
Towards Executable Knowledge Graph Translation
Dongzhuoran Zhou1,2,∗, Baifan Zhou2, Zhuoxun Zheng1,4, Zhipeng Tan1,
Egor V. Kostylev2 and Evgeny Kharlamov1,2

1Bosch Center for Artificial Intelligence, Germany
2Department of Informatics, Univeristy of Oslo, Norway
3Department of Computer Science, Oslo Metropolitan University, Norway

Abstract
Data analytics is vital in manufacturing for extracting insights from production data and optimising
production processes. Semantic technologies including knowledge graphs (KG) proved to be beneficial for
addressing challenges of transparency and explainability of analytics by offering standardised means to
describe manufacturing domains, data, analytical tasks and solutions. In this work we discuss executable
KGs for industrial analytics; they can be “translated” (i.e. transformed) to executable data pipelines in a
reusable and modularised fashion. In particular, we discuss how to capture analytical solutions in the
form of data pipelines as KGs, and how to translate such KGs to executable data pipelines. The poster
presents our framework, implementation, and preliminary industrial evaluation.

Keywords
knowledge graph, welding monitoring, machine learning, industrial application analytics,

1. Introduction
Data analytics is vital in manufacturing for extracting insights from production data and
optimising production processes. Semantic technologies including knowledge graphs (KG)
proved to be beneficial for challenges of transparency and explainability [1] of analytics [2] by
offering standardised means [3, 4] to describe manufacturing domains [5, 6], data analytical
tasks and solutions, as well as robot positioning controlling [7, 8].
In particular, KGs allow to represent executable data analytical pipelines with standardized

and formal description to represent the steps in the data pipeline [9]. This opens the door for
KG based verification, reasoning, and optimisation, data construction [10], data mining [11, 12,
13] in manufacturing [14]. Consider an industrial scenario, where a multi-disciplinary team
including engineers, data scientists, managers work together on quality prediction with ML
in car industry [15]. Our project experience reals that the experts with distinct background
spent excessive time on discussion but found out they misunderstood the problem and the ML
solutions. After that, we tried to use KG as a medium for communication, see an example ML
pipeline KG in Fig. 1. It takes TimeSeries and SingleFeatures as the input data, and does LRRegression
to predict the Q-Value. The users can simply change the input data, output data, and method
of the pipeline, by changing the named individuals, e.g., the users can delete TimeSeries if they
do not have the sensor curves (time series) in their data, because the sensor curves are costly
to collect. The users can also change the ML method from LRRegression to MLP (multilayer
perceptron).

Hangzhou’22: The 21st International Semantic Web Conference, October 23–27, 2022, Hangzhou, China
∗Corresponding author.
Envelope-Open dongzhuoran.zhou@de.bosch.com (D. Zhou)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:dongzhuoran.zhou@de.bosch.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: MLPipeline, input: time series, single features; relies on: linear regression (LRMethod).

In this work we study how KGs can facilitate analytics by addressing two issues: how
to encode data pipelines as KGs – we refer to such KGs as executable KGs – and how to
automatically compute executable pipelines from executable KGs. Here the latter should ensure
the correctness of the analytical methods; the desired order of tasks within executable pipelines;
the correct number of input and output and corresponding designed dimensions. Moreover, such
computation should support typical executable pipelines for visual and statistical analytics [16,
17]. Finally, such executable pipelines should be suitable for large-scale deployment [18].

In this poster paper we exemplify our solution within the domain of quality monitoring in
automatic manufacturing. In particular, in this poster we present the following. We present our
executable Knowledge Graph framework, its verification, translation and execution methods;
we discuss implementation of our solution, and present its preliminary evaluation with Bosch
manufacturing data. The experimental results show that our proposed approach is promising
in coverage and scalability aspects. This poster accompanies our In-Use track paper accepted at
ISWC’22 [19] and gives significant extension on technical details of KG translation.

2. Our Approach
Executable Knowledge Graph Framework. We propose framework for executable KG
(ExeKG) that represents ML solutions [20] for solvingML questions. Framework supports ExeKG
to be translated to executable scripts and modularised in reusable and modularised fashion.

We first define data, methods and tasks in this framework. Data 𝒟 is a set of facts, statistics,
or items of information, it can be in forms such as numerals, diagrams or strings organised in
different structures, typically relational tables or RDF database, etc. AMethod ℱ is a function in
form of language-dependent script (such as in C++ or Python). A method takes some data which
fulfils certain Constraints 𝒞ℱ as input and can output specific data. Formally, 𝒟𝑜𝑢𝑡 = ℱ (𝒟𝑖𝑛),
if 𝒞ℱ(𝒟𝑖𝑛) = 𝑇 𝑟𝑢𝑒. A Task 𝒯 is the process of invoking a method by feeding it with some
data that meets certain Constraints, and by doing so to obtain some other data. Formally,
𝒯 ⟨𝒟𝑖𝑛, ℱ ⟩ = ℱ (𝒟𝑖𝑛) = 𝒟𝑜𝑢𝑡, if 𝒞ℱ(𝒟𝑖𝑛) = 𝑇 𝑟𝑢𝑒. We call each single 𝑇𝑎𝑠𝑘 as Atomic task.

Some tasks have methods which are unified, while other more complex tasks can not solved
by invoking a single integrated method while can be unfolded into a sequence of tasks where
each task is a part of the complex one. We refer to the complex tasks as pipelines 𝒯𝑝. Formally,
a pipeline 𝒯𝑝 with input data 𝒟𝑖𝑛 to get 𝒟𝑜𝑢𝑡, expressed as 𝒯𝑝⟨𝒟𝑖𝑛, ℱ ⟩ = 𝒟𝑜𝑢𝑡 can be unfolded
in the sequence {𝒯1, 𝒯2, ..., 𝒯𝑛}, where:

𝒯1⟨𝒟𝑖𝑛1 , ℱ1⟩ = 𝒟𝑜𝑢𝑡1 , 𝒟𝑖𝑛1 ⊂ 𝒟𝑖𝑛, 𝒞ℱ1
(𝒟𝑖𝑛1) = 𝑇 𝑟𝑢𝑒; ... (1)

𝒯𝑛⟨𝒟𝑖𝑛𝑛 , ℱ𝑛⟩ = 𝒟𝑜𝑢𝑡𝑛 , 𝒟𝑖𝑛𝑛 ⊂ ⋃̇
𝑖∈{1,...𝑛−1}

𝒟𝑜𝑢𝑡𝑖 ∪ 𝒟𝑖𝑛, 𝒞ℱ𝑛
(𝒟𝑖𝑛𝑛) = 𝑇 𝑟𝑢𝑒

⟶ 𝒟𝑜𝑢𝑡 ∈ ⋃̇
𝑖∈{1,...,𝑛}

𝒟𝑜𝑢𝑡𝑖 , 𝒞ℱ = ⋂̇
𝑖∈{1,...,𝑛}

𝒞ℱ𝑖
(𝒟𝑖𝑛𝑖). (2)

Table 2
Categories of the executable KGs (ExeKG). The structure refers to whether there is only one sequential
data pipeline in the executable KG or there are multiple parallel data pipelines. Atomic task refers to
tasks that cannot be decomposed to smaller tasks, while Pipeline tasks are comprised from pipelines of
multiple atomic tasks. Multiple input/output specifies whether the tasks in the data pipeline can take
multiple input/ouput or not.

Complexity Type Structure Atomic Task/Pipeline Task Multiple input/output
Linear ExeKG Sequential Only Atomic No

Multilinear ExeKG Sequential Only Atomic Yes
Integrated ExeKG Sequential Integrated Pipeline Yes or No
Parallel ExeKG Parallel Only Atomic Yes

Parallel Integrated ExeKG Parallel Integrated Pipeline Yes

Verification. We use Boolean query (4) and the axioms in KG to offer the correct Constraints
of translated executable data analytics. A DataEntity is the class for a concrete dataset or a
feature. An example can be Every Task has at least one output data, which is a DataEntity (3-4):

∀𝑥.task(𝑥) → ∃𝑦(hasOutput(𝑥, 𝑦) ∧ DataEntity(𝑦)) (3)

QUERY ∶ 𝑄(𝑥) ← Task(𝑥) ∧ ¬∃𝑦.(hasOutput(𝑥, 𝑦) ∧ DataEntity(𝑦)) (4)

Table 1: Task complexity, categories and coverage.
KG Type Structure Avg. #Atomic Tasks Coverage
Visu-
alKG

Linear 5 to 10 100%
Multilinear 5 to 10 85%

StatsKG

Linear 1 to 5 100%
Multilinear 5 to 10 95%
Parallel 10 to 20 90%

Integrated 10 to 20 80%

MLKG
Integrated More than 20 80%

Parallel Integrated More than 20 80%

Translation and Execution. The
translation can be discussed with
two structures of executable KGs:
1) Sequential: here each exe-

cutable KG is in the form of a Pipeline,
which consists of a series of Tasks
of sequential structures connected
with hasNextTask. Thus, the trans-
lation of an executable KG invokes
the Python function scripts with the inputs/outputs and parameters given by DataEntity and
datatype properties of KGs, according to the order defined by hasNextTask.

2) Parallel: In the case of merging two parallel structures, the translator will search preceding
dependency with hasNextTask, until no preceding Task is found.

Implementation. We implemented a system for executable KG translation [21] with three
functional modules: 1)Databases including the relational database and its APIs and RDF database,
2) Analytics module and 3) KG processing module. Fig. 2a shows the structure of the system.
The Databases are responsible for storing the welding data and executable KGs. Its APIs handles
the loading, formatting, filtering, padding and merging of different data subsets. The Analytics
module stores and provides interface for all analytical methods of Visual KG, StatsKG and ML
KG in Python scripts. The KG processing module performs verification of the executable KGs,
translates the executable KGs to executable pipelines and executes these pipelines by connecting
the analytical methods stored in the Analytics module.

3. Evaluation and Conclusion
Transparency and Coverage Evaluation. Theoretical discussion: We formulate visual,
statistical and ML analytics in the form of Eq. 1-3. These three forms provide a way to describe
analytics tasks in a general and straightforward way, which eases the understanding of
the tasks, since the users only need to understand the description once and then they can

Database

b
KG RDF

Database
Relational
Database

KG Processing
Module

API

Analytical
Module

Load Data/KG Connect
Python
Script

a 9.7 24.3 34.831.4

82.7
123.5

49.4

131.0

204.5

57.6

158.3

261.4

82.1

214.6

370.3

0.0

100.0

200.0

300.0

400.0

50 100 150

Ru
nn

in
g

Ti
m

e
(s

)

Pipelines

Linear ExeKG Multilinear ExeKG
Integrated ExeKG Parallel ExeKG
Parallel Integrated ExeKG

Figure 2: (a) Implementation architecture (b) Scalability evaluation.

understand similar data analytical pipelines described in this way. Thus, our approach is a
step towards more transparent way that cover cases of data analytical pipelines described with
Eq. 1-3. Empirical evaluation: We organised extensive workshops with the ML and non-ML
experts. After discussion, we categorised most tasks of visual, statistical and ML analytics
encountered in our project in groups (see Table 1), and give the coverage percentage according
to our empirical cases. Observe, for all of the cases the coverage is above 80%, for some of the
cases even above 90%. Besides, the users also gave their subjective evaluation on transparency
with questionnaires, where they answered questions such as “I found the Executable KGs make
data analytics easier to understand ” and gave scores ranging 1-5 (ranging for disagree to agree).
The average score was 4.28 ± 0.47 (mean ± standardeviation) which shows good transparency.

Scalability Evaluation. We evaluate the scalability of our approach by the running time of
translation and execution of executable KGs with different complexity type (Fig. 2b).

Data Description. To have controllable scope, we tested these executable KGs on a sample
welding production dataset collected from a German factory. The dataset is in relational
tables form after integration, containing 4585 welding operation records, 2 welding programs,
performed by 1 welding machine and deals with 2 types of car bodies.

Results and Discussion. Fig. 2b demonstrates that our system scales well since it takes limited
time to translate executable KGs to scripts and execute scripts. On most right hand side,
we see that the translation and execution of most complex executable KGs, namely parallel
integrated executable KG, only takes 6 minutes for 150 KGs, on the given data, which shows
good scalability.

Conclusion and Outlook. In this poster we present our ongoing research of representing
data analytical pipelines in KGs and transformation (also called “translation”) of such KGs in
executable analytical pipelines. We discussed framework, verification, translation and execution
with our scope of welding monitoring with a Bosch case and evaluated our approach with real
industrial data and users from Bosch case, which shows promising results. In the future, we
plan to generalise our approach to more cases and to host the system regularly on the Bosch
environment and constantly collect more user feed-backs. We will also study more technical
details such as expressivity and limitations in theory and practice, and compare with other
similar work such as Yahoo! Pipes, DAGs in Spark, Tez, the PROV-O ontology.

Acknowledgments
The work was partially supported by H2020 projects Dome 4.0 (Grant Agreement No. 953163),
OntoCommons (Grant Agreement No. 958371), DataCloud (Grant Agreement No. 101016835)
and the SIRIUS Centre, Norwegian Research Council project number 237898.

References

[1] B. Mahesh, Machine learning algorithms-a review, IJSR 9 (2020) 381–386.
[2] Z. Zheng, et al., Executable knowledge graph for transparent machine learning in welding

monitoring at bosch, in: CIKM, 2022.
[3] B. Motik, et al., OWL 2 web ontology language profiles, 2012. URL: https://www.w3.org/

TR/owl2-profiles/.
[4] A. Salatino, et al., The computer science ontology: a large-scale taxonomy of research

areas, in: International Semantic Web Conference, 2018, pp. 187–205.
[5] J. Davis, et al., Smart manufacturing, manufacturing intelligence and demand-dynamic

performance, Computers & Chemical Engineering 47 (2012) 145–156.
[6] B. Zhou, et al., Exploiting the values of data: A holistic semantification approach at Bosch,

in: ESWC (Demos/Industry), Springer, 2022.
[7] C. Naab, et al., Application of the unscented kalman filter in position estimation a case

study on a robot for precise positioning, RAS 147 (2022) 103904.
[8] O. Celik, et al., Specializing versatile skill libraries using local mixture of experts, in: CRL,

PMLR, 2022, pp. 1423–1433.
[9] M. Yahya, et al., Towards generalized welding ontology in line with ISO and knowledge

graph construction, in: ESWC (Posters & Demos), 2022.
[10] D. Zhou, et al., Towards Ontology Reshaping for KG Generation With User-In-The-Loop:

Applied to Bosch Welding, in: IJCKG, 2021.
[11] B. Zhou, et al., Scaling Usability of ML Analytics With Knowledge Graphs: Exemplified

with A Bosch Welding Case, in: IJCKG, 2021.
[12] D. Zhou, et al., Enhancing knowledge graph generation with ontology reshaping–bosch

case, ESWC (Demos/Industry), Springer (2022).
[13] K. K. Breitman, et al., Ontology in computer science, Semantic Web: Concepts, Technolo-

gies and Applications (2007) 17–34.
[14] D. Zhou, et al., ScheRe: Schema Reshaping for Enhancing Knowledge Graph Construction,

in: CIKM, 2022.
[15] B. Zhou, Y. Svetashova, A. Gusmao, A. Soylu, G. Cheng, R. Mikut, A. Waaler, E. Kharlamov,

SemML: Facilitating development of ML models for condition monitoring with semantics,
Journal of Web Semantics 71 (2021) 100664.

[16] B. Zhou, et al., Knowledge graph-based semantic system for visual analytics in automatic
manufacturing, in: ISWC, 2022.

[17] Z. Zheng, et al., Towards a visualisation ontology for data analysis in industrial applications,
in: ESWC, 2022.

[18] D. Zhou, et al., Ontology reshaping for knowledge graph construction: Applied on bosch
welding case, in: ISWC, 2022.

[19] Z. Zheng, et al., Executable Knowledge Graphs for Machine Learning: A Bosch Case of
Welding Monitoring, in: ISWC, Springer, 2022.

[20] P. M. LaCasse, et al., A Survey of Feature Set Reduction Approaches for Predictive Analytics
Models in the Connected Manufacturing Enterprise, Applied Sciences 9 (2019).

[21] Z. Zheng, et al., ExeKG: Executable Knowledge Graph System for User-friendly Data
Analytics, in: CIKM, 2022.

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/

	1 Introduction
	2 Our Approach
	3 Evaluation and Conclusion

