
Experiment Maker: a Tool to create Experiments with
GPT-3 easily⋆

Patrizio Bellan1,2,∗, Mauro Dragoni2 and Chiara Ghidini2

1Fondazione Bruno Kessler, Via Sommarive 18, 38123, Trento, Italy
2Free University of Bozen-Bolzano, Bolzano, Italy

Abstract
Novel large pre-trained language models, such as GPT-3, can be considered and adopted as artificial
agents since they are now able to solve general problems and mimic human experts. The introduction of
the in-context learning technique allows interaction with the model directly by instructing it to solve
a task. Task instructions, the actual input data, and optionally some examples of solutions are packed
together in a single prompt. The model interprets the prompt and generates a solution for the given
problem without any need of fine-tuning the model.

However, designing efficient prompts is more an art than a science, nowadays. When starting from
scratch, to achieve good performance different prompt contents and model engine’s configurations (for
the same prompt) must be tested. These can be considered time-intensive operations.

In this paper, we present Experiment Maker a software developed to save time and minimize the
effort in designing and testing different prompts and different configurations, In addition, the tool
supports users in combining multiple prompts into an experimental pipeline. Experiment Maker can be
downloaded from the project page at github.com/patriziobellan86/ExperimentMaker.

Keywords
GPT-3, in-context learning, python, experiments

1. Introduction

Nowadays, many real-world scenarios such as Process Extraction from Text [1] may not be
supported by transformer-like models, such as BERT [2] or RoBERTa [3] in a classical training
manner. The data available to train these models toward a downstream task is too small in size.
While the fine-tuning strategy for task-specific applications is standard practice in NLP, the
advent of GPT-3 [4] has greatly changed this paradigm. This model opens the possibility of
injecting task-specific instructions into a model without altering any model’s weight or bias.
This technique is called in-context learning. Task instructions, the actual input data, and
optionally some examples of the task to solve are fed all together in a prompt. Then the prompt
is fed into the model and the model generates the solution. This approach has been widely
adopted to address topics ranging from medical dialogue summarization [5] to hate speech
detection [6].

EKAW’22: Companion Proceedings of the 23rd International Conference on Knowledge Engineering and Knowledge
Management, September 26–29, 2022, Bozen-Bolzano, IT
∗Corresponding author.
Envelope-Open pbellan@fbk.eu (P. Bellan); dragoni@fbk.eu (M. Dragoni); ghidini@fbk.eu (C. Ghidini)
Orcid 0000-0002-2971-1872 (P. Bellan); 0000-0003-0380-6571 (M. Dragoni); 0000-0003-1563-4965 (C. Ghidini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:pbellan@fbk.eu
mailto:dragoni@fbk.eu
mailto:ghidini@fbk.eu
https://orcid.org/0000-0002-2971-1872
https://orcid.org/0000-0003-0380-6571
https://orcid.org/0000-0003-1563-4965
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Applying in-context learning technique with Large Pre-Trained Language Models (PLMs),
such as GPT-3, is difficult since many aspects may impact the performance of a given task.
Indeed, task performance not only is heavily dependent on the textual content and formatting
style of the prompt but it is also conditioned by the model engine configuration. The most
important model engine parameter to set is the sampling strategy since its value has a direct
impact on task accuracy. Let the model be too “creative” may solve some tasks but, in general,
hamper significantly the performance. To gain good performance for a task, different prompt
contents and model engine configurations must be tested. This calibration step is a time-
intensive operation because it must be done for each prompt. In addition, some problems may
be too complex to be solved with a single prompt. Complex problems can be divided into small
sequential sub-problems, each of which could be solved by a specific prompt. So, prompts can
be combined all together in a pipeline to solve complex tasks. Creating a pipeline is not an easy
task that could become a very intensive operation.

In this paper we present Experiment Maker , a software developed to reduce the effort and the
time spent when design prompts and combining multiple prompts in a pipeline. Our system is
composed of two complementary components: Prompt Designer and Pipeline Maker. Prompt
Designer support users to design and calibrate prompts. Pipeline Maker helps users in creating
a pipeline by combining multiple prompts. It also allows using the results of a previous step as
actual input data of another prompt. This component allows users to execute custom python
modules (typically used as data filters) at the end of both each step and the entire pipeline.
Custom modules help in automatizing some common tasks along a pipeline execution, such
as extracting items from results or cleaning them. Practically, they allow tailoring pipelines
toward specific needs, tasks, domains, and output formats.

2. System Implementation

The system relies on two main components: Prompt Designer and Pipeline Maker .

Prompt Designer . This component supports the design and testing of prompts. When designing
prompt two important aspects have to be considered: (i) prompt content and (ii) model engine
configuration. A straightforward aspect to consider when designing a prompt from scratch is
the selection of information to provide to the model. For example, it is crucial to test the same
prompt with different examples of the task to solve, or different task instructions since they
have a great impact on the results. During the preliminary tests, different customizations must
be tested to observe the inference capability of the system and so tuning the queries. This type
of test is necessary to observe how much the content or/and the formatting style of the prompt
may affect the results. Different configurations lead to different results.

To test automatically different prompt contents, such as different task instructions or different
examples of the task, Prompt Designer allows the creation of custom place-holders. Placeholders
will be filled with a specific list of values provided directly in the editor or read from a file.
This aspect allows testing the same prompt content, filled with different task instructions, for
example.

One of the main advantages of the GPT-3 model is the possibility to adjust the model engine



Figure 1: The figure shows a screen-shot of Prompt Designer component.

configuration. The crucial parameter to set is the token sampling strategy. This parameter
controls the level of “creativity” of the model in solving tasks. This is where temperature and
nucleus sampling strategies come into play. These two parameters control how confident the
model should be when sampling tokens from the tokens’ distribution. Increasing one of these
two parameters will make the model more likely to take “risks” and it will consider tokens
with lower probabilities. Finally, presence penalty and frequency penalty parameters allow for
conditioning of the responses generated by allowing the model to sample new words and avoid
repetitions, for example. To support the user in understanding the impact of different prompt
contents/model engine configurations, Prompt Designer offers a dedicated comparison window
that allows selecting the answers to show, i.e., comparing different prompt contents or different
model engine configurations. A screenshot of the user interface is shown in Fig.1. The GUI is
composed of three main parts. The first part (a) is a prompt editor. Here it is possible to edit the
prompt content and add placeholders. In the second part of the GUI (b) the user can choose
between (i) asking a single question to the language model or (ii) binding the placeholders
defined in the prompt with variables. Finally, in the third part of the GUI (c), the interface
reports a list of the request posed to the language model.

Pipeline Maker . This component helps users to combine prompts to achieve a common goal or
solve a complex problem. The extraction of a knowledge graph out of a text could be an example
of a complex problem. Indeed, the extraction could involve the execution of a sequence of
sub-tasks. Each sub-task can be solved by a prompt along a pipeline (a sequence of consecutive
steps). An example of such a pipeline could be: (i) extracts entities described; (ii) infers entities



Figure 2: The figure shows a screen-shot of Pipeline Maker component.

not described; (iii) infers their relations. The advantage of Pipeline Maker is the possibility to
bind prompt-template place-holders with the output of a previous step. A sequence of prompts
is combined into a single pipeline. Thus, Pipeline Maker easier the task of creating and testing
pipelines.

At the end of each step, it is possible to execute a custom module to process the step results.
Custom modules (called step filter ) commonly operate as a filter on step results or are adopted to
automatize some common tasks (such as item extraction and text cleaning). Finally, at the end
of the entire pipeline, it is possible to execute a custom module, called output filter, to perform
the final filtering of the results (if needed) or to generate custom representations of the overall
pipeline, such as generating a knowledge graph in a specific format.

A screenshot of the user interface is shown in Fig.2. The GUI is composed of four main parts.
The first part of the GUI (a) allows the user to load textual content of files and use it as a variable
to be bind to prompt placeholders. In the second part (b), the user binds prompt placeholders
with variables and selects the step filters to eventually apply at the end of the step. In the third
part of the GUI (c), the user can load and select which filters apply at the end of the pipeline.
Finally, the last part of the GUI (d) presents the workflow of the pipeline.

3. Experiment Maker in Action: What we Will Show During The
Demo

The demo presentation will be split into two parts: (i) the presentation of the Prompt Designer
component to design prompt, and (ii) the presentation of the Pipeline Maker component to
combine prompts to create an experimental pipeline.
We will consider the problem of extracting a simple knowledge graph out of texts of the

PET dataset[7] as a use case. We will show how to create prompts from scratch, create custom



filters to manipulate the model’s answers, and create an experimental pipeline entirely based
on GPT-3 and in-context learning techniques.

Usage of Prompt Designer . In the first part of the demonstration, we will show participants
Prompt Designer in action. We will show how to design a prompt from scratch to solve a
particular task, i.e., the extraction of activities and the actor performing such activities described
in a text. Moreover, we will guide participants in the calibration of model engine configuration.
We will show how to compare different model engine configurations to understand the impact
of the engine parameters on task performance.

Usage of Pipeline Maker . In the second part of the demonstration, we will show Pipeline
Maker in action.
Firstly, a more technical demonstration is related to the creation of custom modules to

automatize some steps of the pipeline and tailor the pipeline to specific needs. We will show
how developers can create a custom (python) module to extract items out of GPT-3 answers
and instantiate entities and relations into an ontology.
Then, we will demonstrate the creation of an experimental pipeline combining multiple

prompts and custom modules. We will show how to connect multiple prompts in a chain. The
results of a previous step could fill the actual input data placeholder in another step along the
pipeline. We will also show how to execute the custom modules created, at the end of each step
and at the end of the entire pipeline. The pipeline presented would solve the task by simulating
a multi-turn dialog with a domain expert.

4. Conclusion

This paper aims at showing the advantage of using ExperimentMaker to create experiments based
on in-context learning and GPT-3 language model. Specifically, Experiment Maker minimizes
the problem of designing prompts, calibrating the model engine’s configuration toward better
performance, and creating experimental pipelines to solve complex tasks by combining multiple
prompts and running custom modules.

The proposed system is composed of two main components. Prompt Designer supports users
in designing prompts and calibrates the model engine’s configuration.

Pipeline Maker helps users to combine prompts and to create a pipeline. Also, this component
allows the user to run a set of custom modules (written in python) at the end of every step and
at the end of the pipeline.
In future developments, we plan to enable support for other PLMs supporting in-context

learning.

References

[1] P. Bellan, M. Dragoni, C. Ghidini, Process extraction from text: state of the art and
challenges for the future, CoRR abs/2110.03754 (2021). URL: https://arxiv.org/abs/2110.03754.
arXiv:2110.03754.

https://arxiv.org/abs/2110.03754
http://arxiv.org/abs/2110.03754


[2] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: pre-training of deep bidirectional trans-
formers for language understanding, in: Proc. of NAACL-HLT 2019, Volume 1, ACL, 2019,
pp. 4171–4186.

[3] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoy-
anov, RoBERTa: A Robustly Optimized BERT Pretraining Approach, ArXiv abs/1907.11692
(2019).

[4] T. B. Brown, et al., Language models are few-shot learners, in: Annual Conf. on Neural
Information Processing Systems 2020, NeurIPS 2020, 2020.

[5] B. Chintagunta, N. Katariya, X. Amatriain, A. Kannan, Medically aware gpt-3 as a data
generator for medical dialogue summarization, in: Proc. of the 6th Machine Learning
for Healthcare Conf., volume 149 of Proc. of Machine Learning Research, PMLR, 2021, pp.
354–372.

[6] S. Gupta, Hate speech detection using openai and gpt-3, International Journal of Emerging
Technology and Advanced Engineering (2022).

[7] P. Bellan, H. van der Aa, M. Dragoni, C. Ghidini, S. P. Ponzetto, Pet: An annotated dataset
for process extraction from natural language text tasks (2022).


	1 Introduction
	2 System Implementation
	3 Experiment Maker in Action: What we Will Show During The Demo
	4 Conclusion

