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Abstract. This paper presents a statistical framework based on Prin-
cipal Component Analysis (PCA) for discovering the contextual factors
which most strongly influence user behavior during information-seeking
activities. We focus particular attention on explaining how PCA can be
used to assist in the discovery of contextual factors. As a demonstration
of the utility of PCA, we employ it in an Implicit Relevance Feedback
(IRF) algorithm that observes features of user interaction, computes the
feature co-variances from a few seen documents, and calculates the eigen-
vectors of the co-variance matrix to be used as the basis for ranking the
unseen documents. This ranking is then compared with the ideal rank-
ing that could be computed if the ratings explicitly given by the user
were known. The most effective eigenvector, in terms of impact on re-
trieval performance, was chosen as representative of each user’s intent.
Our experiments showed that each aspect of user behavior is influenced
by different contextual factors, yet there exist some important features
common to most factors. Our findings demonstrate both the effectiveness
of the IRF algorithm and the potential value of incorporating multiple
sources of interaction evidence in their development. In particular, it was
shown that IRF was more effective when the eigenvectors are personal-
ized to each user.

1 Background

Users with vague information needs or limited search experience often require
ways to make their queries more precise. Relevance Feedback (RF) [1] provides
an effective way of doing this by using relevance information explicitly provided
by users. However, despite the promise of RF, users are reluctant to provide
explicit feedback, generally because they do not understand its benefits or do
not perceive it as being relevant to the attainment of their information goals [2].
As an alternative, implicit RF (IRF) [3] uses features of the interaction between
the user and information (e.g., the amount of time a document is in focus in



the Web browser or on the desktop, saving, printing, scrolling, click-through),
where visited documents to which certain relevance criteria apply are assumed
to be relevant. Such contextual features can be mined and used as the basis
for relevance criteria in IRF algorithms. These algorithms can suggest query
expansion terms, retrieve new search results, or dynamically reorder existing
results.

The approach we describe in this paper utilizes user behavior features ob-
served from interaction. Much of the research in this area has focused on the
impact on the reliability of interaction features of task and user information [4,
5], click-through [6], session duration and number of result sets returned [7], and
document display time [4]. These studies showed that the combination of several
implicit features, including display time and the way the user exited from the
result page, can predict search result relevance. However, they have also shown
that interpreting click-throughs as absolute relevance judgments is sometimes
difficult, display times differ significantly according to specific task and user,
and that factors such as task, user experience, and stage in the search can affect
the potential usefulness of IRF.

As well as developing a better understanding of the accuracy of IRF and the
factors that can affect it, work is also ongoing in using this feedback to develop
more advanced search systems. Researchers have explored issues such as how
behaviors exhibited by users while reading articles from newsgroups could be
used as IRF for profile acquisition and filtering [8], to develop a system capable of
automatically retrieving documents and recommending URLs to the user based
on what the user was typing in a non-search application [9], and to automatically
re-rank sentence-based summaries for retrieved documents [10]. To perform these
and similar functions IRF has generally been limited to a single behavior such
as document display time, editing, or visitation [11–13]. Multiple aspects of user
interaction behavior have also been employed [14], but not in the search domain.

In this paper we use multiple aspects of user interaction behavior during
search to build models of user interests that can be useful in ranking documents
as yet unseen by the user. In the remainder of this paper we describe the approach
we adopt and its application for IRF in Section 2, the experiment performed to
test its value and its findings in Section 3, and conclude in Section 4.

2 Discovering Hidden Contextual Factors

Information-seeking and retrieval activities are affected by contextual factors
that cannot be modeled directly. A contextual factor is a variable (e.g., user be-
havior) that describes one of the possible ways context affects user activity. The
features are the data observed from user activity. Suppose an observer is trying
to understand user behavior when the user is seeking information by measuring
various features (e.g., document display time, amount of scrolling). The observer
wants to build a model of the user’s behavior for modifying the system so as to
associate the most relevant documents to that model. Unfortunately, he cannot
figure out what is happening because the features appear clouded, sometimes



redundant or missing. If a model of user behavior exists, then it is hidden be-
hind clouds of noisy data. “Hidden” is related to the latent variables which could
not have been observed directly because of the ignorance of the real structure
of the information-seeking and retrieval activities. For example the amount of
scrolling is likely related to document display time, and therefore one of the two
features are probably redundant. What the observer does not know is the degree
of redundancy or if some other unobservable variable is governing both features
— it may be that this unobservable variable is related to both features so as to
make them co-related although they are not when the unobservable is absent.
Since these factors are hidden, a mechanism for extracting them is necessary. In
this section we present a statistical framework based on Principal Component
Analysis (PCA) that can be used to represent these factors in a way that can
be leveraged by IR systems for improved retrieval effectiveness.

A statistical framework can discover hidden information from amounts of
noisy data [15]. One reason the observed data may be noisy is the absence of
(meta-)data about the contextual factors from which the data were observed.
In other words, the factors which explain the data are hidden and noise is what
makes the data not perfectly explained by the factors. This would mean that a
näıve perspective has been taken when observing the data, that is, a perspective
for which no noise would exist, and therefore no data about context has been
observed. It may be that, if this perspective is changed, noise can be reduced if
not removed and the hidden factors governing information-seeking activities can
emerge. In the following, we show how the statistical framework can be used for
changing perspective and discovering the hidden factors.

When the statistical framework is adopted, the data are naturally represented
as vectors and matrices — vector spaces and Linear Algebra is the theoretical
framework on which the Vector Space Model for IR (VSM) was proposed in the
early Seventies and some recent advances on modeling IR and in particular IR
in Context was investigated [16–19, 21]. Thus, when a document or Web page
is visited, a feature vector can be associated to it. If k features are observed
for each document, the document vectors exist in a k-dimensional vector space.
Linear Algebra tells us that every vector in k-dimensional vector space can be
represented as a linear combination of k independent basis vectors.1

In [16, 17], the idea that a document feature vector is the result of a linear
combination of basis vectors for representing a document as the result of a com-
bination of hidden contextual factors was presented. Therefore, the discovery of
the basis vectors which have generated a document feature vector permits to
have a representation of the contextual factors which explain why those features
have been observed. With this in mind, suppose a document feature vector has
been observed. What is the basis? That is, what are the factors?

This question is important because it points out a tacit assumption which
is often overlooked. Indeed, the basis assumed is often the canonical basis.
For example, {(1, 0), (0, 1)} is the canonical basis of the two-dimensional vec-

1 A set of vectors are mutually independent if no vector is a linear combination of the
others.
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Fig. 1. A vector is generated by infinite dimensions.

tor space and every vector of this space is expressed as linear combination of
the canonical vectors. However, nothing prevents us from expressing the same
document feature vector as a linear combination of a different basis such as{(
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— the vector is the same but its coordinates are dif-

ferent.
In Figure 1 we show how the framework represents a document seen from

two perspectives given by two bases. There are two sets of rays — one set of rays
is spanned by the basis E = {e1, e2, e3}, while the other set is spanned by the
basis U = {u1,u2,u3}. Figure 1 depicts how many contextual factors are in the
same space. This superposition of factors can naturally be represented by the
infinite sets of coordinates which can be defined in the vector space. In the figure,
E superposes U . Both E and U can “generate” the same vector x. The myriad
of bases model a document or a query from different perspectives and each
perspective corresponds to a distinct set of contextual factors. Mathematically, a
vector x is generated by the contextual factors {u1,u2} as x = p2

1u1+p2
2u2+p3

2u3

where ui ⊥ uj , i 6= j, p2
1 + p2

2 + p2
3 = 1 and p2

i ≥ 0. At the same time, x =
q2
1e1 + q2

2e2 + q2
3e3 where ei ⊥ ej , i 6= j, q2

1 + q2
2 + q2

3 = 1 and q2
i ≥ 0. An

explanation of these expressions is given in [19].
This can be expressed in Linear Algebra using matrices. Let

E =

 e1

...
ek

 = I

be the matrix of the canonical basis, which is the starting point of the analysis,
that is, the document feature vectors have been observed in this basis. The
question is: Is there another basis which expresses the same vectors and at the
same time describe the hidden factors? The answer is provided by PCA which
yields a matrix C that transforms the feature vectors expressed in the canonical
basis into vectors expressed in the new basis.



Mathematically, the change of basis is as follows. Let X = [x1, . . . ,xn]>

be the n × k document feature matrix where xi is the i-th (row) document
feature vector — the column vectors of X are supposed to have zero means.
Let V = X> ·X be the feature co-variance matrix.2 PCA yields C = U where
U = [u1, . . . ,uk] is the matrix of the eigenvectors of V. The transformation
takes place as Y = X · C so as yi = xi · C = [xi · u1, . . .xi · uk]. One can
recognize that the j-th coefficient of yi is the size of the projection of xi on to
the j-th eigenvector. Because the eigenvectors are mutually orthonormal,

x>i = (xi · u1)u1 + . . . (xi · uk)uk

Therefore, the eigenvectors are the new basis in which the document feature vec-
tors are expressed and are the representation of the contextual factors underlying
the generation of the document feature vectors.

Why is PCA so special? In statistics, PCA is used to find the vector of features
which best explains the variance of the data. To obtain that, PCA computes
the vector which minimizes a function of the co-variance matrix. This vector
is the principal eigenvector3 of the co-variance matrix. The other (orthogonal)
eigenvectors capture the residual variance and should represent noise. In our
context, the use of PCA and then of a minimum variance-based criterion has the
advantage of explaining most of the variance with a small number of eigenvectors.
In this way, a few factors can be used for explaining, for example, user behavior.
It is useful noting that there are other methods than PCA for representing factors
— these methods are classified as decompositions [20].

As the eigenvectors of the co-variance matrix are a representation of the hid-
den factors, it is natural to be curious about the degree to which a document
is affected by a factor. Therefore, the focus is on how the eigenvectors are used
for ranking documents. If the objects are described by the xi’s, ranking in con-
text reorders the vectors by the square of the projection between them and the
eigenvectors uj ’s which describe the contextual factors. Therefore, the ranking
function is

|xi · uj |2 (1)

where |xi| =
√∑

j x2
ij = 1.

It is interesting to note that the formula resembles the inner product used
in the VSM for IR and that PCA was already used in Latent Semantic Analysis
for extracting hidden concepts from documents. However, the details of this
ranking function can be uncovered and an explanation of why it is proposed can
be obtained as reported in [19, 21].

In the following, we describe how to implement an IRF algorithm that cap-
tures the contextual factors. As an example, suppose the following six feature
(column) vectors have been observed after seeing six (row) documents:

2 When using PCA, co-variance matrix is suggested.
3 The principal eigenvector is associated to the largest eigenvalue, which is a measure

of the variance explained.



X =


−1.17 −2.17 −3.17 0.50 0.67 1.33
−0.17 −2.17 2.83 0.50 −0.33 0.33
−0.17 −2.17 0.83 −0.50 −1.33 −0.67

0.83 1.83 1.83 −0.50 1.67 1.33
1.83 −1.17 −3.17 −0.50 −0.33 −0.67

−1.17 5.83 0.83 0.50 −0.33 −1.67


where the columns corresponds to, say, (1) display time, (2) scrolling, (3)

saving, (4) bookmarking, (5) access frequency and (6) Web-page depth4, respec-
tively — all of these values may refer, for example, to time or frequencies, and
can be seen as features of user behavior.5 The following eigenvectors are then
computed:

U =


−0.09 0.02 0.08 −0.91 −0.18 −0.34

0.91 0.37 0.10 −0.05 −0.17 0.04
0.38 −0.92 −0.01 −0.06 0.04 −0.02
0.03 0.00 −0.01 0.37 −0.15 −0.92
0.04 0.05 0.69 −0.03 0.71 −0.13

−0.15 −0.11 0.71 0.15 −0.64 0.15


The values of an eigenvector are scalars between −1 and +1; the further

a value is from 0 the more important it is. In this circumstance, “important”
means that the feature to which the value corresponds is a significant descriptor
of the contextual factor represented by the eigenvector. The value can be likened
to an index term weight. As the values may be negative, the sign can express
the contrast between features and then the presence of subgroups of features
in the same contextual factor. For example, the first eigenvector, u1, tells that
saving and bookmarking are least important, while the most important feature
is scrolling.

Let uj be one of these eigenvectors and xi be an unseen document. The func-
tion of the distance between the document vector and the subspace spanned by
the eigenvector is then used as a measure of the distance between the document
and the contextual factor. Therefore, xi ·uj is computed. If the unseen document
vector is, say, xi = (0.71, 0, 0, 0, 0.71, 0), then the distance is 0.03.

In the next section we describe an experiment that compared an IRF algo-
rithm based on PCA that represents each feature separately with a comparator
algorithm that uses a single centroid of all features.

3 Implicit Feedback Experiments

The aim of the experiment was to assess the retrieval effectiveness of an IRF
algorithm that used the features of user behavior as feedback and translated this
feedback into document rankings computed by Equation 1.

4 The depth of a Web page is the number of links from the root of the Web site to the
Web page itself.

5 This example is inspired by the data set used in D. Kelly. Understanding Implicit
Feedback And Document Preference: A Naturalistic User Study. PhD thesis, Rutgers,
The State University of New Jersey, 2004.



3.1 Methodology

The interaction logs of real subjects were used to simulate a user who accesses
a series of Web pages, spends time to read them, scrolls the browser window,
moves the mouse and presses keyboard keys. The IRF algorithms under inves-
tigation are assumed to be part of a system that monitors user behavior and
uses these interaction data as a source of IRF to retrieve and order the unseen
documents. When the subject is known, the system records the data by user and
then retrieves and ranks the unseen documents for the given user. The details
of the simulation are as follows (let us name this algorithm EIG since it is based
on the eigenvectors of a feature co-variance matrix):

1. The features of n documents seen by the user are observed and used for
computing a representation of context by computing the contextual factors
as follows:
(a) the feature co-variance matrix is computed,
(b) the eigenvectors u1, . . . ,uk are extracted from the co-variance matrix —

an eigenvector represents a contextual factor.
2. The documents unseen by the subject are ranked by Equation 1 for each

eigenvector ui.

Multi-level usefulness scores assigned to documents by users have been used
as ground truth information for evaluating this IRF algorithm and has not been
used for computing the eigenvectors. Normalized Discounted Cumulative Gain
(NDCG) [22] was used as a measure of retrieval effectiveness that was able to
handle usefulness scores ranging in a non-binary scale.6 NDCG is a performance
metric that is able to make better use of multi-level judgments than precision,
which generally must use binary relevance values. NDCG is a measure of distance
between two rankings — the ranking produced by an experiment and the best
ranking the experiment might produce.

For comparison purposes, the unique centroid vector of the cluster of n vec-
tors of the documents seen by the user was computed. The inner product between
the centroid vector and the unseen document vectors is then computed for rank-
ing the unseen documents. Note that no document clustering is performed. Let
us name this algorithm CTR. CTR was chosen because it exploits the same data
used by EIG but aggregates all interaction feature vectors into a single factor,
allowing us to determine the value of utilizing multiple factors, as permitted by
EIG.

3.2 Document Features

The data set used in this experiment was gathered during the investigation
of the Curious Browser reported in [23]. The set collects the data about 2,127
documents seen by 77 subjects and has information about the actions performed
by the subjects whilst conducting self-determined Web browsing tasks, that is,
6 The discount factor was 2.



without predefined tasks assigned by the experimenter. The following document
features of the data set were used in our study: the time spent on a page (page),
the time spent for horizontal scrolling (hscroll), the time spent for vertical
scrolling (vscroll), the number of scroll events (#scroll), the time spent for
moving the mouse (mouse), the number of the mouse clicks (#mouse), the number
of times hitting the up arrow key (#upkey), the number of times hitting the down
arrow key (#downkey), the time spent holding the up arrow key (upkey), the time
spent holding the down arrow key (downkey), the time spent holding the page
up key (pgup), the number of times hitting the page up key (#pgup), the time
spent holding the page down key (pgdown), the number of times hitting the page
down key (#pgdown), the number of slashes of the visited URL (urldepth).7

In addition to these features, we also have explicit multi-level ratings assigned
by participants based on their own assessment on the usefulness of the document
for their browsing activity. These ratings could then be used in the assessment
of algorithm performance in our study.

In the next section we present the findings of our study.

3.3 Results

The experiments sought to compare the two IRF algorithms and determine
whether there was a contextual factor which orders the unseen documents more
effectively than other factors. To this end, the comparison with CTR would allow
us to determine whether this “special” eigenvector exists, since CTR computes
a single centroid vector. To be precise, the question: “Is there an eigenvector for
which EIG “beats” CTR?” will be answered. This “special” eigenvector would
allows us to personalize IRF to each user.

In order to establish the role played by the eigenvectors, an analysis was
conducted to compare the effectiveness of CTR with the effectiveness of EIG
by varying the eigenvector. That is, one eigenvector was fixed at a time and
the documents were ranked using the fixed eigenvector. We did this for each
subject. Table 1 reports NDCG of CTR and NDCG of EIG. The values in the
table are shown after the user had viewed two documents (i.e., n = 2). This
value has been chosen because it is small enough for evaluating the capability of
the simulated system to perform effectively even if the feedback is limited. The
number of unseen and ranked documents was N−n where N is the total number
of documents seen by the subject in the data set. The eigenvector which achieved
the highest average NDCG of EIG was selected over all the eigenvectors. The
table reports the composition of the eigenvector for each subject thus making a
clear description of the behavior of each subject when accessing the Web pages.

The results suggests that, an eigenvector for which EIG is more effective
than CTR almost always exists. Moreover, page (i.e., the time spent on each
7 urldepth was added by the authors and was not provided by the data set. The

number of slashes has been used because it is a measure of Web-page quality and is
an endorsement of the Web-page when the end user selects it. The number of slashes
is also known as URL depth and is used for successfully retrieving entry Web pages,
which are often preferred by the users when finding resources [24].



lane) is the most important feature of user behavior for every subject. However,
the best eigenvector varies its shape depending on the subject. For example,
subject 5’s behavior is also determined by mouse (i.e., time spent moving the
mouse). Moreover, some features tend to contrast others. For example, subject
74 spends long periods of time on pages when they seldom scroll, and vice
versa. Although page describes a common aspect of the interaction of every
user, it was clear that each subject had a slightly different interaction style
when seeking information, and more than one aspect of this style is necessary to
distinguish between subjects. The presence of page means that it is necessary
for tailoring retrieval to every user, but it is not sufficient since other features
are necessary for maximizing retrieval effectiveness. These results suggest that
tailoring eigenvectors to users leads to improved performance over algorithms
that do not use such an approach. This finding is important because it justifies
the design of IRF algorithms that learn from an individual user’s interaction and
adapt themselves to that user.

Table 1: The composition of the most effective eigenvector for each
subject. Feature subgroups corresponding to negative weighs are
italicized.

Subject NDCG Best Eigenvector
EIG CTR

1 0.883 0.170 page (0.843); vscroll (0.527); mouse (0.107);
2 0.833 0.573 page (0.871); vscroll (0.442); mouse (0.214);
3 0.930 0.491 page (0.997); mouse (0.078); pgdown (0.015);
4 0.907 0.965 page (0.894); mouse (0.449);
5 0.767 0.654 page (0.971); mouse (0.238);
6 0.770 0.929 page (0.895); mouse (0.446);
8 0.933 0.114 page (0.746); mouse (0.666);
9 0.844 0.804 page (0.999); mouse (0.023);
10 0.822 0.951 page (0.850); mouse (-0.53);
11 0.722 0.734 page (0.981); mouse (0.161); vscroll (0.107);
12 0.836 0.741 page (0.966); mouse (0.253); vscroll (0.062);
13 0.916 0.469 page (0.957); mouse (0.286); vscroll (0.051);
14 0.935 0.840 page (0.900); vscroll (0.386); mouse (-0.20);
15 0.873 0.725 page (0.995); mouse (-0.09);
17 0.738 0.863 page (0.915); mouse (0.403); vscroll (0.025);
19 0.889 0.788 page (0.994); mouse (-0.04); pgdown (-0.10);
20 0.861 0.434 page (0.897); mouse (0.442);
21 0.658 0.671 page (0.827); mouse (-0.56);
22 0.868 0.838 page (0.967); mouse (0.255);
23 0.903 0.501 page (0.822); downkey (-0.01); vscroll (-0.21); mouse (-

0.53);
24 0.976 0.784 page (1.000);

Continued on next page



Table 1 – continued from previous page
Subject NDCG Best Eigenvector

EIG CTR
25 0.840 0.827 page (0.991); downkey (0.054); mouse (-0.04); vscroll (-

0.11);
26 0.888 0.777 page (0.950); vscroll (0.264); mouse (0.166);
27 0.751 0.920 page (0.990); mouse (0.138);
28 0.631 0.548 page (0.748); mouse (0.663);
30 0.801 0.519 page (0.999); mouse (0.015);
31 0.938 0.912 page (0.999); mouse (0.015);
32 0.715 0.253 page (0.999); mouse (0.035);
33 0.880 0.626 page (0.925); mouse (0.277); vscroll (0.260);
34 0.849 0.767 page (0.947); mouse (0.322);
35 0.981 0.810 page (0.920); vscroll (0.392); mouse (-0.02);
36 0.825 0.411 page (0.859); vscroll (0.473); mouse (-0.20);
37 0.892 0.832 page (0.950); mouse (0.304); vscroll (0.048); pgdown (-

0.01); upkey (-0.02); downkey (-0.05);
38 0.878 0.930 page (0.994); vscroll (0.093); mouse (0.054); pgup key (-

0.01); pgdown (-0.02);
39 1.000 1.000 page (0.822); downkey (0.383); upkey (0.352); mouse

(0.233);
40 0.907 0.848 page (0.913); mouse (0.408);
41 1.000 0.581 page (0.951); mouse (0.310);
42 1.000 0.778 page (0.979); vscroll (-0.05); mouse (-0.19);
43 0.920 0.898 page (0.999); mouse (0.021);
44 0.981 0.310 page (0.933); mouse (0.355); vscroll (0.056);
45 0.914 0.562 page (0.884); mouse (0.353); vscroll (0.306); pgdown

(0.018);
46 0.847 0.630 page (0.997); mouse (0.081);
47 0.893 0.324 page (0.987); mouse (-0.16);
48 1.000 1.000 page (0.953); mouse (0.304);
49 1.000 1.000 page (0.953); mouse (0.304);
50 0.961 0.631 page (0.959); mouse (0.283);
51 0.953 0.564 page (0.889); mouse (0.458); hscroll (0.028);
52 0.771 0.605 page (0.900); mouse (0.435);
53 0.892 0.477 page (0.981); mouse (0.100); vscroll (-0.17);
54 0.834 0.169 page (0.935); vscroll (0.260); mouse (0.242);
55 0.909 0.587 page (0.883); vscroll (0.052); mouse (-0.47);
56 0.946 0.783 page (0.960); vscroll (0.278); mouse (0.032);
57 0.962 0.803 page (0.999); vscroll (-0.02);
58 0.887 0.870 page (0.988); mouse (-0.15);
59 1.000 1.000 page (0.913); pgup key (-0.03); downkey (-0.41);
60 0.856 0.789 page (0.891); vscroll (0.323); mouse (0.319);
61 1.000 0.863 page (0.957); mouse (0.252); vscroll (0.140);

Continued on next page



Table 1 – continued from previous page
Subject NDCG Best Eigenvector

EIG CTR
63 0.814 0.928 page (0.996); mouse (0.092);
64 0.920 0.878 page (0.932); mouse (-0.36);
65 1.000 0.995 page (0.958); mouse (0.248); vscroll (0.143);
66 0.901 0.199 page (0.868); vscroll (0.473); mouse (0.152);
67 0.860 0.949 page (0.856); vscroll (0.472); mouse (0.211);
68 0.875 0.944 page (0.897); mouse (0.443);
69 0.990 0.929 page (0.850); mouse (0.527);
71 0.958 0.863 page (0.976); vscroll (0.177); mouse (0.127);
72 0.989 0.984 page (0.999); vscroll (0.042); mouse (0.018);
73 0.915 0.884 page (0.939); mouse (0.345);
74 0.903 0.532 page (0.980); mouse (-0.01); vscroll (-0.20);
75 0.962 0.224 page (0.971); mouse (0.199); vscroll (0.133);
76 0.713 0.558 page (0.995); mouse (0.091); vscroll (0.030);
77 0.760 0.632 page (0.985); mouse (0.162); downkey (0.051);
Avg. 0.923 0.774
StDev.0.088 0.238

4 Conclusions and Future Work

In this paper a statistical framework that utilizes multiple sources of evidence
present in an interaction context has been presented to discover hidden contex-
tual factors that can be used for personalization. The eigenvectors extracted from
a feature co-variance matrix observed from interaction are used as representa-
tion of the hidden contextual factors. These representations have been compared
with an alternative using rich interaction logs (and associated metadata such as
relevance judgments) gathered during a user study. Our findings demonstrate the
effectiveness of these representations. In particular, it was shown that implicit
feedback could be effective when the representation of the contextual factors are
personalized to the user. Future work will address the challenge of selecting the
best eigenvector automatically.
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