graph.

• The head must be a triple 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑀𝑒𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒 that will be stored in the meta graph
and its predicate must either be rdf:type or :pathsOf12.

5.3. The suggestion engine

In the same way, the system relies on a set of rules to deduce the possible suggestions at run-time,
from the meta graph and the incomplete triple.

We suppose that ?𝑠, ?𝑝, ?𝑜 are variables and 𝐴 and 𝑃 are IRIs.
Each suggestion rule has the form:

𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑇𝑟𝑖𝑝𝑙𝑒 𝑀𝑒𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛?

𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛

where:

• The 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑇𝑟𝑖𝑝𝑙𝑒 is either
– (?𝑠, . . . , . . . ) for applying the rule when only the subject of the incomplete triple is

known.
– (?𝑠,𝐴, . . . ) for applying the rule when both the subject and predicate are known.

• The 𝑀𝑒𝑡𝑎𝑇𝑟𝑖𝑝𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛? is optional, and either
– A triple pattern of the form (?𝑠, 𝑃, ?𝑜) that is searched in the meta graph, where ?𝑠 is

the subject occurring in 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑇𝑟𝑖𝑝𝑙𝑒.
– “No info on ?𝑠", for applying the rule only if there are no types or shapes known for

the resource ?s.
– 𝑛𝑜𝑛𝑒 when no condition holds on the meta graph content.

• The 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛 is either
– 𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝐴) to add 𝐴 to the list of suggested terms.
– 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝐴𝑙𝑙(?𝑝, ?𝑜) to add to the list of suggested terms all resources 𝛼 such that
(𝛼, ?𝑝, ?𝑜) is in the meta graph.

12The triple (𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑠) means that for the resource 𝑢 we should suggest the paths specified by the shape 𝑠.
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Table 1
Transformation of triples in the schema graph into inference and suggestion rules.

Triple in schema graph Inference rules Suggestion rules
(?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, ?𝑡) 𝑛𝑜𝑛𝑒

(?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, ?𝑡)

𝑛𝑜𝑛𝑒 (?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, ?𝑡)

(?𝑡, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑟𝑑𝑓𝑠:𝐶𝑙𝑎𝑠𝑠)

(?𝑢, . . . , . . . ) No info on ?𝑢

𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒)

(?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, . . . ) 𝑛𝑜𝑛𝑒

𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝐴𝑙𝑙(𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑟𝑑𝑓𝑠:𝐶𝑙𝑎𝑠𝑠)

(𝑃 ′, 𝑟𝑑𝑓𝑠:𝑑𝑜𝑚𝑎𝑖𝑛, 𝑇 )
∀𝑃 = 𝑃 ′ or

𝑃 ′ subproperty of 𝑃

(?𝑢, 𝑃, ?𝑣) 𝑛𝑜𝑛𝑒

(?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑇 )

(?u, . . . , . . . ) No info on ?𝑢

suggest(P)

(?𝑢, . . . , . . . ) (?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑇 )

𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝑃 )

(𝑃 ′, 𝑟𝑑𝑓𝑠:𝑟𝑎𝑛𝑔𝑒, 𝑇 )
∀𝑃 = 𝑃 ′ or

𝑃 ′ subproperty of 𝑃

(?𝑢, 𝑃, ?𝑣) 𝑛𝑜𝑛𝑒

(?𝑣, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑇 )

(?𝑢, 𝑃, . . . ) 𝑛𝑜𝑛𝑒

𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝐴𝑙𝑙(𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑇 )

(𝑃, 𝑠:𝑑𝑜𝑚𝑎𝑖𝑛𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑠, 𝑇 )
(?𝑢, . . . , . . . ) (?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑇 )

𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝑃 )

(𝑃, 𝑠:𝑟𝑎𝑛𝑔𝑒𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑠, 𝑇 )
(?𝑢, 𝑃, . . . ) 𝑛𝑜𝑛𝑒

𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝐴𝑙𝑙(𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑇 )

(𝑆, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑠ℎ:𝑁𝑜𝑑𝑒𝑆ℎ𝑎𝑝𝑒)
𝑛𝑜𝑛𝑒 (?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑆)

(?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆)

(𝑆, 𝑠ℎ:𝑡𝑎𝑟𝑔𝑒𝑡𝑁𝑜𝑑𝑒, 𝑈)
𝑛𝑜𝑛𝑒 𝑛𝑜𝑛𝑒

(𝑈, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆)

(𝑆, 𝑠ℎ:𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠, 𝑇 )
𝑛𝑜𝑛𝑒 (?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, 𝑇 )

(?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆)

(?𝑢, 𝑟𝑑𝑓 :𝑡𝑦𝑝𝑒, . . . ) 𝑛𝑜𝑛𝑒

𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝑇 )

(𝑆, 𝑠ℎ:𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓, 𝑃 )
(?𝑢, 𝑃, ?𝑣) 𝑛𝑜𝑛𝑒

(?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆)

(?u, . . . , . . . ) No info on ?𝑢

suggest(P)

(?𝑢, . . . , . . . ) (?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆)

𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝑃 )

(?𝑢, . . . , . . . ) 𝑛𝑜𝑛𝑒

𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝑃 )

(𝑆, 𝑠ℎ:𝑜𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓, 𝑃 )
(?𝑢, 𝑃, ?𝑣) 𝑛𝑜𝑛𝑒

(?𝑣, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆)

(?𝑢, 𝑃, . . . ) 𝑛𝑜𝑛𝑒

𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝐴𝑙𝑙(:𝑝𝑎𝑡ℎ𝑠𝑂𝑓,S)

(𝑆1, 𝑠ℎ:𝑛𝑜𝑑𝑒, 𝑆2)
and 𝑆1 is a node shape

𝑛𝑜𝑛𝑒 (?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆1)

(?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓, 𝑆2)

6. The preprocessing

We now describe the preprocessing, which is the step where the schema to rules converter converts
the schema graph into inference and suggestion rules for the eponymous engines. It uses two
kinds of transformations: rules that are built by searching all triples with a certain pattern in
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the schema graph, and SHACL paths whose recursive nature will be handled by using finite
state automata.

6.1. Rules built by looking up some triples pattern

Table 1 exposes the list of inference and suggestion rules that are generated from the schema
graph. Note that the purpose of this tool is neither to infer all possible suggestions, nor to
validate the graph, but to make suggestions that are as relevant as possible. This is a subjective
criterion, as having either too few or too many suggestions would make the tool less useful. We
will discuss this further in Section 8.

6.2. Rules built from SHACL Paths

Similarly to SPARQL paths, a SHACL path can be either a predicate path (an out-coming triple
with a given predicate) or a composition of other paths with one of the following operators:
inverse, sequence, alternative, repetition, kleene, and optional.

One issue with paths is that we want to be able to process complex paths, and provide
suggestions at any point in the path. For example, for the sequence path ( :a :b ), :b should
be a suggested predicate for nodes targeted by :a.

Unit paths and virtual shapes Our solution is to split composite paths into what we consider
unit paths. Unit paths are either predicate paths, e.g. :owns, or inverse paths of a predicate path,
e.g. [ sh:inversePath :ownedBy ]. These unit paths are connected with virtual shapes,
shapes that do not explicitly exist in the composite shape graph. The chain of all the unit paths
through the virtual shapes is equivalent to the original composite path for the purpose of our
suggestion engine.

Let us consider the shape graph on Listing 1. This shape graph means any node
?postalAddress extracted from the SPARQL request on Listing 2 must comply with the
node shape s:PostalAddress. For our purpose, it is equivalent to the shape graph on List-
ing 3 where we introduced a new shape, ex:VirtualShape that will act as the shape of all
the matches for ?o in the SPARQL request.

Overview on transforming SHACL Paths into rules. To process SHACL paths, we assume
that:

• We can decompose any path into unit paths connecting virtual shapes.
• Processing a chain of unit predicate paths is similar to processing a string with a regex.

Hence we can use finite-state automaton (FSA) to recognize if a chain of triples is recognized
by a path.

• The only difference between a predicate path and an inverse predicate path is whenever
the subject or the object variable is bound to a known value.

Based on these assumptions, to parse the SHACL path into a list of inference and suggestion
rules, we first transform the path into an FSA, then we transform the FSA into rules.
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Listing 1: An example shape

s:Person rdf:type sh:NodeShape ;
sh:targetClass s:Person ;
sh:property [
sh:path (
s:worksFor
s:address

) ;
sh:node s:PostalAddress

] .

Listing 2: SPARQL query to get all the re-
sources targeted by the property
shape contained by s:Person

SELECT ?postalAddress WHERE {
# All resources targeted by the shape
?person rdf:type s:Person .
# Travel the path
?person s:worksFor ?o .
?o s:address ?postalAddress .

}

Listing 3: The same shape graph with a virtual
shape

s:Person rdf:type sh:NodeShape ;
sh:targetClass s:Person ;
sh:property [
sh:path s:worksFor ;
sh:node ex:VirtualShape01

] .

ex:VirtualShape01
rdf:type sh:NodeShape ;
sh:property [
sh:path s:address ;
sh:node ex:PostalAddress

] .

From SHACL paths to FSA. We build the FSA that describes the path P by composition.
Predicate paths produce an FSA with two states and only one transition. The FSA of other paths,
that are composite paths, are built by combining the automaton of their components in some
way. The transition symbol used by all the produced automaton are composed by combining
either the sign + for out-going edges or − for incoming edges, with the predicate to travel.
Table 2 describes all the composition rules, where we consider that p is any predicate, P, P1 and
P2 are paths.

From FSA to rules. After minimization and determination, an FSA can be defined as one
initial state, a set of final states and a set of transitions (𝑆𝑡𝑎𝑟𝑡𝑆𝑡𝑎𝑡𝑒, 𝑆𝑦𝑚𝑏𝑜𝑙, 𝐸𝑛𝑑𝑆𝑡𝑎𝑡𝑒).

• We define 𝑚 a total function from all states 𝑠 of the FSA to RDF Nodes. For each state 𝑠,
𝑚(𝑠) is a fresh RDF node, i.e. it is not used elsewhere.

• The virtual shape mapped from the initial state of the FSA is a super-shape of the starting
shape of the property shape

• If a destination shape is known for the property shape, it is declared as a sub-shape of all
the final states of the FSA.

• Table 3 describes how to convert the transitions to inferences rules.

7. Evaluation

Shacled Turtle uses schemas to reduce the number of suggestions proposed to users, keeping
only the most relevant ones. The underlying assumption is that this is more helpful for users
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Table 2
Mapping from all kinds of path to automata

Kind and SHACL Syntax Regex
equivalent Built automaton

Predicate
pred

p

Inverse
[ sh:inversePath P ]

None

Take automaton P
Inverse all transitions
Transform all + into -
Transform all - into +

Sequence
( P1 P2 )

P1 P2

Alternate
[ sh:alternatePath

( P1 P2 ) ]
(P1 | P2)

Zero or one
[ sh:zeroOrOnePath P ]

P?

One or more
[ sh:oneOrMorePath P ]

P+

Zero or more
[ sh:zeroOrMorePath P ]

P* Equivalent to (P+)?

than a less selective suggestion engine. In order to evaluate the validity of this assumption,
we asked volunteers to translate two texts into Turtle documents by using a given ontology.
The produced documents were expected to be constituted of approximately 10 triples. One of
the documents had to be written by using our auto-completion engine, the other by using an
auto-completion engine similar to the one used by YASGUI, i.e. that displays all the terms of
the ontology. The order of the two different documents and of the two auto-completion engines
was randomized.

We used two different schemas:

• The Schema.org ontology. For this session, we used the RDF schema graph published on
Github by Schema.org13. We slightly altered the graph to transform the cases where a pred-

13https://github.com/schemaorg/schemaorg/blob/main/data/releases/14.0/schemaorg-all-https.ttl
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Table 3
Converting the transitions of the produced FSA to rules

Transition Inference rules Suggestion rules

(𝑆,+𝑃,𝐸)
(?𝑢, 𝑃, ?𝑣) (?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓,𝑚(𝑆))

(?𝑣, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓,𝑚(𝐸))

(?𝑢, . . . , . . . ) (?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓,𝑚(𝑆))

𝑠𝑢𝑔𝑔𝑒𝑠𝑡(𝑃 )

(?𝑢, 𝑃, . . . ) (?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓,𝑚(𝑆))

𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝐴𝑙𝑙(:𝑝𝑎𝑡ℎ𝑠𝑂𝑓,𝑚(𝐸))

(𝑆,−𝑃,𝐸)
(?𝑢, 𝑃, ?𝑣) (?𝑣, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓,𝑚(𝑆))

(?𝑢, :𝑝𝑎𝑡ℎ𝑠𝑂𝑓,𝑚(𝐸))

icate only had one value for schema:domainIncludes or schema:rangeIncludes
to rdfs:domain and rdfs:range to help the inference engine of Shacled Turtle. This
alteration has no impact on the naive suggestion engine. As said previously, Schema.org
is a big ontology with thousands of terms. For this session, we had 23 volunteers, 21 of
them were Semantic Web experts with more than 3 years of usage and 6 had already used
the Schema.org ontology.

• Friend of a friend (foaf)14. As this ontology is defined by using mostly RDFS, it benefits
fully from the inference engine. Moreover, it is a small ontology, with a few dozen of terms.
For this session, we had 11 volunteers, 7 of them were Semantic Web experts and none
declared to already have used the ontology.

After writing the two different RDF documents, one with Shacled Turtle and one without
it, they were asked to grade on a Likert scale [17] their feeling about the usefulness of both
completion engine (naive and Shacled Turtle) and if they preferred an auto-completion engine
over another one. We also let users explain in a free field why they preferred one engine, if any;
and another free field to collect general feedback. Finally, we measured how much time each
volunteer took to write each document.

The whole evaluation was conducted online. We published the source code of the platform
and the anonymized collected results on Github at https://github.com/BruJu/shacled-turtle-
evaluation.

Of the 34 volunteers, 17 declared to have no preference towards an engine or the other. Six
volunteers even admitted to have seen no difference between the two engines. The number of
people that prefer one engine over another is almost equal for both engines.

When asked separately, all volunteers gave a similar rank to both engines, the worst case
being a strong appreciation on an engine and a neutral appreciation on the other; but 21 users
gave the same appreciation to both.

Using Shacled Turtle does not enable the user to complete the task faster: 20 volunteers were
faster to complete the second task than the first, regardless of if Shacled Turtle is the first engine
or the second, and 14 took about the same time.

14https://xmlns.com/foaf/spec/
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8. Discussion

In this section, we study some of the most recurring comments made by the volunteers about
the tool to have a better understanding of what can be improved in Shacled Turtle.

Relevance of suggestions. Five volunteers showed a high enthusiasm about the approach
and their comments showed that they understood well the purpose of the tool. In particular,
two of them appreciated that the tool leads to less errors, feeling more confident about the
produced graph.

However, in Section 6.1, we mentioned that the choice of which suggestions to filter out is,
to some extent, arbitrary, and could lead to false negatives.

The question arises especially in the case of SHACL shapes: we suggest only predicates
that are mentioned in the shape(s) of the subject, but unless these shapes are flagged with
sh:closed true, they actually do not disallow other predicates. Similar issues may apply
with RDFS classes, because an instance of a class might still be an instance of another one.

Indeed, three volunteers complained about the fact that Shacled Turtle produced less sug-
gestions than the other engine. 21 volunteers ranked both engines similarly, and six of them
explicitly reported that they did not notice any difference, suggesting that there is no clear
benefit in reducing the overall number of suggestions.

Other filtering strategy. Most auto-completion engines enable users to filter the list of
suggestions by name. In Code Mirror, and therefore in Shacled Turtle, when the user types for
example s:na, the system will only show the terms that contain the characters s:na in that
order (e.g. s:familyName or s:eventStatus). A common practice to find a desired term is
to opportunistically reduce the list of terms using the filtering by name. Then when the user
considers the list of terms to be short enough, they look further at the displayed terms. The
responses of the volunteers indicate that they proceeded that way.

Therefore it might be more valuable to promote the suggestions we deem relevant than to
filter out the others, and leave it to the user reduce the number of suggestions using filtering
by name. Once a suggestion list is filtered out by the user, we think that Shacled Turtle could
provide an efficient strategy to help the user pick the right term, in conjunction with manual
filtering by name.

The importance of good documentation. Shacled Turtle shows, with each suggested term,
a description (rdfs:comment) of that term when provided by the schema. While the query
GUI of Wikidata does the same, because Wikidata IRIs are opaque, many other suggestions
engine do not. During our experiment, seven volunteers reported that the descriptions of the
terms are important, as they complained when descriptions were missing or incomplete, either
because of bugs during the early stages of the experiment or because of the used schema. Five
volunteers reported to have consulted the ontology online documentation to check how to use
the ontology and have a better idea of the usage of the terms and their links. At the opposite, a
volunteer reported that thanks to this tool, they fortunately did not feel the necessity to consult
the ontology documentation.
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One of the volunteers explained that the domain and the range of a property can be more
informative than a description. The schema to rules converter could also be used to enrich the
descriptions to add the links between the predicates and the different types and shapes.

As mentioned previously, Shacled Turtle should not be used to filter out choices from contex-
tual data, but to enrich the documentation. This could be changed by using Shacled Turtle to
promote terms that we deem relevant, either by displaying them first in the list, by highlighting
them, or both: it would solve the issue of users not seeing a difference. To increase the perceived
reliability of the tool, the decision made should be explained to the users, i.e. in case of an
incomplete triple with only a subject, displaying which type or shape of the subject is used to
suggest each relevant predicate; and for an incomplete triple with only a missing object, which
type or shape of the suggested objects is used to suggest them depending on the subject and
the predicate.

9. Conclusion

In this paper, in order to tackle the problem of writing RDF documents by hand, we proposed
Shacled Turtle, an auto-completion engine that resorts to a schema graph to suggest terms
related to the types and shapes of the subject of the triple that the user is writing. The system
relies on two different rule engines : an inference engine that deduces the list of types and
shapes of all resources in the currently written graph and a suggestion engine that provides
possible following terms. However, in our experiments, the users barely saw any difference
between a naive approach, proposing all terms that are in the ontology, and our approach: to
find appropriate terms, they preferred to rely on other strategies like filtering by name and
reading the ontology online documentation. We explain this by the inability of our method
to display explicit insights: the difference between Shacled Turtle and the naive approach is
implicit, as it consists in showing less options.

As users are in quest of information, four aspects can be considered:

• Enriching the descriptions of the terms, both with information extracted from the schema
to rules converter like the links between the predicates and the types and shapes, and with
contextual information to explain why the system thinks a term may be relevant in the
current incomplete triple.

• Instead of using Shacled Turtle to filter out irrelevant terms, promote these relevant terms
in the list of all existing terms.

• Running an inference engine to provide the list of types of the resources when the user
hovers the resource. While this is currently done for RDFS, it could be expanded to any
inference rule-set like OWL.

• Using a SHACL validation report to report errors, i.e. as a linting tool. This would lead to
more accurate information and more visible error.

Another perspective that is to propose snippets, i.e. complete set of triples, instead of simple
paths. SHACL sequence paths are paths composed of other paths: instead of requiring the
user to chain blank nodes for each path that composes the sequence path, a snippet could be
suggested that would build all the intermediate blank nodes at once. This approach would better
benefit from SHACL paths and offer a higher level of suggestion.
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Abstract
Knowledge graphs have been recognized in manufacturing as a suitable technology for integration of
multidisciplinary knowledge from heterogeneous data sources. The effective reuse of this knowledge can
better inform stakeholders in their decision making processes and consequently, establish a competitive
advantage. In contrast to the utilization of knowledge graphs for autonomous decision making systems,
less attention in production research has been given to the creative participation of humans in the
exploration of manufacturing knowledge graphs. Exploratory search systems are a promising solution
to facilitate this participation. However, most exploratory search systems focus on general knowledge
graphs for which common knowledge is sufficient. We argue that within the complex environment of
manufacturing, closer attention has to be paid to particular exploratory search features. In this paper,
we therefore present a configurable and adaptive exploratory search system, which implements three
special features. Firstly, adaptability of the system to multiple (engineering) perspectives. Secondly,
visibility of provenance details about statements to simplify investigative work. And finally, a tree view
for browsing deep hierarchical structures.

Keywords
knowledge graph, exploratory search, industry 4.0

1. Introduction

The new paradigm shift in manufacturing, which is commonly referred to as the fourth indus-
trial revolution, is guided by the fusion of traditional manufacturing technology with modern
information and communication technology [1]. This vision is investigated by several strategic
initiatives such as Industrie 4.0 in Germany [2]. Core to all of these initiatives is the digitization
of multidisciplinary information about production systems and processes.

Knowledge graphs (as defined by Galkin et al. [3]) are one solution to facilitate this digital
transformation. As shown by the survey of Li et al. [4], knowledge graphs have received
considerable attention in production research over the last years. In fact, it has been widely
recognized as an important component of the next generation of information systems for
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manufacturing [4]. Moreover, industrial enterprises started to construct knowledge graphs
related to manufacturing such as Bosch [5] or Siemens [6].

Problem. The effective reuse of manufacturing knowledge can better inform stakeholders in
their decision making and consequently, establish a competitive advantage [7]. Much work in
production research has been dedicated to the utilization of knowledge graphs for autonomous
decision making systems, e.g., Rožanec et al. [8]. However, less attention has been given to the
creative participation of human stakeholders in the exploration of manufacturing knowledge
graphs. In particular, we present two concrete use cases in which this need arises:

(UC1) OntoTrans1 is an EU project (H2020) which aims to design an environment of tools for
translators who are working on innovation challenges to manufacturing processes. Three
companies take part in this project with their individual innovation challenge to improve
a certain manufactured product in respect to several key performance indicators. An
innovation challenge requires the interactive collaboration of stakeholders from different
disciplines who have diverging perspectives and conceptualizations of a problem. A
translator has to provide a communication-based glue between the involved stakeholders.
The innovation challenge as well as the corresponding manufacturing information are
converted into an ontological form. A tool to explore this interdisciplinary knowledge
graph could assist translators in their tasks.

(UC2) Aspern pilot factory2 is one of several Austrian "learning and experimentation facto-
ries". It currently hosts a series of valuable collaborative and industrial robotic arms as
well as a wide range of supporting tools (grippers, 3D cameras, projectors, etc.), which
can be used by students, researchers, and companies for their own purposes. However,
interested students, researchers, and companies are often unaware of the availability and
capabilities of the manufacturing technology in this pilot factory, which contributes to
a relatively low usage degree of these expensive, state of the art production equipment.
Furthermore, best practises and design patterns in software engineering are a valuable
guide for writing robotics software. A knowledge graph was built from this interdisci-
plinary knowledge and a tool to explore it could help users of the pilot factory to learn
about how to realize their individual projects with the available equipment.

Solution. Exploratory search systems are a promising solution to support human stakehold-
ers in their decision and sense making. Exploratory search is an open-ended and multi-faceted
information-seeking activity. It is commonly used in the context of scientific discovery, learning
and decision making [9]. Most exploratory search systems focus on general knowledge graphs
for which common knowledge is sufficient. We argue that within in the complex environment
of manufacturing, closer attention has to be paid to particular exploratory search features.
Contribution. To that end, we provide in Section 2, a list of exploratory search features

towards which we want to draw special attention, because they were commonly requested in
interviews with stakeholders of our two use cases. Section 3 proposes a configurable and adaptive
exploratory search interface, which considers the special search features for manufacturing

1https://ontotrans.eu/
2https://www.pilotfabrik.at/language/en/
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Common Features (from Marie et al. [10]) Manufacturing Features
(1) Overview and analysis feature (9) Multiperspectival exploration
(2) Faceted interface (10) Provenance visibility
(3) Result clustering (11) Hierarchical browsing
(4) Facilitator for back and forth navigation
(5) Query-suggestions and refinement
(6) Serendipitous discovery enforcement
(7) Result explanation generator
(8) Memorization feature

Table 1
Exploratory search features for the domain of manufacturing.

domain. The system architecture of our exploratory search is briefly introduced in Section 4.
Finally, the preliminary evaluation of our exploratory search system is presented in Section 5.

2. Features for Manufacturing

A survey about widespread features in KG-based exploratory search systems was conducted
by Marie et al. [10] (see left-side of Table 1). Three additional features that are important to
manufacturing professionals were identified from informal interviews (see right-side of Table 1).
Two translators to an industry partner in OntoTrans (UC1), two smart manufacturing researchers
working in the pilot factory (UC2) with industry and university background respectively, and
one simulation expert of production plants were among the interviewees. They were given
an introduction to a basic exploratory search system in beforehand, and were then asked to
discuss their requirements towards such a search system. The remaining part of this section
elaborates on the three extracted features from these collected requirements.

Multiperspectival exploration enables stakeholders to select and switch between different
perspectives on a manufacturing knowledge graph. In a manufacturing environment, stakehold-
ers from multiple disciplines work together and they might have different conceptualization of
manufacturing entities. Moreover, different disciplines might have a distinct perspective on
what information is relevant about a manufacturing entity, and don’t want to be overloaded
with information that is irrelevant to them. A machinery could for instance be viewed in a
impressively detailed manner by mechanical engineers, but only be seen as a black box with
certain wiring requirements by electrical engineers.
Provenance visibility is a valuable feature in a manufacturing environment, where inter-

disciplinary knowledge is integrated from many heterogeneous sources. If a stakeholder is
interested in investigating the properties of a physical component, then it might be necessary
to know the original data source in which these values for a property have been reported in
order to resolve ambiguities for proper decision making. The value of a parameter could have
been gathered from promotional material of the manufacturer, or could have been measured by
a local engineer. The visibility of provenance information allows stakeholders to quickly reason
about the trustworthiness of presented statements.

Hierarchical browsing is a frequent search task over manufacturing knowledge graphs in
which the digital twin of production plants or machines might be comprised of deep containment
relationships between components. Furthermore, manufacturing processes and bill of materials
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Figure 1: Scope hierarchy for the adaptive UI engine.

of products can have deep hierarchies. Thus, stakeholders must be able to quickly navigate
through these hierarchies, and be able to cognitively focus on important parts and not be
overwhelmed by the whole hierarchy.

3. Adaptive Exploratory Search Interface

Based on our interviews with stakeholders from the two manufacturing use cases, exploratory
search interfaces in manufacturing ought to be designed with the requirements from Section 2
in mind. Preferences about the presentation method of entities and arrangement of interface
elements might differ from use case to use case. Bootstrapping a new exploratory search
system is however a time-consuming and costly endeavour. Thus, we propose in this section
a configurable and adaptive search interface, which aims to be flexible and reusable. The
architecture of the whole system is outlined in Section 4.

This adaptive search interface is based on the concept of scopes and configurations, which
was introduced by the Linked Data Reactor (LD-R) [11]. A scope is in LD-R a hierarchical
permutation of dataset, resource, property and value, where dataset is at the top and value at the
bottom of this hierarchy. A presentation template (i.e. a configuration) can then be written in
JSON format for a particular scope, which tells the web application how to render entities in the
knowledge graph that match this scope. Each scope has a specificity, and if entities belong to
multiple scopes, then the configuration of the most specific scope overwrites the others. While
we adapt this mechanism for our adaptive search interface, the scope components and their
hierarchy were changed to integrate multiperspectival exploration.
Scope components are organized in the hierarchy that is depicted in Figure 1.

– At the top of this hierarchy is the resource class or selection R. This can either be the
IRI of a class of resources or an IRI matching one single specific resource. The class
rdfs:Resource can be used as a wildcard to match all resources in a knowledge graph.

– The following scope component is the perspective P, which allows to adapt metrics
powering the search interface as well as the presentation of widgets and entities to the
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currently selected perspective. The underscore (i.e. ’_’) is a wildcard and represents all
perspectives.

– A list of widgets W1, ..., Wn is the next component in the hierarchy. Widget refers here to
an interface element with an unique name. A list always starts with the outermost widget
and ends with the innermost. The distinct presentation of entities in different widgets
(e.g. bookmarks and result overview) is made possible with this scope component.

– Predicate path PR is one level below in the hierarchy. A predicate path is a subset of a
property path in SPARQL, only allowing sequences (i.e. ’/’), alternatives (i.e. ’|’) and
inversion (i.e. ’’). A predicate path makes it possible to configure how a matching property
itself is presented and how a collection of it‘s values should be visualized.

– At the bottom is the value class or selection V. This scope component has the purpose
to configure the presentation of matching values. In order to facilitate the design of UI
components for visualizing provenance details, metadata about relevant named graphs
is passed to values. In our solution, it is assumed that the single-triple named graphs
approach is used to state provenance information in favor of RDF reification, singleton
properties [12] and RDF-star [13].

Templates are aggregated in files written in HCL3, which is easy to edit and read by humans.
Listing 1 shows a snippet of such a configuration file for the class RobotType. UI components
are assigned with ’handler’ to widgets, properties, and values. These UI components can
moreover be customized by passing properties with a ’config’ object. Line 29-39 in Listing 1
states that every value for the property "reach" of a RobotType shall be rendered as ordinary text
literal as long as it isn’t a quantity value from the QUDT ontology, which needs some additional
parsing. Listing 2 shows how the recommendation section for instances of RobotType is
configured to use LDSD [14] in general, but is limited to specific classes for the two mentioned
perspectives. Similarly, distinct ranking metrics could be chosen.

3Hashicorp configuration language - https://github.com/hashicorp/hcl
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Listing 1: Configuration of RobotType.
( 1 0 ) c l a s s = " c ob o t : RobotType "
( 1 1 )
( 1 2 ) perspect ive _ widget i n f o b o x {
( 1 3 ) h a n d l e r = " G e n e r a l I n f o B o x "
( 1 4 ) c o n f i g {
( 1 5 ) s e c t i o n s = [ " p r o p _ t a b l e " ,
( 1 6 ) " recommendat ions " ]
( 1 7 ) }
( 1 8 ) }
( 1 9 ) perspect ive _ widget i n f o b o x s e c t i o n p r o p _ t a b l e {
( 2 0 ) h a n d l e r = " P r o v e n a n c e T a b l e S e c t i o n " ,
( 2 1 ) c o n f i g {
( 2 2 ) ne ighbourhood {
( 2 3 ) i n c l u d e = [ " c o b o t : degreesOfFreedom " ,
( 2 4 ) " c o b o t : h a n d l i n g P a y l o a d " , " c o b o t : r e a c h " ,
( 2 5 ) " c o b o t : s k i l l s " ] ,
( 2 6 ) }
( 2 7 ) }
( 2 8 ) }
( 2 9 ) perspect ive _ widget i n f o b o x {
( 3 0 ) property " c o bo t : r e a c h " {
( 3 1 ) h a n d l e r = " L i n k e d P r o p e r t y "
( 3 2 ) value _ {
( 3 3 ) h a n d l e r = " Tex tVa lue "
( 3 4 ) }
( 3 5 ) value " qudt : Q u a n t i t y " {
( 3 6 ) h a n d l e r = " QudtQuant i tyVa lue "
( 3 7 ) }
( 3 8 ) }
( 3 9 ) }

Listing 2: Different recommendation configu-
rations per perspective.

( 4 0 ) perspect ive _ widget i n f o b o x {
( 4 1 ) s e c t i o n recommendat ions {
( 4 2 ) h a n d l e r = " S i m i l a r i t y S e c t i o n "
( 4 3 ) c o n f i g {
( 4 4 ) number = 4
( 4 5 ) r a nk in g = {
( 4 6 ) l d s d {
( 4 7 ) s t e p = " esm . e x p l o i t . sim . l d s d "
( 4 8 ) weight = −1 .0
( 4 9 ) }
( 5 0 ) }
( 5 1 ) }
( 5 2 ) }
( 5 3 ) }
( 5 4 ) perspect ive R o b o t i c s E n g i n e e r widget i n f o b o x {
( 5 5 ) s e c t i o n recommendat ions {
( 5 6 ) c o n f i g {
( 5 7 ) c l a s s e s = [ " c o b o t : RobotType " ]
( 5 8 ) }
( 5 9 ) }
( 6 0 ) }
( 6 1 ) perspect ive S o f t w a r e E n g i n e e r widget i n f o b o x {
( 6 2 ) s e c t i o n recommendat ions {
( 6 3 ) c o n f i g {
( 6 4 ) c l a s s e s = [ " c o b o t : H a n d l i n g F u n c t i o n " ,
( 6 5 ) " s t a r : A r c h i t e c t u r a l E l e m e n t " ]
( 6 6 ) }
( 6 7 ) }
( 6 8 ) }

Search interface is provided by a rendering engine that interprets these templates. The
interface is intended to be similar to major search engines on the Web in order to lower the
learning curve. The main entry point for starting an exploration is a keyword search as depicted
in Figure 2. The result set of a keyword search is listed vertically, and an info box is shown for
the first entry of the result list. Nonetheless, a user can switch to a different search paradigm,
e.g. a tree view.

4. System Architecture

Many KG-based exploratory search systems report to only rely on a SPARQL interface to the
target knowledge graph, which has the big advantage that these systems can directly be applied
to virtually every RDF-based knowledge graph. An integral part of our system is the computation
of centrality metrics (e.g. PageRank) for the ordering of resources according to their "importance"
and similarity metrics (e.g. LDSD [14]) for recommendations. A reasonable responsiveness is
however an important non-functional requirement towards search interfaces, and we claim
that this is hard to achieve without precomputing metrics or sophisticated indexing techniques.
Thus, we introduce a middleware application which sits on top of the storage solution for the
target knowledge graph. The conceptual overview of our whole exploratory search system is
depicted in Fig. 3.

The adaptive search interface presented in Section 3 is provided by our web application,
which is designed to be a thin single-page application. ReactJS4 is used to implement the UI

4JavaScript library for building user interfaces - https://reactjs.org

Enabling Exploratory Search on Manufacturing Knowledge Graphs



Figure 2: Entry point for exploration (keyword search).

components, and the state is managed with Redux5. In order to be able to render the UI, the web
application needs to load the UI configuration (see Section 3). The required data for rendering
the UI components is then fetched by assembling corresponding exploration flows, and sending
them to the middleware. The web application is only responsible for the correct rendering and
isn’t handling any RDF data itself.

5State container for JavaScript applications - https://redux.js.org
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Figure 3: Conceptual overview of the exploratory search system.

An exploration flow is a sequence of steps which all execute a single operation. Listing 3
shows a flow that computes the weighted sum of LDSD [14] and a general peer pressure metric
for all pairs between a particular gripper and all other resources in the knowledge graph. Then,
the collection of pairs is ordered by this weighted sum, and only the top 10 pairs are eventually
returned. The goal of an exploration flow is to abstract the more complex part of the Semantic
Web technologies, and only expose the basic concepts of RDF to the web application.

Listing 3: Top 10 recommendations for a certain gripper (Python).
( 1 ) f = S i n g l e ( r e s o u r c e = ’ ex : g r i p p e r 0 4 ’ ) \
( 2 ) >> Pa i rWi th ( f low = A l l ( ) ) >> ( LDSD ( ) | P e e r P r e s s u r e ( ) ) \
( 3 ) >> WeightedSum ( ’ sum ’ , { Sim . l d s d : −1 , Sim . p e e r p r e s s u r e : 1 } ) \
( 4 ) >> OrderBy ( ’ sum ’ , s t r a t e g y = Order . DESC ) >> L i m i t ( n =10 )
( 5 ) r e s p = FlowAPI ( " h t t p : / / l o c a l h o s t : 8 0 8 0 " ) . e x e c u t e ( f )

The middleware is a Spring Boot application written in Java and it has two main tasks.
Firstly, it provides an interpreter for exploration flows, which parses flows and executes their
steps one by one in the correct order. Secondly, it orchestrates the computation of analytical
services such as centrality and similarity metrics among others. However, we can’t solely rely
on SPARQL for these tasks, because:

(a) Graph traversal is limited in the specification of SPARQL 1.1 [15]. While property paths
add the ability to check whether a route of arbitrary length exists between two nodes in the
knowledge graph, a wider range of path operations aren’t supported such as computing
the shortest distance between two nodes. Query languages for property graphs usually
don’t have this limitation, and RDF-based knowledge graphs can easily be represented in
property graphs. However, at the moment of writing no query language is accepted as a
standard for property graphs. GQL is one of the emerging attempts to establish such a
standard [16]. Cypher and Gremlin are nevertheless two prominent choices.

(b) Full-text searches are a feature of many triplestores, but it is not included in the specifi-
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TASK A TASK B
Imagine that you are a member of a team which is
working on a manufacturing project with collaborative
robots and you have access to the equipment located
at the pilot factory in Aspern. In this project, you have
to move a 4 kg heavy and cubic object with a length
of 20cm from a conveyor belt to a manufacturing cell
that is 60cm away. GoalYou have been asked to design
a hardware setup for this project with equipment that is
available at the pilot factory. Your team would be glad
about a brief presentation of your findings.

Imagine that you are a member of a team which is
working on a collaborative robot picking up a small
transistor from a storage box and placing it on a certain
position on a circuit board. The robot works in proximity
of human workers and it might have to interrupt it‘s
task, due to them coming too close. However, we don’t
want the robot to remain in this state, and proceed with
the task as soon as possible. Goal: You have been asked
to explore design patterns that could be lend from software
engineering for this kind of error handling and eventually
present promising design patterns to your team.

Table 2
Exploratory search tasks for evaluating the system.

cation of SPARQL 1.1 [15]. The SPARQL syntax for issuing a full-text search is vendor-
specific, and the configurability of search indices varies from vendor to vendor. Alterna-
tively, one might want to use an external solution for creating full-text indices.

Due to these limitations of SPARQL, the middleware expects three interfaces to the stored
knowledge graph: (1) SPARQL 1.1, (2) Gremlin as query language for property graphs, and (3)
simple full-text search API. The middleware includes plugins, which implement these three
interfaces for a number of popular triplestores (Blazegraph, GraphDB, Stardog and Virtuoso).
And given that barely any triplestore supports the Gremlin query language, the middleware
provides also a mechanism to clone the knowledge graph over the SPARQL interface into an
embedded JanusGraph6 instance.

5. Preliminary Evaluation

Our exploratory search system7 was evaluated on a small scale with five participants for the
pilot factory use case (UC2), which is why we want to set a heavy focus on qualitative analysis.
All five participants were non-experts in smart manufacturing and robotics, but they were
knowledgeable in software engineering. Participants took in our experiments the role of an
information seeker and explored the domain of collaborative robotics. The evaluation aimed
to assess the ability of our system to allow a user to interactively investigate, learn and make
sense of a topic from this manufacturing domain.

The two tasks listed in Table 2 were designed to elicit exploratory search behaviour from
participants. The experiment started with a brief survey to assess participant‘s a-priory knowl-
edge about robotics and software engineering. Then, they were given both exploratory search
tasks one-by-one, and had 20 minutes time with our search system for each task. Afterwards,
their gained knowledge was assessed by a new survey. Moreover, we asked the participants

6Open source distributed graph database - https://janusgraph.org/
7Online deployment - https://data.ifs.tuwien.ac.at/cobot
Source code for local deployment - https://gitlab.tuwien.ac.at/kevin.haller/cobot-playground

Enabling Exploratory Search on Manufacturing Knowledge Graphs



to rate the "usefulness" of single features for completing their tasks, and conducted informal
interviews to gather feedback. All the sessions were recorded for later video analysis.

Overall, all participants gained some additional knowledge and were able to present a reason-
able solution for both tasks to their fictional team. Regarding the exploratory search features,
the participants thought that info boxes were the most useful, which isn’t surprising given that
it plays a prominent role in our search system. On the other hand, the tree view for browsing
deep hierarchies wasn’t rated highly. A video analysis of the recorded sessions showed that
the participants were overburdened by the current design of the tree view and the click rate
was low. Moreover, it showed that they preferred to use browser tabs as well as back and forth
navigation over our in-built memorization feature.

6. Related Work

Little work has been published for exploratory search in manufacturing and production.
Metaphactory describes in [17] their platform for knowledge graph management and briefly
outlines use cases in the engineering and manufacturing domain at Siemens. While exploratory
search is not discussed, it touches on faceted navigation, query building assistance as well as
customizable search experience and result visualization. Sabou et al. [18] show an approach to
transform a central repository of architectural knowledge at Siemens into a knowledge graph,
and furthermore, present a search system with an user interface similarly to major search
engines on the Web. The search interface includes info boxes with faceted navigation and a
KG-based recommendation engine. Yet, these systems don’t address the manufacturing features
discussed in this paper.

Much work has been published about utilizing the semantics of knowledge graphs to render
configurable presentations of resources. Fresnel [19] is an ontology that provides a vocabu-
lary to annotate resources, classes and properties with presentation knowledge. A browser
understanding this vocabulary can then visualize these entities accordingly. Rutledge et al. [20]
propose an extension of this Fresnel ontology that allows to define presentation knowledge
for provenance information as well. LESS [21] introduces on the other side a new template
language based on Smarty8 to define the presentation of resources. A LESS processor is then
taking the designed template and applies it either to a specified RDF document or the result
set of a specified SPARQL query. Uduvudu [22] utilizes templates in a similar manner, but
additionally proposes algorithms for the automatic selection of templates based on the input
data. These solutions focus however exclusively on the visualization of entities in a knowledge
graph and thus, not all aspects of configuring an adaptive search interface are covered.

Linked Data Reactor (LD-R) [11] is a faceted explorer with a configurable and adaptive user
interface. It proposes the concept of scopes and configurations as outlined in more detail in
Section 3. LD-R enables the configuration of facets following these newly introduced concepts.
Moreover, it implements a mechanism to change it‘s UI components based on the persona of
a user. Nonetheless, LD-R exclusively focuses on faceted exploration. Furthermore, we argue
that simple perspectives are a more accessible mechanism for stakeholders in manufacturing
than user personas in LD-R. KG-Explorer [23] proposes similarly a configurable and adaptive

8PHP template engine - https://www.smarty.net
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search interface that mainly focuses on faceted exploration, but not exclusively. Some aspects
of the overall search interface can be adapted in a configuration file as well as templates can be
created for editorial pages about entities. However, the search behaviour and interface elements
can’t be customized for different user perspectives. Moreover, these systems don’t address the
other two manufacturing features discussed in this paper.

7. Conclusion and Future Work

KG-based exploratory search systems share a common set of features. In this paper, we identi-
fied and reported three particular features from interviews that are additionally relevant for
enabling exploratory search on manufacturing knowledge graphs. The adaptability of the search
system to multiple (engineering) perspectives is one of these features. Moreover, the visibility of
provenance information supports stakeholders in manufacturing in their investigative work.
Finally, browsing deep hierarchical structures of containment relationships is a frequent task on
manufacturing knowledge graphs.

We presented an adaptive and configurable exploratory search system, which implements
solutions to these features among others. A new scope component representing perspectives was
introduced to allow the multiperspectival configuration of visualizations as well as the underlying
search system. The visibility of provenance details was addressed by passing information about
the named graphs for each statement to the corresponding UI components and hence, enabling
the implementation of UI components that visualize this knowledge. The requirement of
browsing deep hierarchies was addressed with the implementation of a simple tree view (as
known from Protegé for example) in combination with info boxes.

A small-scale evaluation of our system showed the usefulness of the implemented features
for participants for completing their search tasks, with the exception for the tree view and
memorization feature. Participants were overburdened by our current design of the tree view.
Moreover, our implemented memorization feature was mainly ignored by participants in favor
of maintaining multiple browser tabs. Overall, the participants were able to present a reasonable
solution for their search tasks.

Hence, as future work we want to improve on the tree view for browsing deep hierarchies.
Furthermore, we want to make our rendering engine compatible with RDF-star [13], due to it‘s
increasing popularity. Eventually, we aim to evaluate the improved system on the OntoTrans
use case (UC1) with a larger number of participants.
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VOWLExplain: Knowledge Graph Visualization for
Explainable Artificial Intelligence
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Abstract
Ontologies and Knowledge Graphs are a potential solution to the problem of lack of explainability in
Artificial Intelligence, and are especially suited to explain how a given prediction fits with existing
knowledge in a domain. Communicating these semantic explanations to end users in a correct, clear and
trustworthy fashion is crucial to support the adoption of artificial intelligence in critical and complex
domains such as healthcare. We developed VOWLExplain, a tool that supports the visualization of
semantic post-hoc explanations for predictions made by AI black-box models. We performed a small-
scale user study comparing text-based and graph-visualization based explanations in a case study for
personalized medicine. The results highlighted the diversity of how users perceive explanations, and
demonstrated that although users indicate a slight preference for graph based representations, they
generally rate them as correct and as trustworthy as text-based explanations, but do consider them
clearer.

Keywords
Explainable AI, Knowledge Graph, Visualization

1. Introduction

Artificial Intelligence (AI), specifically Machine Learning (ML) algorithms, have been gaining
more importance due to the development of powerful models, such as Deep Learning (DL).
There are several applications in which DL models are being used, with great potential and
promising results [1].

However, the application of black-box AI in critical use cases is hindered by their lack of
explainability. Black-box models are opaque models whose internal mechanism is unknown
or uninterpretable to humans. Explainability, the ability of a user to understand, evaluate and
eventually trust a specific prediction made by a machine learning model is essential for applying
these models in sensitive fields, where decisions highly impact people’s lives [2, 3].

The concept of explainable AI (XAI) is not new and has been used since the beginnings of
artificial intelligence. There have been efforts to clearly define XAI terminology, distinguishing
concepts such as transparency, interpretability and explainability [2]. Explainability approaches
allow users to have a clearer understanding of why certain AI predictions were made, which
may help increase their trust and acceptance in these predictions.

Explanations are usually divided into two categories: post-hoc and ante-hoc explanations.
Ante-hoc systems are interpretable by design, which includes decision trees and linear regression.
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Post-hoc systems, on the other hand, suggest possible explanations for specific predictions
made by ML models, maintaining high fidelity to the original model and producing helpful
explanations instead of trying to explain the original model itself [4]. An additional dimension
of explainability is how the model’s predictions fit with prior knowledge. This is especially
relevant in areas where the body of knowledge cannot be fully understood by users due to
its size and complexity, with a prime example being the clinical domain [5]. The need for
knowledge representations to support AI in clinical and biomedical settings is recognized by
the scientific community, but their effective use is still an open challenge [4].

Ontologies and Knowledge Graphs (KGs) afford a potential solution to this need [3]. KGs
are graph-based representations of knowledge that use nodes to represent entities and edges
to represent relations. The possible types of elements and relations can be described by an
ontology [6]. The structured and connected form of modelling domains in an ontology allows a
facilitated integration, as well as an extensive vocabulary and clear identifiers [7], which allows
a shared common knowledge [8].

The abundance and diversity of ontologies and KGs in the biomedical and clinical domains are
an opportunity that can be explored by XAI. One particular area where explanations are crucial
is personalized medicine. Personalized medicine tries to answer the question of "What is the
right drug at the right dose for the right patient?" by integrating and analysing very large volumes
of diverse and heterogeneous data coming from a variety of sources and different scientific
and clinical domains. Black-box algorithms are leading in the field [9], but their opaque nature
is a recognized challenge. Moreover, a lack of consideration of users’ expectations is among
the chief reasons for the limited adoption of ML systems in critical and complex domains [10],
so effective user interfaces are also a requirement [4]. If KGs are to be the backbone of an
explanation for an AI prediction, then the visualization of the KG can be the communication
means of such an explanation. Ontology and KG visualization are active research areas, with
several existing tools, but the challenges of visualizing large graphs and adapting to specific use
cases remain [11].

We are then faced with two challenges: (1) Can KGs be used to craft semantic explanations
of how a particular AI prediction fits with existing knowledge?; (2) Are KG-based visualizations
an effective means to communicate such an explanation? In this work, we focus on the second
challenge, building on the following definition of a semantic explanation: an explanation for a
specific AI prediction for a given instance that corresponds to a subgraph extracted from the KG
that includes a representation of the instance, the prediction and a path in the KG that connects
both. This type of explanation requires that both the instance for which the prediction was
made and the prediction itself to be encoded in the KG. To address this challenge, we require a
tool that enables the visualization of a semantic explanation, and a user study that compares
this visualization with other communication approaches, e.g, text-based.

The main goal of this work is to develop a visualization tool, that given a semantic explanation
of how a particular AI prediction fits with prior knowledge represents this explanation in a
visual manner. The main contributions of this work are: (1) the extension of the VOWL language
to represent additional KG elements required for semantic explanations; (2) the adaptation of
the WebVOWL tool to represent semantic explanations; (3) the development of representative
semantic explanations to evaluate the tool; (4) the design of a user study; (5) a small-scale user
study.
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2. Related Work

This work is related to two complementary domains: the use of KGs for XAI and the visualization
of KGs. Below we provide a brief overview of relevant works in these domains.

KGs for XAI We focus on the exploration of KGs for post-hoc explanations both in supervised
learning and pattern mining settings. Explanations that use background knowledge are likely
to be closer to human conceptualizations and thus more useful in applications.

Trepan Reloaded [12] has been a recent extension of Trepan [13], an algorithm that creates
a decision tree that tries to replicate deep neural network model predictions and employs
ontologies to select the most general concepts, determined through the hierarchy of the ontology,
to then be used as tree nodes. The authors consider that the more general concepts will provide
the most understandable explanation, which is a reasonable although semantically poor criterion.

Lécué and Wu [14] developed a method that uses ontologies to help explain predictions of
classification models. It selects representative data points and their semantic context is then
built by characterizing them with their respective concepts using an ontology. The concepts can
then be divided into positive concepts, if they characterize points in a certain class, and negative
concepts if they describe points in the opposite class. An algorithm is then used to select the
most useful positive and negative concepts for explaining each class, which are preferably the
more general ones. This results in a list of ordered informative explanations, which are based
on the contrasting concepts of each class.

Ontologies can also help in filtering and organizing results of pattern mining techniques.
Jay and D’Aquin (2013) developed a tool to interpret results obtained from data mining with
the use of Linked Open Data (LOD) [15]. Their approach is applied to results from pattern
mining techniques, which are sequential patterns regarding hospitalized patients’ trajectories.
This approach makes use of linked data to extract information about the result patterns and to
organize them in a hierarchical way. The tool also allows the linkage of the patterns to their
terminology, making their interpretation of patterns easier.

These representative works differ from ours in their definition of an explanation. In [12],
an explanation is the model itself, which is built with input from an ontology. In [14], the
explanations are the most common classes that represent positive and negative examples.
In [15] the explanations are the semantic representations of the extracted patterns. In all works,
the presentation of the explanations is addressed, however both [12] and [14] disregard the
contexual and semantic properties of the ontology they explore to generate the explanations
when presenting them to users. [12] presents the decision tree where although nodes correspond
to ontology classes, their semantic properties are ignored, while [14] merely proposes to present
a list of relevant classes, without providing any other semantic information. On the other
hand, [15] explore the semantic properties of the linked data and ontologies they use, allowing
patterns to be navigated according to the ontology hierarchy.

Visualization of ontologies and KGs The majority of tools to visualize ontologies employ
two-dimensional node-link visualizations with a focus on class hierarchies and are rarely use
case oriented [11]. 10 out of the 33 tools surveyed by [11] are plugins for the popular ontology
editor Protégé [16]. Protégé affords a visualization of an ontology as an indented list, but a variety
of plugins cover other layouts, such as trees and graphs (e.g., OWLViz [17], OntoGraf [18]).
Other popular tools are browser-based. Ontodia [19] supports quick visualization of RDF
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datasets and OWL ontologies on the Web. WebVOWL [20] uses VOWL (Visual Notation for
Ontologies) to support web-based ontology visualization aiming at a better and more intuitive
experience for the user. VOWLMap [21] targets the visualization of ontology alignments. Graph
databases that include visualization interfaces can also be used to visualize KGs, such as Gruff
for AllegroGraph 1.

Orthogonally, a recent study [22] performed a comparative evaluation of state-of-the-art
linked data visualization tools based on a number of use cases including the ability to visualize
the paths that connect different instances. Only one of ten tools was able to accomplish this
use case [23], however it failed on other relevant use cases such as visualizing the information
related to a class or a property.

There is not one-size-fits all solution to the problem of ontology and KG visualization and
it is clear that different use cases demand different visualization and interaction techniques.
For the specific use case of semantic explanation visualization no existing tool is capable of
answering all requirements.

3. Methodology

Figure 1 represents two semantic explanations that illustrate the fit between prior knowledge
encoded in the KG and the AI prediction. In this case, the instance is John Doe and the
predicted drug to treat this patient’s disease is Sunitinib, an antineoplastic agent, and they are
connected through two paths that link the semantic representation of John Doe to the semantic
representation of Sunitinib. These paths provide two possible explanations of why Sunitinib
was predicted for this patient, one of them more generic (grey) and one more specific (colors).
The generic explanation states that John Doe has a mutation MET T540 that is related to renal
cell carcinoma, which is a type of cancer and cancers can be treated by the antineoplastic agents,
of which Sunitinib is an example. The more specific explanation declares that the patient has a
specific mutation MET T540 that promotes the transcription of the MET gene that is related
to tyrosine kinase activity which is inhibited by Sunitinib. Both explanations are valid, but
the specific one provides more information to understand the possible link between a patient
feature (the mutation) and the drug effect.

To visualize semantic explanations we need to fulfil the following requirements:

1. load a semantic explanation, i.e., a KG subgraph

2. visualize the instance and its properties, i.e, the KG individual for whom the AI prediction
was made

3. visualize the predicted class and its properties, i.e., the KG class that represented the
predicted class

4. visualize the path between instance and predicted class composed by individuals, classes
and properties

1https://allegrograph.com/products/gruff/
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Figure 1: Example of two semantic explanations for the recommendation of sunitinib to patient John
Doe. A more specific semantic explanation is represented in color and a more generic one represented
in grey.

5. expand the neighbourhood of nodes in the path to include neighbouring regions of the
KG

The visualization of ontologies can be supported by visual languages, such as VOWL [24]
and its associated visualization tool WebVOWL [25]. In this work, we extended VOWL to
support the visualization of individuals and adapted WebVOWL to the visualization of semantic
explanations.

3.1. Extending VOWL

The VOWL notation was extended to represent new elements required for the visualization
of individuals and their properties, as presented in Table 1. We defined the representation of
Named Individuals and their relations (both the “Instance of" relation to their corresponding
class, as well as the object properties that connect the individuals between themselves).

3.2. VOWLExplain

VOWLExplain was developed over WebVOWL. Previous works have already demonstrated the
potential to adapt WebVOWL to develop new visualization tools adapted to specific tasks [21].

WebVOWL takes as input a JSON file with the desired ontology. This JSON file has a
specific format that describes the different elements to be interpreted and represented by
WebVOWL and is generated by the OWL2VOWL tool. However, this tool does not allow
the representation of individuals, so we developed a tool to process the KG subgraph and
generate a JSON representation that follows the structure of WebVOWL but contains the
extensions required to represent individuals. We then modified the WebVOWL code to include
the representation of the new VOWL elements. The first part of this adaptation included
recognizing and processing these elements from the JSON file. Then, we guaranteed their
accurate representation, with the new VOWL notation, by creating the new graphical elements
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Table 1
Extension of the VOWL notation.

VOWL Element Notation

Individual

Instance of

Object Property

Object Property and Inverse Property

in the VOWLExplain code. The addition of the new VOWL elements also included the adaptation
of all of the useful original features of WebVOWL for each element, such as moving, selecting,
and showing the details in the lateral menu: Name, Type, other characteristics, and domain and
range (in case of relations). The overall appearance and functionalities remained the same, with
the addition of the new VOWL elements, as well as a new feature for collapsing and expanding
the neighboorhood of nodes, in order to facilitate the visualization of the explanation paths.

3.3. Evaluation strategy

The evaluation of VOWLExplain was grounded in the specific case of personalized medicine for
renal cancer2.
Ontologies, Data and Explanations To evaluate VOWLExplain we built a KG based on a

network of aligned ontologies and simulated drug recommendations based on data describing
real patients and the drugs that were used for their clinical case.

The ontology network comprises a set of 28 biomedical ontologies aligned to each other to
build the semantic backbone of the KG [26, 27]. The ontologies cover a wide range of domains,
including clinical data, clinical trial data and ’omics data, such as immunopeptidomics and
transcriptomics and proteomics.

The patient data (clinical features, gene mutations and administered drug) was obtained
from The Cancer Genome Atlas (TCGA), which contains rich metadata, such as the clinical
characterizations of patients, and transcriptomics data from the work by Braun et al. [28], which
describes gene activity and mutations in renal cancer.

We developed semantic explanations for the drug recommendations for patients by creating
paths in the KG between patient’s gene mutations or clinical characteristics and the recom-
mended drug using Protégé [16]. We created six semantic explanations, four which represented
specific explanations where the mechanism of a genetic mutation and the effect of a drug are

2in the context of European Commission funded KATY project https://katy-project.eu/
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Figure 2: Example of semantic explanation loaded in VOWLExplain. The explanation shows a path
(represented in dark blue) that connects the patient (patient 3) to the recommended drug (sunitinib), as
well as some neighbors that provide context to the explanation (represented in light blue).

represented (an example of a specific graph-based explanation is presented in Figure 2) and
two based on the generic anti-cancer effect of drugs (example of a generic text explanation
is presented in Figure 3). Text explanations are simple transformations of class and property
names in the explanation path into grammatically correct sentences.

Figure 3: Example of a text explanation presented in the user study. This is a generic explanation.

Ontologies, Data and Explanations We performed a preliminary user study, to gather
feedback from a small pool of users, before embarking on a large-scale study. The goal of
the user study was to evaluate the usefulness of visual semantic explanations and is based
on comparing textual representations, handcrafted based on the semantic explanations and
graph-based representations of semantic explanations using VOWLExplain.

We recruited four users with a background in health informatics. The study was both
observational (online video call) and questionnaire based. The evaluation was task-based: users
were given information about a patient and its corresponding AI recommendation (Figure 4) and
then asked a number of questions about either a textual or a graph-based semantic explanation
(SEQ) for the given patient and prediction:
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Figure 4: Example of table presented in the user studies with characterization of a patient and its
corresponding AI recommendation.

(SEQ1) Rate the explanation in terms of Correctness (I don’t know or 1-Not at all to 4-
Completely)

(SEQ2) Rate the explanation in terms of Clarity (I don’t know or 1-Not at all to 4-Completely)

(SEQ3) Rate the explanation in terms of Trustworthiness (I don’t know or 1-Not at all to
4-Completely)

(SEQ4) How would you improve this particular explanation? (free text - optional)

After rating six different semantic explanations (three text and three graph-based), users
were also asked the following general questions (GQ):

(GQ1) Do you think explanations, either graph or text based, are useful? (1-Not useful 5-Very
useful)

(GQ2) Which explanations do you prefer? (1-Graph, 3 corresponds to no preference, 5-Text)

(GQ3) Adding context to the explanations (neighborhood in VOWLExplain) is useful? (1-Not
useful 5-Very useful)

(GQ4) Any suggestions or comments to improve the graph-based explanations? (free text -
optional)

(GQ5) Any suggestions or comments to improve the VOWLExplain tool? (free text - optional)

(GQ6) Any suggestions or comments to improve the textual explanations? (free text - op-
tional)

(GQ7) Any suggestions or comments to improve the explanations, overall? (free text -
optional)

Users’ screens were recorded while using VOWLExplain to elucidate which features were used.
Half the users were first presented with textual explanations followed by graph explanations,
and the other half vice-versa. Users were never shown the same explanation in both forms.
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Figure 5: User (U) ratings for each semantic explanation (SE) in graph (G) or text (T) format, in terms
of correctness, clarity and trustworthiness

4. Results and Discussion

4.1. VOWLExplain

Figure 2 depicts a semantic explanation loaded in VOWLExplain. It presents the path that
connects the patient to the predicted drug, as well as the neighborhood of this path, for more
context.

4.2. Preliminary User Studies

All users rated explanations as very useful (rating=5), regardless of type, all showed a slight
preference for graph explanations (rating=2), and rated the context of graph explanations as
useful (rating=4) or very useful (rating=5). However, the specific ratings on Correctness, Clarity
and Trustworthiness reflect different opinions (see Figure 5). This preliminary user study was
helpful in understanding the diversity of how users perceive explanations. For instance, U4
struggles with rating the correctness of all graph-based explanations (rating=I don’t know),
but shows no hesitancy in rating textual explanations. Moreover, U4 rates all explanations
regardless of type with the same level of clarity and trustworthiness. On the other hand, U2
rates graph-based explanations generally higher in terms of clarity and trustworthiness, except
for the generic explanation (G-SE2) which is rated considerably lower on par with the generic
textual explanation (T-SE6). U1 rates graph-based explanations generally higher, while U3 rates
the textual ones higher. Looking at the profiling information, these preferences make sense,
since U3 rates their knowledge of KGs as Novice while U1 rate themselves as Competent.

In Table 2, we can see the median of all the answers regarding the Correctness, Clarity
and Trustworthiness of the explanations. The scores for Correctness and Trustworthiness are
equivalent for both text and graph visualization based explanations, but in Clarity the graph
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Table 2
Median scores for correctness, clarity and trustworthiness of explanations.

Explanation Type Correctness Clarity Trustworthiness

Graph Visualization 3 4 3
Text 3 3 3

explanations received a higher median score. It is possible the perceived increase in clarity
comes with the additional context that the KG visualization affords.

Users provided some suggestions for improvements, such as fitting the entire explanation
path on the screen and marking the instance and the prediction nodes with a different color.

5. Conclusions
In recent years, ontologies and KGs have been proposed as a fundamental piece of the XAI
puzzle. In complex and critical domains, such as healthcare, they are widely recognized as
essential [29]. This work presented VOWLExplain, a tool for visualizing semantic explanations
for AI predictions that are based on elucidating how a prediction fits with existing knowledge
encoded in the KG. A small-scale user study comparing text representations of semantic expla-
nations with graph-visualization representations revealed a diversity of user perceptions, and
although users stated a preference for the graph-based visualization, they did not rate them as
more correct or trustworthy than text based ones. They did rate them as generally more clear.
The user study also highlighted some limitations of VOWLExplain, including the lack of distinct
representations for instance and prediction. In future work, we will address user suggestions
and also integrate text explanations into VOWLExplain by exploring tools that translate OWL
constructs into natural language such as NaturalOWL [30]. We believe presenting both types of
explanation will make the tool more versatile and easier to pick up for users without familiarity
with ontologies or KGs. We will also conduct a larger-scale user study, with users recruited
from both clinical, biomedical and health informatics backgrounds.

Data and Source Code Availability
Data, code, video tutorial and user study form are openly available at: https://github.com/liseda-lab/VOWLExplain
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Abstract
The growing demand for well-modeled ontologies in diverse application areas increases the need for
intuitive interaction techniques that support human domain experts in ontology modeling and enrichment
tasks, such that quality expectations are met. Beyond the correctness of the specified information, the
quality of an ontology depends on its (relative) completeness, i.e., whether the ontology contains all
the necessary information to draw expected inferences. On an abstract level, the Ontology Enrichment
problem consists of identifying and filling the gap between information that can be logically inferred
from the ontology and the information expected to be inferable by the user. To this end, numerous
approaches have been described in the literature, providing methodologies from the fields of Formal
Semantics and Automated Reasoning targeted at eliciting knowledge from human domain experts. These
approaches vary greatly in many aspects and their applicability typically depends on the specifics of the
concrete modeling scenario at hand. Toward a better understanding of the landscape of methodological
possibilities, this position paper proposes a framework consisting of multiple performance dimensions
along which existing and future approaches to interactive ontology enrichment can be characterized.
We apply our categorization scheme to a selection of methodologies from the literature. In light of this
comparison, we address the limitations of the methods and propose directions for future work.
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1. Introduction

In practical knowledge management scenarios, ontologies need to be modified and updated on a
regular basis. It is therefore important to aid human domain experts in exploring, understanding,
and modifying domain-specific ontologies [1]. Providing human domain experts with intuitive
interaction techniques can significantly support comprehension and adaptation of domain
representations, ultimately resulting in higher quality ontologies. However, there is no one-size-
fits-all solution; rather, different use cases demand different interaction techniques to foster
user engagement and deliver better performance.

From a general logical perspective, an ontology can fail to meet requirements in two different
ways. First, an ontology can contain wrong information (correctness). Second, an ontology can
lack information (completeness). In incorrect ontologies, wrong conclusions may be derived,
while in incomplete ontologies, valid conclusions may be missed. For example, it was shown
that semantically-enabled querying of PubMed1 using MeSH2 with one piece of background
knowledge removed would lead to a 55% drop in the result [2].

Ontology enrichment addresses the incompleteness problem. We define Ontology Enrichment
to be the procedure that enables the addition of novel or missing relations, concepts and rules to
an existing ontology [3]. The identified missing information is represented by the set of missing
axioms that are correct according to the human and should be added to the ontology. Also, we
define the human domain expert to be equivalent to the limited all-knowing oracle as defined
by Lambrix [2], i.e., the expert knows part of the domain well, however, it may not know the
answer to all questions.

In this paper, we focus on designing a comparison framework for interactive ontology
enrichment methodologies. In particular, we focus on four different dimensions, namely,
expressiveness, comprehensiveness, initiative, and scalability, based on which we can categorize
existing interaction techniques. Our aim is to compare the possibilities the fields of Formal
Semantics and Automated Reasoning have to offer for the interaction between human domain
expert and ontologies. We argue that by involving the user and eliciting their knowledge, we
can improve ontologies and expand them to include missing inferences. We demonstrate the
usefulness of our comparison framework by evaluating four different ontology enrichment
methods that elicit knowledge from human domain experts, and we underline the characteristics
of these methods on the proposed dimensions. Addressing these points allows us to outline
some of the remaining issues and open questions that implementations of formal methodologies
face.

This paper is organized as follows: In Section 2, we define qualitative metrics for comparison
of ontology enrichment approaches. In Section 3, we define and explain a selection of existing
approaches and their contributions towards ontology enrichment through Formal Semantics. In
Section 6, we summarize the characteristics of each of the approaches along the four dimension
in a table. Lastly, in Section 7, we discuss the limitations of these approaches and suggest
directions for future work.

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.nlm.nih.gov/mesh/meshhome.html
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2. Comparison Framework

The process of ontology enrichment is essentially a continuous interaction between humans and
machines. Therefore, we propose scoping the repairing phase as defined by Lambrix [2] to better
fit this continuum. First, we argue that the term expansion better fits the concept than repairing,
since repairing implies there is something broken; whereas, we are solely focusing on missing
information to draw inferences from, rather than correcting incorrect axioms. Furthermore, to
draw a line between the different tasks in the enrichment process, and as such, the interaction
between human domain expert(s) and the machine (i.e. reasoners), we added the validation
phase to better follow this interplay. In short, we believe elicitation to consist of the following
steps:

1. Detection: Identifying which expected inferences are missing;

2. Expansion: Updating the existing knowledge base by adding axiom(s);

3. Validation: Checking the consistency of the added axiom(s) with the rest of the knowl-
edge base.

A comparative analysis of the different techniques in order to get a better grasp of the pros
and cons of each methodology is better enabled with the introduction of specific metrics. For
this comparison, we defined the following dimensions:

1. Expressiveness: To what extent is the technique able to represent the breadth of the
human domain expert’s ideas (i.e. what constraint does the technique impose on the
human domain expert’s comprehensiveness).

2. Comprehensiveness: The degree to which the technique is capable of finding all the
missing expected inferences (i.e. the expected inferences of the human domain expert) in
interaction with the human domain expert.

3. Initiative: The degree to which the input requested from the human domain expert is
pre-determined (i.e. initiated and put forward by the human domain expert vs. governed
by the technique).

4. Scalability: What are the possible complexities with regard to scaling the methodology.

3. Formal Semantic Methods

In this section, we compare and contrast different interaction techniques which can be used to
elicit knowledge from human domain experts, to enrich existing knowledge bases. Specifically,
we examine the methodologies referred to as Abductive Completion [4], Reasoning-Supported
Interactive Revision of Knowledge bases [5], Advocatus Diaboli [6] and Relational Exploration [7].

The Abductive Completion method (see Fig. 1) is based on abductive reasoning over on-
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tologies [4]. In this method the domain expert is iteratively prompted to provide inferences
that they expect of the ontology. If the inference cannot be entailed from the ontology, the
reasoner suggests expansions of the ontology that would entail the desired consequence. The
domain expert is then asked to select the most appropriate enrichment according to their domain
knowledge and that axiom is added to the ontology. Through this method, the knowledge of
the domain expert is elicited both when the domain expert provides the expected inference, as
well as when the domain expert selects the most appropriate expansion of the ontology.

Figure 1: A flowchart of the Abductive Completion method. The cog icon denotes involvement of the
reasoner and the human figure denotes involvement of the domain expert.

Reasoning-Supported Interactive Revision of Knowledge Bases (RSIR of KB) [5], as seen
in Fig. 2, supports ontology revision based on logical criteria. In this approach, a set of candidate
axioms are provided, from which the axiom that allows the automatic evaluation of the highest
number of unevaluated axioms, i.e., the most impactful axiom, is presented to the domain expert.
If the expert accepts the axiom, it is added to the knowledge base (i.e. the knowledge base is
enriched). Otherwise, the axiom is added to an unintended consequence set.

Figure 2: A flowchart of the Reasoning-Supported Interactive Revision of Knowledge Bases method. The
cog image denotes reasoner involvement and the human figure denotes expert involvement.

The Advocatus Diaboli methodology [6] (see Fig. 3) introduces a system that allows domain
experts to enrich an ontology by adding negative constraints, which are often overlooked
despite their effectiveness in causing inconsistencies, finding modeling errors [8], repairing the
mapping between ontologies [9], and iteratively revising ontologies [10]. The main idea behind
the Advocatus Diaboli methodology is to allow the domain expert to show that the given ontology
is underconstrained by actively constructing class expressions that are satisfiable according
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to the current ontology3, but impossible according to the expert’s knowledge. Following this
process, domain experts can add negative constraints which invalidate the impossible class
expressions and thus, make the ontology more complete.

Figure 3: A flowchart of the Advocatus Diaboli method. The cog image denotes reasoner involvement
and the human figure denotes expert involvement.

The Relational Exploration approach [7] (see Fig. 4) describes a formal process that aims
to produce complete domain specifications by iteratively generating hypotheses which are
processed by a reasoner that evaluates if they are entailed or rejected based on the existing
ontology. If a generated hypothesis is not entailed or rejected, it is then presented as a question
to a domain expert who either accepts or rejects it. This methodology ensures that, upon
completion, the resulting domain specification is complete and that the domain expert never has
to answer redundant questions, thus, minimizing the burden placed on them. The knowledge
elicited from the domain experts results in the enrichment of incomplete ontologies.

Figure 4: A flowchart of the Relational Exploration method. The cog image denotes reasoner involvement
and the human figure denotes expert involvement.

3Preservation of satisfiability is ensured by the way the class expressions are constructed in a navigation-like process
similar to faceted browsing
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4. Results

In this section, we utilize our proposed framework for comparison of four ontology enrichment
methodologies that elicit domain expert knowledge through structured interaction with a
human. The results of this comparison are shown in Table 1.

Table 1
Table comparing the different methods for elicitation of knowledge from human domain experts. Human
domain experts are denoted as H, and calls to the reasoner as R.

Expressiveness Comprehensiveness Initiative Scalability

Abduction •Depending on given
set of abducibles

•No completeness guarantee. • Prio H >R.
•H provides required inference.

• R at each step.

RSIR of KB • class hierarchy and
disjointness

•No completeness guarantee. • Prio R >H
•H provides required inference.

• Ranking limits R.
• R at initialization.
• R after H.
• Patronizes H

Advocatus
Diaboli

•Negative constraints
wrt. cognitively
plausible class
expressions

• Every reachable situation is
possible.

•All possible situations are
reachable.

•Complex quantifiers not
possible.

•No completeness guarantee.

• Prio on H >R.
•H can explore worlds.
•H can exclude worlds.

• Expensive for H.
• R at initialization.
• R at each navigation step.

Relational
Exploration

•General class
inclusions with
respect to a specified
logical fragment.

•Terminates after finite steps.
•Completeness upon

termination.
•H can stop it beforehand.

• Prio on R >H.
•H if and only if R fails.
•H can specify counter-examples.
•H can complete assertions.

• R at initialization.
• R after H.
• Patronizes H
• R for counter-examples.

5. Discussion

Of the four methods discussed in this work, the only two that allow situations/hypotheses to
be generated dynamically are the Advocatus Diaboli and the Relational Exploration methods.
Because of this, they are the most comprehensive ones and they have the potential to identify
the highest number of missing expected inferences through interaction with the human expert.
Indeed, the Relational Exploration method guarantees the completeness of the knowledge base
upon completion. While this guarantee serves to highlight the comprehensiveness of the method,
it remains theoretical since it may require the human expert to answer exponentially many
questions before completion. As such, in real-world applications, we can expect both methods to
perform similarly in terms of comprehensiveness, with the Advocatus Diaboli methodology being
better at allowing the expert to guide the process toward the situations that are of interest to
them, whereas the Relational Exploration methodology has the ability to automatically generate
new hypotheses that the domain expert may not have thought of.

The interaction techniques use a variety of ways to represent the breadth of the human
domain expert’s ideas. For example, both RSIR of KB and Advocatus Diaboli use class expressions
to turn axioms unsatisfiable if their consequence is unintended. However, the largest difference
between them is on initiative and scalability (see Table 1 above). Relational Exploration deals only
with conjunction on atomic classes. However, it is possible to leverage ontological background

Toward a Methodology Comparison Framework for Interactive Ontology Enrichment



by having complex definitions for named classes [11]. In contrast, Ferré and Rudolph [6] aid the
human domain expert in the construction of intuitive satisfiable class expressions, which – if
found to be absurd – can be turned unsatisfiable by adding a corresponding negative constraint
to the knowledge base.

With respect to initiative, the methods shown in this work are evenly divided with the
reasoner leading the process in Advocatus Diaboli and RSIR of KB and the expert initiating the
process in Abductive Completion and Relational Exploration. An important drawback of the
Abductive Completion method is that the expected inference must be provided by the domain
experts, which places an undue burden on them, since they have to both generate the expected
inferences and formulate them in formal logic. Similarly, the Relational Exploration method
requires the user to input a counterexample for invalid hypotheses which assumes that the
domain expert can not only identify the correct counterexample, but also describe it in logical
formulae. Given that such familiarity with formal logic cannot be expected in most cases, these
methods are prone to inserting wrong information in the ontology and deteriorating its quality.
Furthermore, it is important to note that while Relational Exploration and RSIR of KB are similar
in terms of the workflow, the major difference is that in Relational Exploration the axioms are
not pre-specified but created on the go and therefore, the exploration may require exponentially
many human decisions [5].

Heavy reliance on the reasoner at different stages in the elicitation process may negatively
affect the scalability of the methodologies, making them unfit for larger knowledge bases. Vice
versa, heavy reliance on the human domain expert will greatly reduce the efficiency and could
potentially result in the loss of quality in the enrichment of the ontology.

The possible complexities with regard to scaling the methodology are largely intertwined
with the number of calls to the reasoner. RSIR of KB is the only interaction technique that
computes and updates decision spaces to bring down the the number of calls to the reasoner by
up to 75% [10]. The axiom’s impact as defined by Nikitina [10] determines a beneficial order of
evaluation that none of the other interaction techniques use.

Naturally, the involvement of a human domain expert is required for the enrichment of
ontologies; particularly, in the context of knowledge elicitation, where Formal Semantic method-
ologies are seldom enough for adequate representations. Yet, often formal reasoning can be
leveraged to keep the necessary human interaction at a manageable level.

We argue that our preliminary results show that comparison over the four dimensions allows
the identification of the strengths and weaknesses of each methodology. Furthermore, the
comparison framework highlights the appropriate application scenario for each of the chosen
methods. Additionally, our method facilitates evaluation, hence it helps create a movement
toward more effective enrichment processes that allows users more utility using semantic and
formal axiom enrichment methods. For example, creating better (i.e., more explainable) user
interfaces to make the underlying mechanics more understandable to human domain experts
unfamiliar with Formal Semantics.

All the studies reviewed so far, however, suffer from the fact that human domain experts
could make mistakes in their assumptions of the domain knowledge, which can cause a loss of
quality in the enrichment of the ontology. Likewise, unfamiliarity of the human domain experts
with Formal Semantics and logical inferences could result in the enrichment of the ontology
with false axioms.
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The scope of this study was limited in terms of the compared methods (i.e., selected methods
all focus on a subset of enrichment methods). The study does not consider the plethora of
"newer" approaches that incorporate external resources through machine- and/ or deep learning
(e.g., through recommendations based on natural language processing). However, we argue that
the comparison framework as suggested in this study can also be applied to those.

6. Conclusion

In this position paper, we have reviewed a variety of methodologies for ontology enrichment
through interaction with human domain experts. We have provided a comparative qualitative
analysis on a selection of existing Formal Semantic techniques and their constituent phases (i.e.
detection, expansion, and validation) on four dimensions; namely: i) Comprehensiveness, ii)
Expressiveness, iii) Initiative, and iv) Scalability.

Involvement of human domain experts in ontology enrichment is required for the maintenance
and upkeep of high quality ontologies. However, finding the correct interplay between formal
reasoning and human involvement depends on the size of the ontology, the availability of
resources, and the requirements of the use case. The task-specific nature of ontologies also
forces certain constraints on the human domain experts i.e. the quality of the enrichment is
directly intertwined with the domain knowledge of the human domain experts.

We further argue that the provided comparison framework can also help steer the movement
towards a more effective enrichment process. Indicating that user interfaces can help improve
the explainability of the underlying mechanics, and as such improve the quality of the interaction
between the human domain expert and the ontology.

7. Future Work

In this paper, we focused on identification and definition of four dimensions for comparison of
ontology enrichment methodologies. A natural progression of this work would be to develop
quantitative measures, to increase robustness, for the introduced dimensions. Finally, more
work needs to be done to link the Expressiveness, Comprehensiveness, Initiative, and Scalability
dimensions to method performance.

In order to increase reliability and confidence in the quality of the ontology, we propose
the creation and use of a collaborative framework in which multiple domain experts can
communicate and share their understanding of the concepts and agree on conceptual models
in the elicitation process. Furthermore, using an intermediate language such as Manchester
OWL syntax [12] to translate syntactically challenging logical elements into a simplified version
for human domain experts could improve the robustness of the knowledge elicitation process.
Another interesting venue would be research into the different combinations of methods for
the different steps of the enrichment process, as described in Section 2 of this work. Moreover,
research into axiom ranking and axiom choosing strategies, as demonstrated in Nikitina et al.
[5], can reduce the amount of manual effort and automated reasoning.

Using the evaluation dimensions described in this work, current and future ontology enrich-
ment methodologies can be evaluated and scored. The scores obtained in each dimension will
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highlight the strengths and weaknesses of the methodology and, by extension, the scenario
that it is best suited for. As such, a web framework can be created where the domain experts
can input the ontology that they desire to enrich and specify the importance of each dimension
for their enrichment task using appropriate input methods e.g. a slider. The system can then
automatically evaluate the ontology based on its entities, relations and other characteristics
and suggest the most appropriate enrichment methodology for the task.

In the movement towards a more effective enrichment processes, improvements in the ex-
plainability of the underlying mechanics are of imminent importance. Implementations of the
examined methodologies rely on keyboard and mouse input which may not be optimal. There-
fore, further research in Human-Computer Interaction methodologies needs to be conducted
to elucidate which interaction method is best for eliciting the required information from the
domain expert while minimizing the burden placed on them.

References

[1] P. Rodler, K. M. Shchekotykhin, P. Fleiss, G. Friedrich, RIO: minimizing user interaction
in ontology debugging, in: ISWC (Posters & Demos), volume 914 of CEUR Workshop
Proceedings, CEUR-WS.org, 2012.

[2] P. Lambrix, Completing and debugging ontologies: state of the art and challenges, CoRR
abs/1908.03171 (2019).

[3] G. Petasis, V. Karkaletsis, G. Paliouras, A. Krithara, E. Zavitsanos, Ontology population and
enrichment: State of the art, in: Knowledge-Driven Multimedia Information Extraction
and Ontology Evolution, volume 6050 of Lecture Notes in Computer Science, Springer, 2011,
pp. 134–166.

[4] C. Elsenbroich, O. Kutz, U. Sattler, A case for abductive reasoning over ontologies, in:
OWLED, volume 216 of CEUR Workshop Proceedings, CEUR-WS.org, 2006.

[5] N. Nikitina, S. Rudolph, B. Glimm, Reasoning-supported interactive revision of knowledge
bases, in: IJCAI, IJCAI/AAAI, 2011, pp. 1027–1032.

[6] S. Ferré, S. Rudolph, Advocatus diaboli - exploratory enrichment of ontologies with
negative constraints, in: EKAW, volume 7603 of Lecture Notes in Computer Science, Springer,
2012, pp. 42–56.

[7] S. Rudolph, Relational exploration: combining description logics and formal concept
analysis for knowledge specification, Ph.D. thesis, Dresden University of Technology,
Germany, 2006.

[8] P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, Y. Sure, A framework for
handling inconsistency in changing ontologies, in: ISWC, volume 3729 of Lecture Notes in
Computer Science, Springer, 2005, pp. 353–367.

[9] C. Meilicke, H. Stuckenschmidt, A. Tamilin, Supporting manual mapping revision using
logical reasoning, in: AAAI, AAAI Press, 2008, pp. 1213–1218.

[10] N. Nikitina, Reasoning-Supported Quality Assurance for Knowledge Bases, Ph.D. thesis,
Karlsruhe Institute of Technology, 2012.

[11] J. Völker, S. Rudolph, Lexico-logical acquisition of OWL DL axioms, in: ICFCA, volume
4933 of Lecture Notes in Computer Science, Springer, 2008, pp. 62–77.

Toward a Methodology Comparison Framework for Interactive Ontology Enrichment



[12] M. Horridge, N. Drummond, J. Goodwin, A. L. Rector, R. Stevens, H. Wang, The manchester
OWL syntax, in: OWLED, volume 216 of CEUR Workshop Proceedings, CEUR-WS.org,
2006.

Toward a Methodology Comparison Framework for Interactive Ontology Enrichment



. Short paper



Multi-Level Visual Tours ofWeather Linked Data
Nadia Yacoubi, Damien Graux and Catherine Faron

Inria, Université Côte d’Azur, CNRS, I3S, France

Abstract
The recent trend of adopting linked-data principles to integrate and publish semantically described open
data using W3C standards has led to a large amount of available resources. In particular, meteorological sen-
sor data have been uplifted into public weather-focused RDF graphs, such as WeKG-MF which offers access
to a large set of meteorological variables described through spatial and temporal dimensions. Nevertheless,
these resources include huge numbers of raw observations that are tedious to explore by lay users. In this
article, we aim at providing them with visual exploratory “tours”, benefiting from RDF data cubes to present
high-level aggregated views together with on-demand fine-grained details through a unified Web interface.

Keywords
Weather data, Spatio Temporal data, Visualisation, RDF Knowledge Graphs, SPARQL endpoints

1. Introduction

The recent trend of adopting linked-data principles to integrate and publish semantically described
open data using W3C standards has led to a large amount of available resources. In particular,
meteorological sensor data have been uplifted into public weather-focused RDF graphs, such as
WeKG-MF graph which offers access to a huge number of sensor observations related to different
weather variables, described through spatio-temporal dimensions. Hence, supporting lay users
to browse, analyze, consume and reuse sensor data transformed and integrated into LOD datasets
is challenging. In this article, we present the first release of a Web interface that enables users to
visualize weather observational data at different levels of spatio-temporal granularity. We show
how the WeKG-MF principles and the adoption of RDF data cubes can provide users with visual
multi-level “tours”. Our main objective is to provide users with interactive exploration means
to navigate the WeKG-MF, leveraging RDF data cubes to present high-level aggregated views
as well as fine details on demand through a unified Web interface.

2. TheWeKG Spatio-Temporal Model

In this section, we present the WeKG spatio-temporal model and use-cases identified in the context
of the D2KAB research project which highlighted the need to build a knowledge graph from
historical records published as open data by the French weather service provider Météo-France.
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SPARQL endpoint→ https://weakg.i3s.unice.fr/sparql
Number of RDF Triples 123.413.015 Weather stations 62
Total Observations 16.433.031 Weather properties 22
Observations per weather property ≈ 416.762 Meteorological features 6

Links to Wikidata 92

Table 1
Key Statistics of the WeKG-MF Knowledge Graph.

2.1. Fromweather Observations archives to an RDFKnowledge graph

In our previous work [1], we have presented a self-contained semantic model that re-uses and
extends standard ontologies, among which the GeoSPARQL ontology for spatial features and
their relations [2], the Time ontology [3] for temporal entities, the Sensor, Observation, Sample,
and Actuator (SOSA) [4] and Semantic Sensor Network (SSN) ontologies [5] for sensors and
observations, and the RDF Data Cube ontology [6] for aggregation and multidimensionality
features. The WeKG model captures the semantics of atomic and fine-grained weather observa-
tions by reusing and extending SOSA classes as well as spatio-temporal time series of aggregate
values using the RDF vocabulary of the data cube. The proposed model is generic enough to be
adopted and extended by meteorological data providers to publish and integrate their sources
while complying with Linked Data principles.

Then, we built the WeKG-MF knowledge graph [7], based on this model, considering the open
weather observations published by Météo-France1. The SPARQL WeKG-MF endpoint allows users
to retrieve weather observations recorded every 3 hours by different sensors hosted by weather
stations and related to different parameters (air temperature, humidity, wind speed, precipitation,
atmospheric pressure, etc.). The Table 1 summarises some key statistics of WeKG-MF. WeKG-MF
includes meteorological data from the period 2016-2021 and is continuously evolving to include
new, newer and older data. The knowledge graph is intended to serve different use case scenarios
in several domains, including agriculture, biodiversity and climate studies.

2.2. Use Case Scenarios forWeKG-MF

WeKG-MF was initially created to answer expert’s needs in the context of the D2KAB French
project2. A preliminary analysis revealed several competency questions that express the needs
of experts to retrieve weather observations at different levels of granularity. For instance, an
expert may be interested by the exact time of a day at which the minimum/maximum temperature
was recorded and in this case, he is querying a fine-grained temporal entity represented by a
xsd:dateTimeStamp literal in WeKG-MF. In several other situations, experts are more interested
in aggregate values of some weather parameters, such as the daily total precipitation, the number
of days with precipitation greater than 1 mm over a time period, or the monthly mean values
of maximum, minimum and mean temperatures.

To address these needs, we reused the RDF Data Cube Vocabulary (DCV) [6] to create mul-
tidimensional RDF slices, that are pre-calculated by fixing temporal and spatial dimensions and
by applying aggregation functions such as min/max/avg/sum on fine-grained observation. Thus,
1https://www.meteofrance.com/
2http://www.d2kab.org
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1 SELECT distinct ?groupDate (SUM(?vp) as ?sum_precipitation) WHERE {
2 ?obs a weo:MeteorologicalObservation; sosa:hasSimpleResult ?vp;
3 sosa:observedProperty wevp:precipitationAmount; sosa:resultTime ?date;
4 wep:madeByStation <http://ns.inria.fr/meteo/weatherstation/07434> .
5 BIND (day(?date) as ?day) BIND (month(?date) as ?month) BIND (year(?date) as ?year)
6 BIND (if (datatype(?year/4)=xsd:integer && ((?year/100)*100 != 0 ||
7 (?year/400)*400 = 0) , 1, 0) as ?bissexYear)
8 BIND ( if (?day = 1, if (?month in (1, 2, 4, 6, 8, 9, 11), 31,
9 if (?month in (5, 7, 10, 12), 30,

10 if (?bissexYear = 1, 29, 28))), ?day - 1) AS ?previousDay)
11 BIND (if (?day = 1, if (?month=1, 12, ?month - 1), ?month) as ?previousMonth)
12 BIND (if (?day = 1 && ?month=1, ?year - 1, ?year) as ?previousYear)
13 BIND ( xsd:date(if(hours(?date)<=6, concat(?previousYear, "-",
14 if (?previousMonth<10, concat("0", ?previousMonth), ?previousMonth), "-",
15 if (?previousDay<10, concat("0", ?previousDay), ?previousDay)), concat(?year, "-",
16 if (?month<10, concat("0", ?month), ?month), "-",
17 if (?day<10, concat("0", ?day), ?day)))) AS ?groupDate)
18 } GROUP BY ?groupDate ORDER BY ?groupDate

Figure 1: SPARQL Query for Daily values of Total Precipitation according to WMO documentation.

1 SELECT ?label_station ?date ?avg_temp WHERE {
2 { # Query weather stations located in "Nouvelle Aquitaine" region.
3 SELECT ?statURI ?label_station WHERE {
4 ?statURI a weo:WeatherStation; rdfs:label ?label_station .
5 dct:spatial [ wdt:P131 [rdfs:label ?label ; wdt:P2585 '75']] . }
6 }
7 # Query slices for each statURI.
8 VALUES ?year { "2021"^^xsd:gYear "2020"^^xsd:gYear "2019"^^xsd:gYear }
9 ?slice a qb:Slice ; wes-dimension:station ?statURI ; wes-dimension:year ?year ;

10 qb:observation [ a qb:Observation ; wes-attribute:observationDate ?date ;
11 wes-measure:avgDailyTemperature ?avg_temp ] . }

Figure 2: Query to retrieve avg. daily temp. timeseries computed from the observation in WeKG-MF
recorded by weather stations located in “Nouvelle Aquitaine" French region.

a set of observations which applies to a spatio-temporal dimensions (e.g. a region, a weather
station, a year, a time interval) is represented by the DCV class qb:Slice such as the attributes
and measures attached to these observations are previously semantically described in a DCV
qb:DataStructureDefinition class. This class enables to represent the slice’s metadata along
with the specification of dimensions, attributes, and measures. An example of a DSD definition
of annual times series of min/max/avg air temperatures is available3.

We have experimented different strategies to generate the RDF materialized slices according to
a given DSD. A first strategy consists in relying on a unique SPARQL query of the CONSTRUCT
form, enabling to create homogeneous RDF slices that include only aggregate values of one
unique weather parameter (e.g., air temperature). A second strategy consists in combining several
SPARQL queries of the SELECT form, whose results sets are integrated into the same slice. As

3https://github.com/Wimmics/weather-kg/blob/main/meteo/dataset-metadata/DSD-Definition.ttl
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an example, Figure 1 illustrates the SPARQL query to calculate the total precipitation following
the WMO documentation [8] which indicates that it is calculated for the day 𝑅𝑑𝑎𝑦−𝑗 as the
accumulated precipitation of a specific day 𝑗 from 6 𝑎𝑚 till 6 𝑎𝑚 of the following day 𝑗. Hence,
six hours of the following UTC day shall be considered together with the current UTC day.

3. SPARQL-based Visual Tours

Aiming at simplifying the exploration of large RDF observational data available in WeKG-MF,
we developed a Web application demo accessible at https://nadiaya2019.github.io/DemoKGViz/
using the D3 JavaScript library. The webpage provides different visualisations offering lay-users
visual “tours" at different levels of granularity. Thanks to the WeKG spatio-temporal model and
the incorporation of pre-calculated RDF slices, data retrieved from our SPARQL endpoint can
be visualized with no additional transformations involved, while most approaches for Linked
Data visualisation include pre-processing steps that can be time-consuming (see Section 4).

3.1. Retrieving Salient Information

In order to retrieve the WeKG-MF graph, we rely on three categories of SPARQL query patterns
that could be easily adapted.
• An initial pattern allows to retrieve the Météo-France weather stations (and their geo-spatial

coordinates) grouped by French regions.
• The second pattern follows up, retrieves materialised RDF slices and collects values of at least

one aggregate parameter pre-calculated for each station over a period of time.
• The third pattern enables users to extract fine-grained, atomic observations based on results pro-

vided before. It provides detailed data giving information about aggregated value provenances.

3.2. Visual Features

From a graphical point-of-view, we have developed several features to enrich the WeKG-MF
users’ experience. As illustrated in Figure 3, we provide an interactive map allowing users to
interact with the SPARQL endpoint by clicking on a French region (Figure 3.a). This action
leads to the execution of an initial SPARQL query like the one depicted in Figure 2 that retrieves
weather stations and their corresponding timeseries of a specific parameter, e.g., air temperature
during 3 years (2019-2021). Markers indicating geo-spatial locations of weather stations are
added to the map and the timeseries are represented through two interactive line charts, which
x-axis represents time and y-axis represents the daily average air temperatures, while the color
encodes the different weather stations for the selected region. The first chart (Fig.3.b – top-right)
supports a brushing interaction allowing the user to select a time period to further explore the
timeseries in the second chart (Fig.3.c – middle-right), which x-axis is updated according to the
time selection. The brush selection is represented by a gray rectangle that can be resized at any
time to expand/reduce the time span and by consequence update the view of the middle chart.
Moreover, the brush selection can be handled through a click-and-drag movement to modify
the time period while keeping the same time span. This chart (Fig.3.c – middle-right) supports
interaction through a hovering technique, which displays a tooltip with detailed information
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Figure 3: WeKG-MF exploration and navigation interface.

on the temperatures of a specific weather station and at the same time a third chart appears
(Fig.3.d – bottom-right). Indeed, this chart offers a fine-grained view on WeKG-KG observations
by displaying for a specific date 𝑑𝑎𝑦−𝑗 un-aggregated atomic observations including those of
the previous and following days. It supports also interaction through a hovering technique which
displays a vertical line that the user could move to visualize values at the specific time of the day.
Therefore, through this view, a user may easily explore the WeKG-MF knowledge graph from
high-level aggregated timeseries to the elements from where the timeseries were calculated.

4. RelatedWork

Several research projects have focused on providing visualisation and exploration tools for LD
datasets. Indeed, exploring, browsing and querying these datasets through space and time is very
relevant for users but not straightforward for developers in order to transform RDF data into
meaningful visualizations that suit users’ needs. For an extensive review on LD exploration and vi-
sualization tools, we refer interested readers to [9]. While most existing approaches focus on how
to shift pipelines to import/map/transform RDF data into data suitable for visualisations [10, 11],
few of them highlight the importance of RDF modeling to easily support the generation of meaning-
ful visualisations. Indeed, research works such as CubeViz [12] or OpenCube [13] aim to provide
users with data cubes visualization and interactive analysis tools. However, to the best of our
knowledge, multi-visualisation interfaces that combine high-level views on aggregated data using
the RDF data cube vocabulary [6] and fine-grained views of un-aggregated values do not exist.
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5. Conclusion and FutureWorks

We presented the first release of a Web application that offers interactive multi-level tours based
on high-level aggregated views together with on-demand fine-grained data, and this through
a unified multi-visualisations interface. In near future, we aim to work on a user evaluation study
of our system to provide advanced analysis functionalities enabling experts to compare climatic
conditions across geospatial and temporal dimensions. Moreover, we plan to enrich the interface
to track data quality issues such as missing values across timeseries of weather parameters.
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Experience with Visual SPARQL Queries over
DBPedia
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Abstract
We describe a development of tooling for and experience with visual UML-style presentation and
visual-based creation of SPARQL queries over DBPedia. The tool for visual query creation offers query
auto-completion based on the actual DBPedia schema; we add to the tool an index-based service to start
a query from an individual. We discuss end-user experience in creating visual SPARQL queries over
DBPedia and evaluate the possibilities of auto-mated visual query generation from their SPARQL form in
the context of the public QALD-9 query dataset.

Keywords
SPARQL, DBPedia, Visual queries, Query visualization

1. Introduction

Visual presentation of information artefacts can help their perception. The tools for visual
creation of SPARQL queries over RDF data endpoints (cf. e.g., [1-4]) introduce the visual
cognitive aspect into the query perception and query composition. Visual method has been
successfully used for SPARQL query formulation by do-main experts [1]. ViziQuer [4] has
shown the possibilities of using a UML-style notation to visually create [5] and visualize [6]
complex SPARQL queries, involving e.g., basic graph patterns, aggregation and subqueries,
complex data expressions and filters. This paper reports on novel options to use visual queries
over DBPedia [7,8] - one of the central Linked Data resources of fundamental importance to
the entire Linked Data ecosystem. A solution for visual query creation over DBPedia has been
out-lined in [9], where the services for query auto-completion, based on class-to-property and
property-to-property relations, as well as some client-side enhancements over the generic visual
query solution, based on available property ordering and filtering, have been presented. The
current work reports on expanding the visual DBPedia query environment by means for
efficient query starting from individual resources, as well as it discusses findings from an early
user study in formulating the queries over DBPedia in the context of the expanded visual
environment.

The study of creation of visual DBPedia queries is accompanied in this work with a study
of visualization of existing SPARQL queries (cf. [6]) over the DBPedia data endpoint. We
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consider the queries from the QALD-9 test dataset1 used originally in the context of natural
language query answering [10] (we look at 150 queries that have textual formulations in English);
we provide visual presentations of these queries. For 146 out of 150 queries (over 97%) the visual
presentation can be computed automatically, allowing to conclude that there exist contexts (e.g.,
the QALD-9 queries), where the visual method can be used for the SPARQL query visualization
purposes.

The gallery of the visually presented queries is available in a working visual tool envi-
ronment, where each visual query can be translated back into SPARQL and executed over the
DBPedia data endpoint2. The user can also use the visual environment to create new queries
over DBPedia, and to visualize other existing SPARQL queries. The environment can be accessed
from the paper’s supporting site available at http://viziquer.lumii.lv/examples/dbpedia2022.

The concept of query auto-completion, essential for a satisfactory user experience in the
visual query creation, has been implemented over large data sets in various settings, including
the Wikidata query service [11], or FAAS [12] solution to support query creation in RDF Explorer
[2]. Our solution is the first one that offers the in-stance name lookup for the DBPedia data set
in the context of a visual query environment.

2. Visual Query Notation Review

A UML-style visual query in ViziQuer notation [5,13] consists of nodes describing variables
or resources, each node can have a possible class name and attribute specification. One of the
nodes is marked as the main query node (orange round rectangle). The edges that connect the
nodes correspond to links among the node variables or resources (there can be “same-instance”
links, labelled by ‘==’, and “empty” links that do not specify a data connection, labelled by ‘++’,
as well). Textual condition/filter fields, along with aggregation and query nesting links are
available, as well.

Figure 1 shows six simple visual queries over the DBPedia SPARQL endpoint, they are
chosen to match the visualizations of SPARQL queries from the QALD-9 dataset, as well as to
illustrate different query building constructs appearing in the examples. Just four of the nodes
in the six queries have their class names specified (the default dbo: namespace classes Volcano,
Book, and Film, as well as the yago: namespace class WikicatJapaneseMusicalInstruments). The
instances, matching the query nodes are marked by resources (e.g., dbr:Constitutional_monarchy,
dbc:Countries_in_Africa and dbr:Taiko), or by variables (e.g., uri, area, x). Each of the presented
queries includes a comment stating the QALD-9 ID and the textual purpose of the query.

Since DBPedia typically provides English-based human-readable URIs, the results of the
queries are often obtained in the form of URIs matching the variables used in the query; the
selection of the variables corresponding to the query nodes are marked by the (select this)
notation within the query node attribute list. The attribute expressions can be specified for
selection, as well; rdfs:label@en (choose the label in English) and dbp:birthName are some
examples.

1https://github.com/ag-sc/QALD/blob/master/9/data/qald-9-test-multilingual.json
2https://dbpedia.org/sparql/
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Figure 1: Six QALD-9 queries over DBPedia SPARQL endpoint.

An attribute, marked by {+}, is required to have value for the corresponding row to be included
in the result set (in ViziQuer the attributes are optional by default); the mark h specifies finding
the attribute but not including it into the selection list. The query (QALD-9 ID=52) finding all
movies with Tom Cruise features a union construct (marked by [ + ]).

A description of other ViziQuer notation features (e.g., the notation for subqueries) can be
found in [13] and on the tool website.

3. Visual Query Creation

The visual query environment assists the user in query creation by offering searchable lists of
entities (classes, properties and individuals) for starting (seeding) the query, as well as similar
lists for extending (growing) a partial query with entities relevant in its context. Since the
actual schema of the DBPedia endpoint involves over 480 thousand classes and over 50 thousand
properties, a relational database support for query completion over DBPedia has been introduced
in [9] and involves (partial) storing of both the class-to-property and property-to-property
relations.

Since a variety of natural SPARQL queries overDBPedia would involve some individual, whose
properties are to be retrieved or analyzed (this applies also to the considered QALD-9 queries),
an efficient service for starting a query from an indi-vidual is essential. We have introduced
such a service, based on an index of all DBPedia resources and categories (all individuals, except
the documents), and have integrated it into the query environment. Starting a query from an
individual within the ViziQuer tool is performed by typing a part of the individual’s URI (full or
pre-fixed form) in a search-box to the right of the visual diagram pane.

The data for the index are currently collected from the DBPedia data dump, and are stored
into the same Postgres database, as the data schema, holding the DBPedia class and property
information. It should in principle be possible to also invoke an external service as e.g., DBPedia
Lookup [14] to fill the instance auto-completion list; this is seen as a task for a future work.
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The extended auto-completion functionality of the visual query environment over DBPedia
has allowed to carry through a preliminary user study on the suitability of the visual query
environment for creation of queries over DBPedia. The study has been performed with tech-
nically literate end users (IT master’s degree students) with limited previous experience of
ViziQuer (about 15 queries composed over a simpler data endpoint). The study indicates that
the environment can be used by the considered end user group, provided the encoding of the
information in the data endpoint is clear.

The students were given textual formulations of nine queries similar in spirit to the QALD-9
queries, with some advanced constructs involved, as shown in Table 1.

1. How many films are there?
2. Find (list) all films starring Tom Cruise.
3. Find the 10 youngest tennis players (list the player resource URI and the birth date).
4. Find all soccer players that are born on or after January 1, 2007. Note: use "yyyy-MM-dd"^^xsd:date as the format for
date literals (replace yyyy, MM and dd by the year, the month and the date, respectively, e.g., as in "2007-01-01"^^xsd:date).
5. How many grandchildren did Thomas Jefferson have?
6. Find the person with the largest grandchildren count (list the person resource URI and the grandchildren count).
7. Find the three top countries with largest volcano counts in the country (list the country resource URI and the volcano count).
8. List all persons that each have 100 or more films starring them (list the person resource URI and the respective film count).
9. Find all politicians, born on the same date as Tom Cruise (list the politician’s resource URI and the birth date).

Table 1
Queries for the user study.

Out of the 10 study participants all 10 were successful on queries #1-#4 and 9 were successful on
the “more advanced” queries #9 and #103. The queries #5 and #6, related to grandchildren count,
had 6 successful completions (using a chain of dbo:child relations), while the rest attempted to
use dbp:grandchildren property that does not provide the necessary data. The query #7 however,
had only 3 of 10 successful submissions based on the dbo:locatedInArea property (the others have
used the dbo:country property, which provided much less information). Further information on
the user study is available on the paper’s support page.

The study results show that the size of the DBPedia data set schema, as presented within the
visual query environment, does not impede the query creation by the con-sidered user group,
as the queries have generally been successfully composed. The present query composition
failures in queries #5, #6 and #7 are clearly related to the lack of the knowledge of the study
participants on the ways, how the information has been en-coded in the DBPedia resource.
Clearly, the visual method for the query creation alone would not be sufficient to overcome this
difficulty. Some possible approaches to the solution might involve encouraging the participants
to try different candidate approaches for the information extraction and then choose the one
that apparently gives the most relevant results. Some help on the existing variations of the
information encoding within the data set could perhaps be offered by the query environment,
however, this task would already go into the realm of natural language question answering (cf.
e.g., [10]) and is beyond the scope of this short paper.

3The criterion for success of a query formulation work is producing a query that returns the results that are equivalent
to the expected ones.

Experience with Visual SPARQL Queries over DBPedia



4. SPARQL Query Visualization

The visual presentation of a textual SPARQL query provides an additional perspective on a
query presentation by invoking the visual cognitive aspect in query perception, so potentially
easing the task of understanding a query (note that the visual query form can be used in addition
to the textual form, not necessarily replacing it). The visual SPARQL query presentation using
UML-style notation (cf. [6]) can be said to have benefits of (i) presenting the classification and
attribute selection triples in a compact notation (that involves just a class or property name
within a query node), and (ii) splitting the query over multiple visual elements to reduce the
local complexity of any visually separated query element.

We used the automated visualization of SPARQL queries [6] (a slightly optimized and fine-
tuned version of it) to create a visual query library from the QALD-9 test queries over DBPedia
to see, how the SPARQL query visualization methods work in practice, as well as to demonstrate
the capabilities of the visual notation on a set of externally available queries. It can be argued
that the visual presentation of these particular queries do provide insights into different ways,
how a factual information may happen to be encoded into DBPedia (via class names, via linked
resources (dbr: namespace entities) or categories (dbc: namespace), or even via fragments within
class names (within yago: namespace); the use of the default dbo: namespace and the dbp:
namespace for properties is to be considered, as well).

There are 4 SPARQL queries in the QALD-9 query set that are of the ASK format. Since the
ViziQuer notation currently supports only SELECT queries, we visualize an ASK query into a
SELECT query that returns a single line in the case of a result true, and an empty result set in
the case of the result false.

There are 150 queries in the considered QALD-9 query subset, all of them are presented in the
visual notation within the visual QALD-9 query library (Figure 1 depicts 6 of these visualizations).
In the case of 146 queries (involving the 4 ASK queries) the visual presentation can be produced
automatically (followed by a manual tuning of the query placement)4 5. 4 queries have been
drawn or corrected manually: 2 queries involving HAVING construct (expected to be modeled
in the current visual notation via a filter in an enclosing query) and 2 queries involving complex
UNION constructions (query optimization and implementation fine-tuning would resolve these
issues).

The visual DBPedia query library is available as a project within the ViziQuer environment,
accessible from the paper’s support page.

5. Conclusions

The presented work shows the possibility to use UML-style visual presentation both in visual
creation of SPARQL queries over DBPedia, and in visualization of existing SPARQL queries. The
provided technical solutions of the data schema and instance information pre-computation and

4The non-standard SPARQL expressions as SELECT xsd:date(?var) found in 10 QALD-9 queries need to be re-written
into SELECT (xsd:date(?var) AS ?v) before the visualization.

5A query is successfully visualized, if it produces equivalent results to the original query, when executed. The
structural equivalence is considered as a primary visualization success criterion for queries that do not produce any
results, when run over the DBPedia endpoint.
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storage allow to ensure a smooth auto-completion experience both for the initial query seeding
and its further context-based growing. An interesting future work would be to fine-tune the
auto-completion process, by providing the class-to-individual connections (to suggest efficiently
the names of individuals in a class context) based on DBPedia Lookup [14] or some FAAS-style
component [12].

The presented user study could be seen as preliminary confirming that the size and complexity
of the DBPedia query environment are not limiting the use of the schema and data elements
in formulating a query. It has shown clearly, however, also that the visual method alone does
not necessarily indicate which elements of the data schema should be used to find answers
to the textually formulated queries. An interesting future work would be to develop and test
an eco-system of semi-automated extracting the information from a SPARQL endpoint, like
DBPedia, based on different knowledge encoding patterns, known for the data set.

The visual presentation of all QALD-9 example SPARQL queries demonstrates the capability
of the automated query visualization method to handle queries from an externally existing
data set. This result complements an earlier work on authors on Wikidata example query
visualization [15] to show the maturity level of the visual query notation (as well as to indicate
the directions of its further improvements).

The SPARQL query visualization provides a visual structure for any considered SPARQL
query, thus adding the visual perception benefits to the query understanding. Considering the
set of visualizations for the entire QALD-9 dataset allows also for visual conceptual evaluation of
patterns of information encoding into DBPedia, up to possible discussion in what ways DBPedia
can be used as an ad hoc information source in different knowledge areas.
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