
CoPMP: Correlated Predicates Merging and Partition
for SPARQL Query Optimization

Hongshen Yu1, Tenglong Ren1, Xiaowang Zhang1,2,∗, Lulu Yang1 and
Guopeng Zheng1

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

Abstract

Characteristic sets (CS) are used for storage and indexing, as the same CS tends to have a similar schema.
While many methods based on CSs can improve query performance, especially for star queries, query
performance will be seriously affected when the workload is complicated and produces many CSs. In
this paper, we present CoPMP, merging CSs based on the correlations between predicates within the CSs
and partitioning predicates. Our method captures the predicate correlation and merges CSs to reduce the
number of CSs. The merging operation is driven by the cost model considering the predicate correlation
and null values. In merging CSs, each predicate belongs to only a property set, i.e., predicate partitioning.
Thus, CoPMP has the advantages of both property table and vertical partitioning for query optimization.
We allocate merged tables into data blocks based on subject hash partitioning, considering that CS is from
the same subject. Our extensive evaluation demonstrates the efficiency and scalability of our system.

Keywords

RDF Data, Merge Characteristic Sets, Predicate Correlation, Predicate Partitioning

1. Introduction

Traditional RDF data storage schemes include triples store, vertical partitioning, and property
table. But these methods are not efficient enough when workloads are complicated. Recently
works show that Characteristic sets (CS) [1] can capture the implicit schema of RDF data and
improve optimization. The CS for a subject is the set of predicates on the outgoing edges from
that subject. For the complicated datasets, Papastefanatos et al. [4] point out that merging CSs
based on the hierarchical structure reduces the number of CSs. But it only works in subset
inclusion relations between property sets. In this paper, we introduce CoPMP, a distributed
query engine based on Spark, which combines predicate correlation with partitioning and

ISWC’22: The 21th International Semantic Web Conference, October 23–27, 2022, Hangzhou
∗Corresponding author.
Envelope-Open hs_yu@tju.edu.cn (H. Yu); tenglongren@tju.edu.cnÍÍ (T. Ren); xiaowangzhang@tju.edu.cn (X. Zhang);
luluyang@tju.edu.cn (L. Yang); guopengzheng@tju.edu.cn (G. Zheng)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:hs_yu@tju.edu.cn
mailto:tenglongren@tju.edu.cnÍÍ
mailto:xiaowangzhang@tju.edu.cn
mailto:luluyang@tju.edu.cn
mailto:guopengzheng@tju.edu.cn
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


allocates tables to data partitions by subject. [7] also considers predicate partition. But it is not
the same as the focus of this paper. Firstly, [7] artificially sets a co-occurrence threshold and
uses a similarity coefficient similar to Jaccard to represent the degree of co-occurrence between
two predicates. Only when co-occurrence is greater than the threshold are two predicates
considered co-occurrence. In this paper, Two predicates are considered related as long as they
have the same subject. Secondly, When dividing predicates, [7] stores all predicates that co-
occur with predicates, that is predicates with a degree of co-occurrence greater than a threshold,
into a set. However, based on CSs, this paper selects the CS with the greatest benefit as the
basic data table and tries to add all the predicates with the same subject as the predicates in
the selected CS. If the benefit of the table increases, then add the predicate. Finally, To obtain a
better predicate partitioning pattern, [7] enumerates different co-occurrence thresholds. In
this paper, CSs are merged based on the heuristic cost function to obtain the optimal relation
pattern, which is the same idea as [4], but the method is different.
Figure 1 illustrates an overview of CoPMP architecture. Our contributions are as follows:
- We propose a new heuristic algorithm for merging CSs, which considers the correlation of
predicates and null values of the merged table.
- We ensure predicate partition in merging CSs, allowing CoPMP to benefit from vertical
partitioning and property tables without additional storage structures.
- Extensive experiments on synthetic and real-world RDF graphs have been conducted to verify
the efficiency and scalability of our method.

HDFS

Characteristic sets 
Extractor

Heuristic Merging

Table Generator

Query Parse

Query Decompose

Join Optimizer

RDF Data SPARQL

Storage Builder Query Planner

Figure 1: CoPMP Architecture



2. CoPMP

Consider two extremes, (i) a CS corresponds to a property table, and (ii) all CSs
are merged into a property table. One leads to many tables and joins, and the
other to excessive NULLs. Thus, we need to find a Pareto equilibrium between
fewer tables and null values when we merge CSs based on predicate correlation.

Algorithm 1: CSsMerge

Input: Characteristic Sets CSs, 𝑃𝐶, 𝑃𝐹, a property table set 𝑝𝑡𝑠 ← ∅ ;
Output: schemaSet
for each schema ∈CSs do

pts.add(schema);
compute the cost of the schema;

end
while !pts.isEmpty() do

schema remove predicate p, if p is marked;
select a schema with the lowest cost 𝑐𝑜𝑠𝑡𝑚𝑖𝑛;
select a predicate pmax with max Predicate Frequency;
pts.remove(schema);
for each predicate p and PC(p, pmax) = true do

let schemaTmp = schema.add(p);
compute the 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 of schemaTmp;
if 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 < 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 then

schema = shemaTmp; 𝑐𝑜𝑠𝑡𝑚𝑖𝑛 = 𝑐𝑜𝑠𝑡𝑛𝑒𝑤;
mark predicate p;

end
end
schemaSet.add(schema);

end
return schemaSet;

However, enumerating the combination of all related predicates is computationally hard. For
this reason, we rely on a heuristic algorithm for approximating the problem. We introduce a
function to find the current minimum cost in the merging process. Predicate frequency 𝑃𝐹(𝑝𝑖) is
the number of sets(CSs) in which 𝑝𝑖 appear. Predicate co-occurrence 𝑃𝐶(𝑝𝑖, 𝑝𝑗) is the number of
different sets in which predicate 𝑝𝑖, 𝑝𝑗 that appear together. We design a cost model to measure
the data table 𝑇. The column field of the table 𝑇 is the set of predicates. And 𝑝𝑚𝑎𝑥 is predicate
with max 𝑃𝐹, 𝑁𝐼𝐿 and 𝑅𝐿𝐸 are functions measuring the null values and correlation.

cost(𝑇 ) =
𝑁 𝐼𝐿(𝑇 )
𝑅𝐿𝐸(𝑇 )

=
∑𝑛

𝑘 𝑃𝐹 (𝑝𝑘) + 𝑃𝐹 (𝑝max) − 𝑃𝐶 (𝑝𝑘, 𝑝max)

∑𝑛
𝑖 ∑

𝑛
𝑗

𝑃𝐶(𝑝𝑖,𝑝𝑗)
min(𝑃𝐹(𝑝𝑖),𝑃𝐹(𝑝𝑗))

/𝑛2
(1)

The main idea behind the heuristic merging in algorithm 1 is to iterate over the predicates
co-occurring with the 𝑝𝑚𝑎𝑥 in the lowest cost CS. If adding these predicates comes with a
smaller cost, merge them, and update the cost and property set. We choose 𝑝𝑚𝑎𝑥 instead of



enumerating all predicates because predicate combinations are too large.

Query Planner Query Planner generates an optimal query plan for a given SPARQL query
to be further executed. Query Decompose module decomposes the query into star subqueries.
Moreover, we can search candidate triples by indexing the constant predicate based on predicate
partitioning. Finally, we join the subqueries to get the result of the query.

3. Evaluation

We implement the experiment on a cluster with five machines. Each machine is equipped with
24G RAM, 2TB disk, and a 6 core Intel Xeon E5-2420 processor. The cluster runs Cloudera 5.13.3
with Spark 2.4.4 on Ubuntu 16.04 LTS. We compare CoPMP with S2RDF [2] and Sempala [3].
S2RDF uses ExtVP, which is based on vertical partitioning, and Sempala is based on the property
table. We choose S2RDF and Sempala as the comparison system to show that CoPMP has the
advantages of property table and vertical partition at the same time. The tests were run using
the synthetic dataset WatDiv [5] and real-world dataset DBpedia [6]. For the Watdiv benchmark,
we generate datasets with Watdiv100M, Watdiv300M, and Watdiv500M to test the system’s
scalability and employ four types of queries snowflake(S), linear(L), star(S), and complex(C).
Due to DBpedia’s absence of query templates, we designed four queries that combine query
types. Figure 2 ∼ 4 show the average query time obtained on the Watdiv and Figure 1 shows
the response time on the DBpedia. The results show that CoPMP proved more efficient than
Sempala and S2RDF. Sempala needs to scan a big table each time since it stores triples with a
unified property table, which results in a slow response. S2RDF precompute semi-join tables to
reduce data shuffling. However, if the query does not appear in a semi-join table, the query can
be expensive with VP tables. CoPMP merges CSs based on predicate correlation and predicate
partitioning. Based on predicate partitioning, CoPMP can quickly find candidate triples since
each predicate exists in only one table, similar to S2RDF. Also, CoPMP decomposes the query
into star subqueries, thereby reducing joins with the benefits of property tables, but without
scanning a single table containing all the data like Sempala. The results show that CoPMP
benefits vertical partitioning and property tables.

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

C F L S

S2RDF Sempala CoPMP

Q
ue

ry
 T

im
e 

(m
s)

Figure 2: Watdiv100M

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

C F L S

S2RDF Sempala CoPMP

Q
ue

ry
 T

im
e 

(m
s)

Figure 3: Watdiv300M



1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

C F L S

S2RDF Sempala CoPMP
Q

ue
ry

 T
im

e 
(m

s)

Figure 4: Watdiv500M

Table 1: Query time(ms) on different queries over
DBpedia

Q1 Q2 Q3 Q4
S2RDF 16,323 15,467 12,112 15,802
Sempala 62,843 95,854 65,618 77,429
CoPMP 8,704 8,716 7,378 4,579

4. Conclusion and Future Work

In this paper, we present a distributed query engine CoPMP that merges characteristic sets
based on predicate correlation and predicate partitioning. Moreover, we allocate the merged
table to the data partition based on the subject hash partition, which is the advantage of the CS
with the same subject in distributed storage. Also, our extensive experimental results show the
effectiveness of the CoPMP. In the future, we are planning to continue to extend the work to
Well-designed SPARQL and conduct a comprehensive experiment to validate the efficiency of
CoPMP.

References
[1] Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation for RDF

queries with multiple joins. In: ICDE. pp. 984–994 (2011)
[2] Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF querying with

SPARQL on spark. In: VLDB. pp. 804–815 (2016)
[3] Schätzle, A., Przyjaciel-Zablocki, M., Neu, A., Lausen, G.: Sempala: Interactive sparql query

processing on hadoop. In: ISWC. pp. 164–179 (2014)
[4] Papastefanatos, G., Meimaris, M., Vassiliadis, P.: Relational schema optimization for RDF-

based knowledge graphs. In: Information Systems. pp. 735-754 (2022)
[5] Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF data manage-

ment systems. In: ISWC. pp. 197–212 (2014)
[6] Jens, L., Robert, I., Max, J., Anja, J., Dimitris, K., Pablo, M., Sebastian, H., Mohamed, M.,

Patrick, V., Sören, A., Christian, B.: DBpedia - A Large-scale, Multilingual Knowledge Base
Extracted from Wikipedia. In: Semantic Web. pp. 167–195 (2015)

[7] Guangxi, J.: Optimizing Well-designed SPARQL Query Based on Constrained Pattern
Tree[Master Thesis], Tianjin University, 2022.


	1 Introduction
	2 CoPMP
	3 Evaluation
	4 Conclusion and Future Work

