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Abstract
Many methods have been proposed for embedding ordinary knowledge graphs (KG), which greatly
promote various applications. However, current knowledge graph embedding algorithms cannot encode
weighted knowledge graphs (WKG), which are a generalized form of the ordinary KG. This paper gives
a promising approach that enables to extend existing models to encode weighted knowledge graphs.
Taking TransH as an example, we propose TransHExt. TransHExt shows competitive performance in
both link prediction task and weight prediction task.
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Knowledge graphs (KG) are thriving and promoting many downstream applications in se-
mantic web such as question answering over RDF triples [1] and related areas such as academic
search [2] and social relationship recognition [3]. Facts encoded in KG are formalized as triple
(ℎ, 𝑟 , 𝑡), in which ℎ denotes a head entity, 𝑡 denotes a tail entity, and 𝑟 denotes a relation between
ℎ and 𝑡.
Weighted knowledge graphs (WKG) generalize (crisp) knowledge graphs by associating a

weight in (0, 1] to each triple. This formalism have been used to represent uncertainty [4],
and even out-of-band knowledge [5] in a growing number of scenarios. The weighted triples
can better model the interactions between the entities, such as the interactions of proteins in
STRING [5].

Most knowledge graph embedding (KGE) models are targeted at learning the representation
of KGs without weights. To leverage the existing models, such as TransH [6] to embed facts
encoded in WKGs, we propose WeExt, an extension method that adds on a weight prediction
module to a KGE model (called the base model). To illustrate our intuition, we select TransH
and show its extension called TransHExt in this work. Our experiments show that TransHExt
outperforms TransH on link prediction task and UKGE [7] on weight prediction task.
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1. WeExt: Weighted Extension Framework

The framework of WeExt is shown in Figure 1. We introduce an add-on weight prediction
module consisting of preprocessing and a neural weight predictor (denoted by 𝑛𝑤𝑝) to predict
the weight for a given triple. The preprocessing is defined as the scoring function of a base model
without the norm. We implement the neural weight predictor using a multi-layer feed-forward
neural network.
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Figure 1: The framework of WeExt. The green components are the base KGE model. The blue compo-
nents are the weight prediction component.

The preprocessing of the embedded entity and relation vary to the scoring function 𝑓 (⋅) of
the base KGE model. The preprocessing serves two purposes: one is to back-propagate the loss
from the neural weight predictor to all learnable parameters, another is to make the loss from
the scoring function and the loss from the neural weight predictor as consistent as possible in
the adjustment of the parameters in the back-propagation. For TransH, the scoring function is:

𝑠 = − ‖(h −w⊤
𝑟 hw𝑟) + dr − (t −w⊤

𝑟 tw𝑟)‖
2
2

where dr is the relation-specific translation vector and w𝑟 is the relation-specific hyperplane.
Correspondingly, the predicted weight 𝑤𝑝 can be calculated by the weighting prediction compo-
nent is:

𝑤𝑝 = 𝑛𝑤𝑝((h −w⊤
𝑟 hw𝑟) + dr − (t −w⊤

𝑟 tw𝑟))

We call this model TransHExt, i.e., extending TransH based on WeExt.

1.1. Training Protocol

For a given positive training set

𝑆 = {⟨(ℎ𝑖, 𝑟𝑖, 𝑡𝑖) , 𝑤𝑖⟩}
𝑢
𝑖=0,



we generate a negative set

𝑆′ = {(ℎ′, 𝑟 , 𝑡′)} = {(ℎ′𝑖 , 𝑟𝑖, 𝑡𝑖) ∣ ℎ′𝑖 ∈ 𝐸 ⧵ {ℎ𝑖}} ∪ {(ℎ𝑖, 𝑟𝑖, 𝑡′𝑖 ) ∣ 𝑡′𝑖 ∈ 𝐸 ⧵ {𝑡𝑖}}
𝑢
𝑖=0 .

We measure the accuracy of the neural weight predictor with respect to the error on the weight
prediction in each triple of 𝑆:

𝑎𝑐𝑐(ℎ, 𝑟 , 𝑡 , 𝑤) = {
𝑤−|𝑤−𝑤𝑝|

𝑤 , 𝑤𝑝 ∈ [0, 2𝑤]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We adopt margin ranking loss as the loss function for the proposed models:

ℒ = ∑
⟨(ℎ,𝑟 ,𝑡),𝑤⟩∈𝑆

∑
(ℎ′,𝑟 ′,𝑡′)∈𝑆′

𝛾 + 𝑓 (ℎ, 𝑟 , 𝑡) + 𝑎𝑐𝑐(ℎ, 𝑟 , 𝑡 , 𝑤) − 𝑓 (ℎ′, 𝑟 ′, 𝑡′)

where 𝛾 is the margin. Since negative triples represent unencoded facts in the real world, it is
not necessary to measure the loss of prediction on this set.

1.2. Evaluation Protocol

We evaluate the developed TransHExt on link prediction and weight prediction. For link
prediction, given a test triple (ℎ𝑖, 𝑟𝑖, 𝑡𝑖), ℎ𝑖 is removed and the head entity is replaced by each of
the entities of the dictionary in turn to form all possible triples. Triple scores are calculated
by the scoring function 𝑠 = 𝑓 (ℎ, 𝑟𝑖, 𝑡𝑖). We sort 𝑠 by ascending order, and get the rank of the
𝑖-th correct triple in its all possible triples rk𝑖. We adopt mean rank (MR= 1

|𝑢| ∑
|𝑢|
𝑖=1 rk𝑖), mean

reciprocal rank (MRR= 1
|𝑢| ∑

|𝑢|
𝑖=1

1
rk𝑖

) and Hits@N= ∑|𝑢|
𝑖=1 𝕀[rk𝑖 ≤ 𝑁] to measure the performance

of the models on link prediction. The 𝕀[⋅] is the indicator function, which outputs 1 if the input
is true, 0 otherwise. This whole procedure is repeated while removing 𝑡𝑖 instead of ℎ𝑖.
For weight prediction, we predict the weight of a given triple and report the mean squared

error (MSE) and mean absolute error (MAE) between the predicted weight and the real weight.

2. Experiment and Result

We did experiments on CN15K, and PPI5K [8] datasets. CN15K is a subgraph of ConceptNet [4],
containing 15,000 entities and 241,158 weighted triples in English. NL27k is extracted from NELL
[9], a weighted KG obtained fromwebpage reading. NL27k contains 27,221 entities, 404 relations,
and 175,412 weighted triples. PPI5k is a subset of the protein-protein interaction knowledge
base STRING [5] that contains 271,666 weighted triples for 4,999 proteins and 7 interactions.
STRING labels the interactions between proteins with the probabilities of occurrence.

We implemented the neural weight predictor using a 4-layer neural network with 50 inputs,
three hidden layers with 300, 100, 50 neurons, and one output layer, also with ReLU activations.
We set learning rate 𝜆 for the stochastic gradient descent optimizer to 0.0001. We trained the
models for 3000 epochs, evaluated the models every 100 epochs, and chose the best result
according to MRR. The margin 𝛾 was set to 1. The dimension of embeddings was set to 50.



Table 1
Results on Link Prediction

MR MRR Hits@1 Hits@3 Hits@10

CN15K
TransH 1711 0.000585 0.042132 0.085516 0.140822
TransHExt 1452 0.000689 0.035010 0.086012 0.155301

NL27K
TransH 322 0.003104 0.143687 0.270522 0.390837
TransHExt 230 0.004351 0.085257 0.261615 0.430276

PPI5K
TransH 49 0.020226 0.002689 0.123945 0.310025
TransHExt 26 0.038565 0.000093 0.158699 0.400097

Table 2
Results on Weight Prediction

CN15K NL27K PPI5K
MSE MAE MSE MAE MSE MAE

URGE [10] 10.32 22.72 7.48 11.35 1.44 6
UKGE 8.61 19.9 2.36 6.9 0.95 3.79
TransHExt 4.34 12.68 3.05 9.77 0.33 2.16

The results of link prediction and weight prediction are shown in Table 1 and Table 2,
respectively. TransHExt outperforms TransH on link prediction in general, but gets a worse
Hits@1 score on CN15K, NL27K and PPI5K. We assume this may be caused by the preprocessing.
We will explore more preprocessing methods for WeExt. For weight prediction, TransHExt
outperforms both of URGE and UKGE on CN15K and PPI5K, but gets a worse performance
than UKGE on NL27K. We hypothesize this is caused by the different weight distribution of the
dataset. We will explore more in our future work.
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