
HInT : Hybrid and Incremental Type Discovery for
Semantic Graphs
Alexander Miraka1, Nikos Kardoulakis2, Kenza Kellou-Menouer3, Georgia Troullinou2,
Zoubida Kedad4, Dimitris Plexousakis2 and Haridimos kondylakis2,∗

1Computer Science Department, University of Crete, Heraklion, Greece
2FORTH-ICS, Heraklion, Greece
3ETIS Lab, ENSEA, Cergy, France
4Univ. of Versailles - Paris Saclay, France

Abstract
The rapid proliferation of the semantic web has led to the emergence of many weakly structured
and incomplete data sources. On these sources typing information might be partially or completely
missing. On the other hand, type information is essential for a number of tasks such as query answering,
integration, summarization, and partitioning. Existing approaches for type discovery, either completely
ignore type declarations available in the dataset (implicit type discovery approaches), or rely only on
existing types, in order to complement them (explicit type enrichment approaches). In this demonstration,
we present HInT, the first incremental and hybrid type discovery system for RDF datasets. To achieve this
goal HInT identifies the patterns of the various instances, and then indexes and groups them to identify
the types. Besides discovering new types, HInT exploits type information if available, to improve the
quality of the discovered types by guiding the classification of the new instance in the correct group and
by refining the groups already built.

Keywords
Semantic Graphs, Schema Discovery, RDF

1. Introduction

The proliferation of the semantic web and the explosion of the information now available as
linked data have led to many weakly structured, irregular, and incomplete data sources, where
declarations on the schema as primitives might be incomplete or missing. On the other hand,
type information is crucial for a number of tasks such as federated query answering, data
integration, summarization, and data partitioning.

As such, several works have focused in the past on type discovery. Based on our recent survey
on semantic schema discovery [1], existing approaches proceed in two completely different
ways. The implicit type discovery approaches [2, 3, 4] rely on the analysis of the structure of the

ISWC-Posters-Demos-Industry 2022 (International Semantic Web Conference (ISWC) 2022: Posters, Demos, and Industry
Tracks)
∗Corresponding author.
Envelope-Open csd3804@csd.uoc.gr (A. Miraka); nickkard@ics.forth.gr (N. Kardoulakis); kenza.kellou.menouer@gmail.com
(K. Kellou-Menouer); troulin@ics.forth.gr (G. Troullinou); Zoubida.Kedad@uvsq.fr (Z. Kedad); dp@ics.forth.gr
(D. Plexousakis); kondylak@ics.forth.gr (H. kondylakis)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:csd3804@csd.uoc.gr
mailto:nickkard@ics.forth.gr
mailto:kenza.kellou.menouer@gmail.com
mailto:troulin@ics.forth.gr
mailto:Zoubida.Kedad@uvsq.fr
mailto:dp@ics.forth.gr
mailto:kondylak@ics.forth.gr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


instances and completely ignore schema declarations even when they are partially provided in
the data source. Existing algorithms for implicit type discovery employ clustering algorithms
such as k-means variations, hierarchical clustering or DBScan. However, the number of clusters
is not usually known, whereas most of the algorithms require exhaustive comparisons between
the instances. On the other hand the explicit type enrichment approaches [5, 6, 7, 8] rely on the
schema declarations to complement or enrich them. However, these approaches cannot process
sources that have little or no schema information. Finally, existing approaches do not natively
support incrementality. Each time new information is added, the types are recomputed from
scratch, and previously computed information is completely ignored. However, RDF KBs are
constantly updated and evolved [9, 10] .

In this paper, we move beyond the state of the art by demonstratingHInT, the first incremental
and hybrid type discovery system for RDF datasets. HInT exploits the structure of the instances
in order to discover typing information (as implicit type discovery approaches do), but also
when typing information is available for some instances, it also takes it into consideration in
order to guide and improve the type discovery process (as explicit schema discovery approaches
do). Our approach first identifies the pattern of a given instance, then assigns the instance to
the groups with similar patterns, using Locality Sensitive Hashing, and finally identifies the
ones sharing the same type. We reduce instance processing to pattern processing, where each
instance is treated independently, whereas our approach is incremental and suitable for large
data sets. In addition, our approach enables type discovery in datasets where only some of the
instances have types, and/or new types should be introduced besides assigning instances to
existing ones. The full paper has already been recently presented at the SSDBM [11] conference,
whereas a video demonstrating our system is also available online1.

2. System Architecture

Figure 1: HInT high-level architecture.

The high-level architecture of our system is shown in Fig. 1. It consists of the graphical user
interface (GUI) and the back-end subsystem. The GUI has been implemented in HTML and CSS

1https://users.ics.forth.gr/~kondylak/HInT.mp4

https://users.ics.forth.gr/~kondylak/HInT.mp4


using the Vue JS framework whereas the back-end is implemented in Python.
GUI. Using the GUI the users are able to upload an RDF dataset, for which they would like

to discover the schema or to provide a URL for the file, if it is already available on the web. The
file is then processed through the back-end subsystem and the identified types are presented
along with statistics. In addition discovered patterns for each type are shown and example
instances are presented. The bigger the types on the interface the more instances they contain.
In addition, users are able to select the identified types in order to see the number of instances
available for that type, to visualize example instances, and to see the patterns identified for that
type. Furthermore, if the ground truth of the dataset is available it can be loaded as well and
graphs for the precision, the recall and the f-measure are presented. A screenshot is shown in
Fig. 2.
Back-end. Pattern Discovery Module. As soon as the RDF file is parsed, each instance is

described using an instance vector. An instance vector contains the properties of the specific
instance, as properties provide a descriptive representation of it. In the instance vector, we
do not store potentially available typing information as types are later considered in the type
assignment module. In our approach, we first try to reduce instance processing, to pattern
processing. As such, based on the instance vectors of the various instances, we gradually
identify the patterns existing in a dataset.
Note that multiple types can be assigned to an instance vector and as a consequence to a

pattern. A pattern represents a set of instances that use exactly the same set of properties. As a
result, patterns improve the efficiency of the approach by: (i) avoiding unnecessary processing
on the subsequent index structures for instances having the same structure, e.g., insertions,
queries, etc., and (ii) reducing the memory footprint by not storing duplicate information,
e.g., storing multiple times the same instance vector for similar instances.

Locality Sensitive Hashing Module. To achieve a native incremental type discovery, we use a
Locality-Sensitive Hashing (LSH) method. The major advantage of LSH is the fact that each
input is treated independently. As a result, we can avoid the pairwise comparisons between
the constructed patterns. In our approach, we build an LSH index according to the hash values
provided for the patterns in our dataset. As described earlier, when a new instance arrives for
which a pattern does not exist, a new pattern is generated. The LSH module is responsible
for generating the signature based on the generated pattern, which is then used to insert the
pattern to the LSH Index. Then, in order to retrieve similar patterns, we query the LSH index
using a pattern’s signature. When such a query is issued, a group of similar patterns will
be returned, that are candidates for belonging to the same type - remember that LSH is an
approximate algorithm. Note that LSH only works for retrieving similar instances and not for
type assignment which is happening in a following step.
Type Assignment Module. The type assignment module builds groups of similar patterns

according to the values of their signatures from the sensitive-hashing functions and according
to the provided typing declarations. Each pattern can be assigned to one or more groups,
whereas a group represents a collection of patterns. The main idea of the algorithm is that
the classification of a pattern does not fully depend on the results retrieved by LSH. On the
contrary, the available type declarations in the dataset are not only used to complement the
results retrieved by LSH, but they also have a high impact on the classification process.



3. Demonstration Scenario & Conclusions

The goal for the demonstration is to show, through experimentation, the challenges involved in
semantic schema discovery and to understand the benefits of a hybrid and incremental approach
like HInT. We will start by explaining the objective of semantic schema discovery and guiding

Figure 2: Screenshot from schema discovery using HInT.

participants through the different design choices for HInT. We will then walk them through the
following steps.
Configuration. We will use five datasets which will be presented to the users: BNF, Con-

ference, DBpedia, HistMunic and LUBM ranging in both size (from 381 to 91 million triples),
and in complexity. LUBM is a synthetic benchmark and includes an ontology along with a data
generator, which was used to generate 91M triples. The Conference dataset consists of 1,430
triples. The BNF dataset exposes data for the French National Library and contains 381 triples.
The third dataset is extracted from DBpedia and contains 19,696 triples. Finally, histmunic
is an open government dataset that contains 119,151 triples. For each dataset, we will show
non-trivial examples, where schema information is missing and should be inferred.
Schema Discovery Ignoring Known Types. In this step, we will configure HInT to ignore

typing information that might already be available in the dataset. Then we will explain the
various steps for discovering the schema and the algorithms used for pattern discovery, LSH
indexing and type assignment. Upon each execution the detected types will be presented along
with statistical information (e.g. the number of instances and patterns for each type) and the
user will be able to explore the patterns for a selected type and also visualize a sample of its
instances. Further, as for these datasets we already know the ground truth, the precision, recall
and f-measure will be graphically visualized and a discussion on the quality of the discovered
types will be made.
Schema Discovery Exploiting Typing Information. In this step, we will run exactly the

same scenarios as in the previous step, but this time we will configure the system to exploit
available typing information. Again the various steps for pattern discovery, LSH indexing and



type assignment will be presented, explaining where the type information is used for improving
the discovered types. The precision, recall and f-measure will be calculated for the various
datasets and compared with the previous step, demonstrating the improvement of the schema
discovery task.
Conclusions. We demonstrate HInT, the first hybrid and incremental type discovery system

for RDF datasets. The core innovations are that a) we reduce instance comparisons to pattern
comparisons, b) we employ LSH functions that enable incremental schema discovery and c) we
can both detect missing types of available instances and generate new types that are missing.
We demonstrate the versatile new performance and trade-offs that HInT provides, and we allow
conference participants to understand the challenges of such a complex task. Finally, we allow
conference participants to actively explore the developed infrastructure and the corresponding
algorithms.

Acknowledgments

This research project was supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support PostDoctoral Researchers”
(iQARuS Project No 1147).

References

[1] K. Kellou-Menouer, et al., A survey on semantic schema discovery, VLDB Journal (2021).
[2] Y. Tsuboi, N. Suzuki, An algorithm for extracting shape expression schemas from graphs,

in: ACM DocEng, 2019, pp. 32:1–32:4.
[3] A. Lutov, S. Roshankish, M. Khayati, P. Cudré-Mauroux, Statix—statistical type inference

on linked data, in: IEEE Big Data, 2018, pp. 2253–2262.
[4] K. Christodoulou, N. W. Paton, A. A. Fernandes, Structure inference for linked data sources

using clustering, in: Trans. on Large-Scale Data-and Knowledge-Centered Systems XIX,
2015, pp. 1–25.

[5] H. Paulheim, Browsing linked open data with auto complete, Semantic Web Challenge
(2012).

[6] A. G. Nuzzolese, A. Gangemi, V. Presutti, P. Ciancarini, Type inference through the analysis
of wikipedia links, in: LDOW, 2012.

[7] H. Paulheim, C. Bizer, Type inference on noisy rdf data, in: ISWC, 2013, pp. 510–525.
[8] L. Fang, Q. Miao, Y. Meng, Dbpedia entity type inference using categories, in: ISWC 2016

Posters & Demons, 2016.
[9] H. Kondylakis, D. Plexousakis, Ontology evolution in data integration: Query rewriting to

the rescue, in: ER, volume 6998, Springer, 2011, pp. 393–401.
[10] H. Kondylakis, D. Plexousakis, Ontology evolution: Assisting query migration, in: ER,

volume 7532, Springer, 2012, pp. 331–344.
[11] N. Kardoulakis, et al., Hint: Hybrid and incremental type discovery for large RDF data

sources, in: SSDBM, 2021.


	1 Introduction
	2 System Architecture
	3 Demonstration Scenario & Conclusions

