CEUR-WS.org/Vol-3257/paperl2.pdf

Concrete Names for Complex Expressions in
Ontologies: A Case Study on SNOMED CT

Christian Kindermann*, Martin Georg Skjeeveland

University of Oslo, Problemveien 7, 0315 Oslo, Norway

Abstract

Giving an entity in a knowledge graph a dedicated name raises the question of whether this name is used
consistently in the knowledge graph or not. In this paper, we investigate the way complex concepts,
e.g., medical diseases, are represented and used in knowledge graphs. In particular, we wonder whether
knowledge graphs include definitions of concise but informative names for more complex concepts that
can be used in lieu of more explicit but lengthy representations.

For this purpose, we formalise the idea of introducing dedicated names for complex expressions in
OWL. We use this formalisation to conduct a case study on SNOMED CT. We analyse how often names
for complex concepts are introduced, how often these names are used throughout an ontology, and
whether these names are used consistently whenever they can be used. We find that many complex
concepts in SNOMED CT are associated with a dedicated name and that such names are mostly used in
a consistent fashion throughout the ontology. However, there are a few exceptions and there are also
cases of complex concepts that are not associated with a dedicated name.

1. Introduction

The representation of an entity in a knowledge graph often involves statements about the
entity’s characteristics. In the case these characteristics can be associated with a concrete idea,
it may be advantageous to make this explicit by naming the idea rather than describing it. For
example, consider the description of an animal with large ears, a trunk, tusks, and a weight of
several tons. The animal in question is of course an elephant.

A name, e.g., elephant, provides an informative and concise reference that can be used in lieu
of a possibly complex description. This can be useful in the context of summarising information
in a knowledge graph. Entities that all share the same characteristics (of say an elephant) can
either be represented by (i) repeatedly enumerating all characteristics for all entities individually
or, alternatively, by (ii) defining the notion of an elephant in terms of said characteristics, and
then declaring entities as elephants using a reference to the definition of what it means to be an

elephant.
To make this argument more concrete, consider a set of entities ey, ..., e, and a set of
characteristics cy, . . ., ¢, for elephants. Using approach (i), a knowledge graph written in

say RDF would require (at least) n times /m many triples of the form (e;, p, ¢;) for1 <i <n

Joint proceedings of ISWC2022 Workshops: the International Workshop on Artificial Intelligence Technologies for Legal
Documents (AI4LEGAL) and the International Workshop on Knowledge Graph Summarization (KGSum), 2022
*Corresponding author.

& chrikin@ifi.uio.no (C. Kindermann); martige@ifi.uio.no (M. G. Skjeeveland)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

112

mailto:chrikin@ifi.uio.no
mailto:martige@ifi.uio.no
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and 1 < j < m where p is some property that associates entity e; with characteristic ¢;. On
the other hand, using approach (ii), only n triples of the form (e;, rdf:type, Elephant) are
required, plus (approximately) m triples to define the meaning of Elephant in terms of the m
characteristics.

The meaning of aname, e.g., Elephant, in a knowledge graph can be specified via the semantics
of a knowledge representation language, e.g., OWL [1]. Once the meaning of a name is formally
specified in a knowledge graph, it can be used throughout the knowledge graph to represent its
associated information. However, even though it seems plausible to always use concise and
informative names where this is possible, it has been observed that this is not always done in
published knowledge graphs. We repeat a concrete example taken from the Galen ontology
that has originally been presented by Nikitina and Koopmann [2]. Here, the medical concept
Clotting is represented as follows:

Clotting = 3 actsSpecificallyOn.(Blood M
3 hasPhysicalState.(PhysicalState M
3 hasState.Liquid)) M
3 hasOutcome.SolidBlood)

This axiom is arguably complex due to both its size and the nesting of expressions. However,
Galen also contains the following axioms:

LiquidBlood = Blood ' 3 hasPhysicalState.LiquidState
LiquidState = PhysicalState M 3 hasState.Liquid

Given these equivalences, the named concept LiquidBlood can be used to simplify the represen-
tation of Clotting to

Clotting = d actsSpecificallyOn.LiquidBlood I
3 hasOutcome.SolidBlood

This observation provides the motivation for investigating whether names for more complex
expressions are in fact used in their stead. The contributions are as follows: (i) we propose an
approach for identifying definitions of various kinds for named classes in ontologies, (ii) we
develop techniques for quantifying the use and lack of reuse of such named classes, and (iii)
we use these techniques to conduct a case study on SNOMED CT [3] as an example ontology
in which more complex concepts are automatically constructed based on a compositional
grammar.

2. Preliminaries

We assume the reader to be familiar with OWL [1] and only fix some terminology. Let N¢, Ny,
and Np be sets of class names, individual names, and property names. A class is either a class
name or a complex class built using OWL class constructors. We will use T and L to denote
owl:Thing and owl:Nothing respectively. We use both OWL Functional Style Syntax [4] and
Manchester Syntax [5] to write OWL axioms. An ontology is a set of axioms and we write

113

O E « to denote that the ontology O entails the axiom «. An axiom « is explicit in O if
a € O, and implicit if « ¢ O but O |= a. An OWL expression e occurs in O if e is used as a
subexpression within an explicit axiom in O.

3. Abbreviations in Ontologies

3.1. Abbreviations and Synonyms

The Oxford English Dictionary defines the word abbreviation to denote “[t]he result of shorten-
ing something; an abbreviated or condensed form, esp. of a text; a summary, an abridgement” [6].
So, we define an abbreviation for a complex OWL expression as an equivalent named class.

Definition 1 (Abbreviation). A named class A is an abbreviation for a complex class expression
C in an ontology O if O | EquivalentClasses(A, C). The axiom EquivalentClasses(A, C) is
called the definition of A.

A complex OWL expression can be equivalent to more than just one named class. We
refer to equivalent named classes as synonyms.' Please note that synonyms are not necessarily
abbreviations. However, a synonym for an abbreviation is also an abbreviation (due to transitivity
of EquivalentClasses).

Definition 2 (Synonym). A synonym for a named class N in an ontology O is a named class S
s.t. O = EquivalentClasses(S, N). The axiom EquivalentClasses(S, N) is called the definition

of S.

Both abbreviations and synonyms are notions based on entailment, i.e., an EquivalentClasses
axiom with exactly two arguments. However, OWL specifies EquivalentClasses as an n-ary
constructor. So, for the purpose of analysing how abbreviations and synonyms are specified in
ontologies, we introduce a notion that accounts for all syntactic variants of EquivalentClasses.

Definition 3 (Definition Types). Let A be an abbreviation, Si,...,S,, synonyms, and
Ci,...,C, complex class expressions. Then, an axiom « is a

¢ simple definition of A, if &« = EquivalentClasses(A, C;),

e simple definition of S;, if « = EquivalentClasses(A,S;),

« ambiguous definition of A, if « = EquivalentClasses(A,Cy, ..., Cy),

« enumerative definition for Sy, ...,Sy, ifa = EquivalentClasses(S1,...,Sm),

¢ compound definition forSy, ..., Sy, ifa = EquivalentClasses(S1,...,Sm,Ci,...,Cp).

With this notion of definition types, we can quantify how abbreviations and synonyms are
specified in an ontology, i.e., we can count both explicit as well as implicit EquivalentClasses
in an ontology. Since the extraction of finite sets of entailments is a non-trivial matter [8], we
will discuss how we determine and count implicit abbreviations and synonyms in more detail
in Section 3.3. However, before we do so, we discuss the more obvious question about how
abbreviations and synonyms are used in an ontology.

"The Oxford English Dictionary defines the word synonym to denote “Strictly, a word having the same sense as
another (in the same language); [...]” [7].

114

a1 = SpicyPizza EquivalentTo Pizza and
(hasTopping some (PizzaTopping and (hasSpiciness some Hot)))
as = SpicyTopping EquivalentTo PizzaTopping and (hasSpiciness some Hot)
a3 = SpicyTopping EquivalentTo HotTopping
a4 = DiavolaPizza SubClassOf SpicyPizza
a5 = DiavolaPizza SubClassOf Pizza and hasCountryOfOrigin value Italy
ag = NapoletanaPizza SubClassOf Pizza and hasCountryOfQOrigin value ltaly

Figure 1: Example of abbreviations and synonyms in a sample ontology. The named class SpicyPizza
is an abbreviation. The classes Spicy Topping and HotTopping are synonyms.

3.2. Using Abbreviations in Ontologies

Consider the example ontology Op, shown in Figure 1. Here, the abbreviation SpicyPizza is
specified via a simple definition in axiom «; and occurs on the right-hand side of a4. So, we
say an abbreviation is used if it occurs in an OWL axiom that is not its definition.

Definition 4 (Abbreviation Use). Let A be an abbreviation in an ontology O. If A occurs in an
axiom o € O and « is not a definition for A (according to Definition 3), then A is used in a.

In addition to the use of an abbreviation, we can also determine if an abbreviation is not used
even though its use would be possible.

Definition 5 (Possible Abbreviation Use). Let EquivalentClasses(A, C') be the definition of
an abbreviation A in an ontology O. If C occurs in an axiom o € O and « is not a definition for
A (according to Definition 3), then there is a possible use for A in a.

Consider axiom «; € OF,. Here, the abbreviation Spicy Topping or its synonym HotTopping
have possible uses since the complex OWL expression PizzaTopping and (hasSpiciness some
Hot) could be replaced by either Spicy Topping or Hot Topping.

Note that the definition of a possible use for an abbreviation is dependent on the existence of
an abbreviation in an ontology. However, in cases where no abbreviation is available, one may
wonder when it makes sense to introduce an abbreviation for a reoccurring complex expression.
A high number of occurrences of a complex class in an ontology may be used as an indicator
for the identification of potential candidates for a new abbreviation.

Definition 6 (Abbreviation Candidate). Let C be a complex expression in an ontology O s.t.
there is no abbreviation for C. If C occurs at leastI" times in O, then C is a abbreviation candidate
w.r.t. threshold T'.

With the notions of an abbreviation’s use (Definition 4), possible use (Definition 5), and
abbreviation candidate (Definition 6), we can quantify the impact of abbreviations in an ontology.
First, however, one needs to identify all abbreviations in an ontology. So, in the next section,
we specify a procedure for determining all explicit as well as implicit abbreviations defined in
an ontology.

115

3.3. Determining Abbreviations

Explicit definitions for abbreviations (according to Definition 3) can be determined in a
straightforward manner by checking the syntactic shape of all axioms in a given ontology.
Similarly, implicit definitions can be determined in a straightforward manner by checking
O | EquivalentClasses(A, C) for all pairs of named classes and complex classes occurring
in an ontology. However, this is impractical for large ontologies with a large number of both
named and complex classes.

Instead, we propose to determine implicit abbreviations by building on highly optimised
implementations of the standard reasoning service classification, i.e., the computation of all
entailed SubClassOf and EquivalentClasses axioms between named classes in a given ontol-
ogy [9, 10, 11]. We will refer to this set as the inferred class hierarchy (ICH).

The idea is to first introduce abbreviations for all complex class expressions that occur in a
given ontology, then to compute its ICH, and finally to read off all implicit abbreviations from
the ICH. So, more formally, for a given ontology O, we create the ontology

04 = O U {EquivalentClasses(A;, C;) | C; occurs in O, A; does not occur in O}

and compute ICH(O4). Since the ICH captures all SubClassOf and EquivalentClasses rela-
tionships between named classes in an ontology, it is straightforward to identify all named
classes in O that are equivalent to a newly introduced abbreviation A; in O 4. We will present a
worked example of this approach and will discuss a number of technical details that are not
mentioned in the high-level description outlined above.

Consider O, shown in Figure 1. The ontology consists of six axioms in which the six
complex class expressions Cy, . . ., Cg, as shown in Figure 2a, occur. So, given these six class
expressions, we construct the ontology

O§$ = Opg, U {EquivalentClasses(A1,C1), ..., EquivalentClasses(Ag, Co) }

where A1, ..., Ag are newly created class names that do not occur in Og,. We then classify
Oéx and represent the resulting ICH by a transitive reduct (w.r.t. the SubClassOf relation)
in which equivalent classes are grouped into collections. More formally, let [C]o denote the
set {C | O |= FquivalentClasses(C,C;)}. By abuse of notation let SubClassOf ([X]o, [Y]o)
denote the set of axioms {SubClassOf (X;,Y;) | Xi € [X]o,Y; € [Y]o}. With this, the
transitive reduct of an ontology’s ICH is defined as the set of SubClassOf axioms between
equivalent classes, i.e.,

TR(O) = {SubClassOf ([X|o, [Y]o) | O = SubClassOf ([X]o, [Y]o)}-

Figure 2 shows the transitive reduct for the ICH of (’)éx (omitting L for presentational purposes).
With this representation of the ICH, it is straightforward to read off all abbreviations in O, For
example, SpicyPizza is equivalent to A4, which in turn is equivalent to C4. So, SpicyPizza is an
abbreviation for C4 in Op;. Likewise, it is straightforward to identify complex class expressions
without abbreviations.

116

C; = hasSpiciness some Hot

Cy = PizzaTopping and (hasSpiciness some Hot)

Cs = hasTopping some (PizzaTopping and (hasSpiciness some Hot))

C4 = Pizza and (hasTopping some (PizzaTopping and (hasSpiciness some Hot)))
Cs = hasCountryOfQOrigin value ltaly

Cg = Pizza and hasCountryOfQOrigin value ltaly

(a) Complex class expressions in Ogy.

OO @e
SpicyPizza, A, HotTopping, Spicy Topping, As
NapoletanaPizza

(b) Visualisation of TR(O%,,) without L.

Figure 2: Determining implicit abbreviations in Op, via the inferred class hierarchy of O .

4. Methods

4.1. Research Questions

The subject of abbreviations in knowledge bases raises a number of research questions. We
distinguish between four broad categories of such questions. The first category is about the
prevalence of abbreviations in ontologies; both in terms of their definition (cf. Section 3.1) as
well as their use (cf. Section 3.2). The second category revolves around how abbreviations, in
the sense of concise but informative names for complex expressions, can be generated and used.
The third category deals with the claimed benefits of abbreviations regarding improved ontology
comprehension, maintenance, and use in practice. And, finally, the fourth category is concerned
with the potential impact of abbreviations in the wider context of ontology engineering. For
example, how do abbreviations affect common ontology engineering services, e.g., ontology
alignment, visualisation, and reasoning only to name a few.

To develop a first understanding of abbreviations in ontologies, we focus on the first category
in this work. In particular, we investigate the following questions:

(Q1) How many abbreviations and synonyms are defined in ontologies?
(Q2) How often are defined abbreviations and synonyms used?

117

(Q3) How often is an abbreviation not used despite being defined?

We also shed some light on the search space of potential candidates (cf. Definition 6) for
abbreviations. For this purpose, we investigate the following questions:

(Q4) How often do complex expressions reoccur in ontologies?
(Q5) How large are such reoccurring complex expressions?
(Q6) What is the nesting depth of reoccurring complex expressions?

4.2. Study Design

The notion of an abbreviation is based on entailment (cf. Definition 1). However, an OWL
ontology is published as a computational artefact in a concrete syntax. Furthermore, the
syntactic structure of an ontology cannot, in general, be assumed to be arbitrary. So, we
distinguish between explicit and implicit axioms in the design of our empirical investigation.
This investigation consists of four distinct inquiries that we use to analyse the latest international
release of SNOMED CT (June 2022). These inquiries concern the (i) definition of abbreviations
and synonyms, (ii) their use, (iii) the reoccurrence of complex class expressions, and (iv) the
size and nesting depth of such complex class expressions. We give a brief description of each of
these inquiries in the following:

1. Number of Abbreviations and Synonyms: We determine how many abbreviations
and synonyms are defined in SNOMED CT (according to Definition 3). We count ex-
plicit and implicit definitions separately following the approach described in Section 3.3.
Furthermore, we compare the number of abbreviations and synonyms to the number of
named classes in SNOMED CT.

2. Prevalence of Abbreviation Use: We determine to what extent abbreviations are used
(cf. Definition 4) and to what extent they are not used even though this would be possible
(cf. Definition 5). We also determine to what extent different synonyms for abbreviations
are used.

3. Reoccurrence of Complex Expression: We determine how often complex expressions
reoccur in SNOMED CT, i.e., how often a given complex class expressions occurs more than
once. Furthermore, we analyse to what extent such class expressions are associated with
abbreviations or not, i.e., how many complex class expressions are potential abbreviation
candidates.

4. Size and Nesting Depth of Complex Class Expressions: We determine the size and
nesting depth of complex class expressions, where the size and depth of an expression
expr are defined respectively as size(expr) = 1 and depth(expr) = 0 if expr is atomic,
and size(expr) = 1+ " | size(arg;) as well as depth(expr) = 1+ max depth(arg;)

if expr = C(argy,...,argy).

4.3. Materials

We use the international edition of SNOMED CT (June 2022) downloaded via the Unified Medical
Language System Terminology Service (http://owlapi.sourceforge.net/). and use the Snomed

118

http://owlapi.sourceforge.net/

Table 1
Number of abbreviations and their uses in SNOMED CT.

Condition 0 1 2-4 | 5-10 | 11-20 | 21-50 | 51-100 | > 100
Explicit 119076 | 4994 | 3005 986 285 103 23 10
Implicit 0 0] 2072 975 287 108 16 14

Table 2

Number of complex class expressions associated with a possible abbreviation use in SNOMED CT.
Condition 0 1 2-4 | 5-10 | 11-20 | 21-50 | 51-100 | > 100
Explicit 124368 | 2603 | 1210 245 34 18 2 2
Implicit 0| 3552 | 1945 308 42 4 1 1

OWL Toolkit (https://github.com/IHTSDO/snomed-owl-toolkit) to convert its release format
(RF2) to OWL. All reasoning tasks are performed with ELK version 4.3 (https://github.com/
liveontologies/elk-reasoner). The empirical investigation is orchestrated using the OWL API
version 5.1.15 (http://owlapi.sourceforge.net/).

5. Results

5.1. Inquiry 1: Number of Abbreviation and Synonym Definitions

SNOMED CT contains 357 095 named classes of which 131 954 (about 37%) qualify as abbrevia-
tions according to Definition 1. For 128 482 of these classes, SNOMED CT contains an explicit
simple definition according to Definition 3. Otherwise, there are no explicit definitions of either
abbreviations or synonyms. For 129 758 classes, only simple definitions can be inferred and for
the remaining 2 196 classes, ambiguous definitions can be inferred. For 2 109 of these classes
with implicit ambiguous definitions, SNOMED CT contains an explicit simple definition. This
means that these 2 109 classes are equivalent to at least two complex class expressions, even
though only one equivalence is stated explicitly. It is not clear whether this is intended in the
design of SNOMED CT or not.

To summarise, we observe that the vast majority of abbreviations in SNOMED CT, i.e., more
than 97%, are explicitly stated as simple definitions. There are only 3 472 classes for which no
explicit definition can be found in SNOMED CT.

5.2. Inquiry 2: Use of Abbreviations and Synonyms

Table 1 shows how many times abbreviations are used in SNOMED CT. Each column reports
on how many abbreviations are used a given number of times. For example, the last column
tells us that there are only 10 explicitly defined abbreviations that are used over 100 times in
SNOMED CT. It transpires that the vast majority of explicitly defined abbreviations are not
used as such in SNOMED CT (cf. second left-most column in Table 1). Put differently, many
complex class expressions are defined to be equivalent to a named class, but these classes do
not occur in any other axioms in SNOMED CT.

119

https://github.com/IHTSDO/snomed-owl-toolkit
https://github.com/liveontologies/elk-reasoner
https://github.com/liveontologies/elk-reasoner
http://owlapi.sourceforge.net/

Table 3
Recurrence of complex class expressions SNOMED CT.

Recurrence 1 2-4 5-10 | 11-50 | 51-100 | 101-1000 | 1001-5000 | > 5000
Expressions | 358999 | 60320 | 14047 | 6184 738 695 46 9

Yet, there are many abbreviations that are used at least once and up to ten times, namely
4994 + 3005 + 986 = 8 985. Furthermore, there is a fair number of abbreviations that are used
more than ten times and up to 100 times, namely 285 + 103 + 23 = 411. These numbers show
that many named classes in SNOMED CT are used as abbreviations (according to Definition 4).
Otherwise, we observe that the use of implicit abbreviations is comparable to the use of explicit
abbreviations.

Table 2 shows how many times a complex class expression in SNOMED CT gives rise to
a possible abbreviation use according to Definition 5. For example, the last column tells us
that there are two explicitly defined abbreviations that could be reused more than 100 times in
SNOMED CT. Here, we find that most complex class expressions associated with an explicit
abbreviation do not give rise to any possible abbreviation use. This means that such complex
class expressions do not occur SNOMED CT other than in an abbreviation’s definition (which is
not counted as a possible abbreviation use). However, there is also a fair number of complex class
expressions that give rise to more than 10 possible abbreviation uses, namely 344184242 = 56
in the case of explicitly defined abbreviations, and 42 + 4 + 1 4+ 1 = 48 in the case of implicitly
defined abbreviations.

5.3. Inquiry 3: Reoccurrence of Complex Expressions

Table 3 shows how often complex class expressions reoccur in the SNOMED CT. For example,
the last column tells us that there are only nine complex class expressions in SNOMED CT
that occur more than 5000 times. Here, we find that there are 750 expressions that each occur
more than a hundred times in SNOMED CT, some of which even occur more than a thousand
times. Yet, there are only 24 abbreviations (10 explicit and 14 implicit) with more than a hundred
uses (cf. Table 1). Furthermore, there are only three complex class expressions giving rise to
more than a hundred possible abbreviation uses (cf. Table 2). This means that there are many
complex class expressions without a defined abbreviation in SNOMED CT that reoccur often.
Such complex class expressions can be considered as abbreviation candidates (cf. Definition 6).
We will discuss the challenges of introducing abbreviations for complex class expressions in
Section 7.

Comparing the total number of complex class expressions in SNOMED CT, 441 038, to the
number of abbreviations, 131954 (cf. Section 5.1), reveals that about 30% of complex class
expressions are associated with an abbreviation.

5.4. Inquiry 4: Size and Nesting Depth of Complex Class Expressions

Figure 3 shows both the size and depth of complex class expressions occurring more than 50
times in SNOMED CT. It transpires that such complex class expressions are not deeply nested.
In fact, there are only 39 cases with a nesting depth of three and 232 with a nesting depth of

120

[@ = (b] 51-100 101-1000 > 1000

16 [1] um n " u r ‘ -
%13 m [1] [l.l - -
A 10
- 8
c
< 6
S
22
0 1 1 1 1 1 1 1]

1
0 200 400 600 800 1000 1200 1400

Complex Class Expressions (ordered by reoccurrence)

Figure 3: Size (a) and Depth (b) of Complex Class Expressions reoccuring 51-100, 101-1 000, and more
than 1000 times. Each Complex Class Expressions is given an index (shown on the x-axis) based on an
ordering of their reoccurrence in SNOMED CT.

two, while the remaining 1217 exhibit a nesting depth of 1. Similarly, the size of most such
complex class expressions is comparatively small: 1217 expressions exhibit a size of three, 195
exhibit a size of 5, and only 76 expressions have a size larger than 5.

However, it is important to note that there are instances of large complex class expressions
with many occurrences in SNOMED CT. For example, the complex class expression at the index
1311 in Figure 3 has a size of 15 and occurs 395 times. Expressions of this size are arguably hard
to read and comprehend and might be good candidates for the introduction of an abbreviation.

6. Related Work

Logical equivalent rewritings for ontologies are usually motivated for the purpose of improved
reasoning performance [12] or ontology-based data access [13]. However, the idea of rewriting
axioms to improve ontology comprehension has also been discussed. Existing work in this
direction focuses on rewritings that are minimal in size because large expressions are arguably
hard to read and comprehend [14, 15, 2]. Yet, it is debatable whether the smallest possible logical
rewriting of an axiom is indeed most suitable for human interpretation.

In the work presented in this paper, the focus is not on rewritings that are minimal in size.
Rather, we study to what extent domain-specific vocabulary defined in an ontology can be
reused to simplify otherwise complex expressions. The main argument being that a meaningful
name is more readily understood by domain experts compared to its technical representation in
a knowledge representation language, i.e., a complex class expression in OWL. It is important
to note that the associated reduction in size is secondary in this context.

The task of determining abbreviations in an ontology (cf. Section 3.3) can be interpreted
as concept definability, i.e., the problem of finding a definition for a concept name in an
ontology [16]. However, in the context of this work, the problem of finding abbreviations is
restricted to finding definitions for concepts in terms of complex class expressions that already
occur, syntactically speaking, in an ontology. Nevertheless, advances in research on concept

121

definability may provide useful insights, e.g., knowing under what conditions implicitly defined
concepts can also be defined explicitly. Furthermore, techniques for finding and comparing
concept definitions are relevant in the context of suggesting abbreviations for suitable candidates
(cf. Section 6).

7. Discussion & Outlook

So far, research into logical rewritings of ontologies for improving their comprehension has
focused on reducing the size of logical expressions. However, this strategy may not always be
appropriate in practice. For example, an axiom of the form EquivalentClasses(A, Cy,Cz) for
a named class A may in fact capture two different ways of interpreting A, namely C; and C,
— both of which may be useful in different contexts. In such a case, replacing all occurrences
of both C; and Cy in an ontology with A (excluding its definition), would lead to a more
concise representation but doing so would remove information about the two different ways of
interpreting A in different contexts.

So, the question of when to use an abbreviation may be subject to pragmatic considerations that
may vary between use-cases. Developing an understanding of what makes a logical expression
easier to understand or use in different contexts will require an evaluation of different rewriting
strategies with user studies. Some work in this direction already exists for understanding
justifications of entailments [17].

Besides the question of when to use an abbreviation, is the question of when to introduce a
new abbreviation. We have proposed the notion of an abbreviation candidate (cf. Definition 6)
that is based on the number of occurrences of a complex expression in an ontology. However,
heeding our caution against using conciseness as the primary goal for rewriting ontologies, we
also caution against introducing abbreviations solely based on their potential to replace many
occurrences of a complex expression. Rather, many occurrences of a complex expression should
only be seen as an indication for an abbreviation candidate.

Orthogonal to the introduction of a new abbreviation is the choice of its name. This name
should be concise but informative so that it conveys relevant parts of its formal representation.
The problem of finding a suitable name for a complex class expression involves two separate
tasks. First, the complex class expression needs to be verbalised into a description of what the
expression represents. And second, given such a description, one needs to find a word that
matches the description. Intuitively, the second task can be seen as the inverse operation of a
dictionary lookup. Instead of looking up the definition of a given word, one looks for a word
given a description. As there already exists work for both of these two tasks, i.e., verbalising
OWL expressions [18], on the one hand, and finding words given a query description [19], on
the other hand, future research into combining both tasks for the purpose of suggesting suitable
abbreviation names for complex OWL expressions seems promising.

Lastly, it needs to be highlighted that the introduction of an abbreviation, as defined in this
work, changes the meaning of an ontology. Consider the ontology O and O4 = O U {«} where
a = FEquivalentClasses(A, C) is a definition for an abbreviation A. If A does not occur in
O, then O # O 4 because O4 = « but O £ a. This change in meaning can be avoided by
encoding abbreviations using a meta-language, e.g., OTTR [20], on top of OWL. As an example,

122

consider the ontology

O ={ Napoletana SubClassOf Pizza and hasCountryOfOrigin value ltaly,
Diavola SubClassOf Pizza and hasCountryOfQOrigin value Italy,
Hawaiian SubClassOf Pizza and hasCountryOfOrigin value Canada }

With OTTR, a mapping ItalianPizza — Pizza and hasCountryOfOrigin value lItaly can be
defined, so that O can be encoded as

Or ={ Napoletana SubClassOf ItalianPizza,
Diavola SubClassOf ItalianPizza,
Hawaiian SubClassOf Pizza and hasCountryOfOrigin value Canada }

Note that ItalianPizza is not an OWL class but an expression in OTTR. In particular, the
ontology O is semantically equivalent to O because the OTTR expression ItalianPizza is
indistinguishable from Pizza and hasCountryOfOrigin value Italy on the level of OWL. The
use of a meta-level language also opens up possibilities to summarise representations on higher
levels of abstractions. In the case of the example ontology O, the representation of a pizza’s
country of origin could be captured by a parametrised OTTR expression PizzaWithOrigin(x) —
Pizza and hasCountryOfOrigin value x. With this, all three pizzas in O can be encoded in a
uniform manner giving rise to the following even more succinct encoding:

Op ={ Napoletana SubClassOf PizzaWithOrigin(ltaly),
Diavola SubClassOf PizzawithOrigin(ltaly),
Hawaiian SubClassOf PizzaWithOrigin(Canada) }

8. Conclusion

In this paper, we proposed a method for analysing how names in ontologies are defined and
used. We used this method to conduct a use case study on SNOMED CT. We find that a large
proportion, namely 37%, of named classes are defined to be equivalent to more complex class
expressions (cf. Section 5.1). This finding suggests that concrete names for more complex ideas
play an important role in SNOMED CT’s design.

Furthermore, we find that such names are often reused (cf. Section 5.2). This finding suggests
that concrete names for complex ideas seem to be preferred in SNOMED’s design compared to
their more complex logical representations. However, we also found a number of instances in
which this is not the case. Whether this is intended or whether these cases are undesired effects
of an automated workflow in which complex class expressions are generated will need to be
determined by further research.

Lastly, we investigate the phenomenon of reoccurring complex class expressions that are
not associated with a dedicated name. Here, we find that there are cases of complex class
expressions that occur frequently in SNOMED CT and are non-trivial in both size and depth
(cf. Section 5.3 and Section 5.4). These findings motivate further research into generating concise
but informative names for complex class expressions for the purpose of improving ontology
comprehension.

123

References

(1]

(17]
(18]

(19]

(20]

B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider, U. Sattler, OWL 2: The next
step for OWL, Journal of Web Semantics 6 (2008) 309-322.

N. Nikitina, P. Koopmann, Small is beautiful: Computing minimal equivalent EL concepts, in:
AAAI, AAAI Press, 2017, pp. 1206-1212.

SNOMED International, https://www.snomed.org/, 2022. Accessed: July 11, 2022.

B. Motik, P. Patel-Schneider, B. Parsia, OWL 2 Web Ontology Language. Structural Specification
and Functional-Style Syntax (Second Edition) (2012). URL: http://www.w3.org/TR/owl2-syntax/.
M. Horridge, P. Patel-Schneider, OWL 2 Web Ontology Language Manchester Syntax (Second
Edition) (2012). URL: https://www.w3.org/TR/owl2-manchester-syntax/.

abbreviation, n., in: OED Online, Oxford University Press, 2022. URL: https://www.oed.com/view/
Entry/180?redirectedFrom=abbreviation&, accessed July 05, 2022.

synonym, n., in: OED Online, Oxford University Press, 2022. URL: https://www.oed.com/view/
Entry/1965227result=1&rskey=EVWsim&, accessed July 05, 2022.

S. Bail, B. Parsia, U. Sattler, Extracting finite sets of entailments from OWL ontologies, in: Descrip-
tion Logics, volume 745 of CEUR Workshop Proceedings, CEUR-WS.org, 2011.

F. Baader, B. Hollunder, B. Nebel, H. Profitlich, E. Franconi, An empirical analysis of optimization
techniques for terminological representation systems, or making KRIS get a move on, in: KR,
Morgan Kaufmann, 1992, pp. 270-281.

B. Glimm, I. Horrocks, B. Motik, R. D. C. Shearer, G. Stoilos, A novel approach to ontology classi-
fication, J. Web Semant. 14 (2012) 84-101.

Y. Kazakov, M. Krétzsch, F. Simancik, The incredible ELK - from polynomial procedures to efficient
reasoning with £L ontologies, J. Autom. Reason. 53 (2014) 1-61.

D. Carral, C. Feier, B. C. Grau, P. Hitzler, I. Horrocks, EL-ifying ontologies, in: IJJCAR, volume 8562
of Lecture Notes in Computer Science, Springer, 2014, pp. 464—479.

M. Imprialou, G. Stoilos, B. C. Grau, Benchmarking ontology-based query rewriting systems, in:
AAAI AAAI Press, 2012.

F. Baader, R. Kiisters, R. Molitor, Rewriting concepts using terminologies, in: KR, Morgan Kauf-
mann, 2000, pp. 297-308.

M. Horridge, B. Parsia, U. Sattler, Laconic and precise justifications in OWL, in: ISWC, volume
5318 of Lecture Notes in Computer Science, Springer, 2008, pp. 323-338.

B. ten Cate, E. Franconi, I. Seylan, Beth definability in expressive description logics, J. Artif. Intell.
Res. 48 (2013) 347-414.

M. Horridge, S. Bail, B. Parsia, U. Sattler, The cognitive complexity of OWL justifications, in:
Description Logics, volume 745 of CEUR Workshop Proceedings, CEUR-WS.org, 2011.

K. Kaljurand, N. E. Fuchs, Verbalizing OWL in attempto controlled english, in: OWLED, volume
258 of CEUR Workshop Proceedings, CEUR-WS.org, 2007.

F. Qi, L. Zhang, Y. Yang, Z. Liu, M. Sun, Wantwords: An open-source online reverse dictionary
system, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, 2020, pp. 175-181.

M. G. Skjeeveland, D. P. Lupp, L. H. Karlsen, H. Forssell, Practical ontology pattern instantiation,
discovery, and maintenance with reasonable ontology templates, in: ISWC (1), volume 11136 of
Lecture Notes in Computer Science, Springer, 2018, pp. 477-494.

124

https://www.snomed.org/
http://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.oed.com/view/Entry/180?redirectedFrom=abbreviation&
https://www.oed.com/view/Entry/180?redirectedFrom=abbreviation&
https://www.oed.com/view/Entry/196522?result=1&rskey=EVWsim&
https://www.oed.com/view/Entry/196522?result=1&rskey=EVWsim&

	1 Introduction
	2 Preliminaries
	3 Abbreviations in Ontologies
	3.1 Abbreviations and Synonyms
	3.2 Using Abbreviations in Ontologies
	3.3 Determining Abbreviations

	4 Methods
	4.1 Research Questions
	4.2 Study Design
	4.3 Materials

	5 Results
	5.1 Inquiry 1: Number of Abbreviation and Synonym Definitions
	5.2 Inquiry 2: Use of Abbreviations and Synonyms
	5.3 Inquiry 3: Reoccurrence of Complex Expressions
	5.4 Inquiry 4: Size and Nesting Depth of Complex Class Expressions

	6 Related Work
	7 Discussion & Outlook
	8 Conclusion

