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Abstract
For the tasks of improving caregiving in medicine and other sectors (i.e., teaching) and of constructing
effective human-AI teams, agents should be endowed with an emotion recognition and management
module, capable of empathy, and of modelling aspects of the Theory of Mind, in the sense of being able
to reconstruct what what someone is thinking or feeling. In this paper, we propose an architecture for
such a module, based upon an enhanced notion of Behavior Trees. We illustrate the effectiveness of the
proposed architecture on a significant example, and on a wider case study.
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1. Introduction

A long-term goal in the field of human-machine interaction and in assistive robotics (e.g., in
healthcare applications) is to formalize aspects of the “Theory of Mind” (ToM), which is (cf. the
Oxford Handbook of Philosophy and Cognitive Science [1], Chapter by Alvin I. Goldman) an
important social-cognitive skill that involves the ability to attribute mental states, including
emotions, desires, beliefs, and knowledge both one’s own and those of others, and to reason
about the practical consequences of such mental states. Theory of Mind, developed originally
by Philosophers and Psychologists, is starting to be applied to robotics (and some suitable logic
formalizations are being developed [2, 3]), in particular with the arrival of “service robots”
devised to support users in their everyday tasks (e.g., in eHealth robots support on the one hand
patients, by reminding them to take their medicines and by providing advice and reassurance,
but on the other hand such robots also support doctors, by constantly monitoring the user’s
vital parameters, creating alerts whenever necessary). In order to render these robots acceptable
and even appreciated by users, they will have to be programmed so as to mimic basic social
skills and behave in a socially acceptable manner, which means that their behaviour is to some
extent predictable by the user, and conformant to social standards. Theory of Mind is often
linked to so-called “Affective Computing”, which is a set of techniques able to elicit a human’s
emotional condition from physical signs, to enable the system to respond intelligently to human
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emotional feedback, and to enhance ToM activities by providing it with perceptions related to
the user’s emotional signs.

In this paper we go beyond simple affective computing, as we aim to define a module, to be
possibly incorporated into any agent architecture, responsible for the emotional interaction
between the agent and the user. In particular, the envisaged agents are empathetic in the sense
that they are capable of ”empathy”. They can sense user’s emotions, coupled with the ability
to work out what the user might be thinking or feeling. Therefore, our notion of empathy is
strongly linked to ToM.

Empathy has be generally seen as a positive quality, but latety formal studies in Neurosciences
(cf„ e.g., [4] and the references therein) have tried to provide a formal perspective on the neuro-
biological and cognitive mechanisms that underlie the positive role of empathy, in particular in
medicine, where emphatic providers have the effect of patients healing faster and experiencing
lesser symptoms. According to neuroscientists, the notion of empathy encompasses: (1) the
capacity to react to the the valence and intensity of others’ emotions; (2) conscious awareness
of the emotional state of another person; (3) empathic concern, implying the motivation to care
for someone’s welfare; (4) cognitive empathy, similar in fact to ToM in the sense of being able
to reconstruct what what someone is thinking or feeling.

There is nowadays a growing attention on building intelligent systems where humans and AIs
form teams, exploiting the potentially synergistic relationships between human and automation,
thus devising Artificial Intelligence (AI) systems that should cooperate in order to perform
complex tasks, possibly involving a high degree of risk. As a simple example, in an AI-based
self-driving vehicle, the AI component is expected to evaluate and “co-manage” situations and
risks, where the driver is used as a fallback, or even self-manage the risks in the case this
should be required by the circumstances. Human-automation interaction has been studied,
and is one of the main themes of “Human-centered AI”. This issue also falls in the realm of
”Trustworthy”, whose requirements are respect for human autonomy, prevention of harm,
fairness, and explainability. Trustworthy AI is meant to guarantee compliance, safety, security,
reliability, adaptability. Working together, AI and humans can produce results that exceed what
either can achieve alone. For instance, a human driver might train in some way the co-driving
automation via a cooperative task shared between the human driver and the AI-based system
installed on the vehicle. In this synergistic relationship humans improve automation efficacy
(capabilities and performance) while automation improves human efficiency, and compensates
for human inadequacies, catching and correcting possible misbehaviours, possibly also due to
physically or emotionally impaired states, and providing useful suggestions.

So, for the tasks of improving caregiving in medicines and other sectors (i.e., teaching) and of
constructing effective human-AI teams, agents should be endowed with an emotion recognition
and management module. In this paper, we propose an architecture for such a module, based
upon an enhanced notion of Behavior Trees. The paper is organized as follows. In Section 2 we
provide the necessary background on Behavior Trees. In Section 3 we discuss the proposed
architecture, and in Section 4 we illustrate the enhanced Behavior Trees that we devised as the
core of this architecture. In Sections 5 and 6 we propose a possible example of application of
the proposed architecture, and a wider case study. Finally, in Section 7 we conclude.



2. Background: Behavior Trees

Behavior Trees (BTs) were invented as a tool to enable modular AI in computer games [5]. In
BTs, the state transition logic is not dispersed across the individual states (like in finite state
machines), but organized in a hierarchical tree structure with the states as leaves. This has a
significant effect on modularity, which in turn simplifies both synthesis and analysis by humans
and algorithms alike. A behavior tree is essentially a mathematical model of plan execution.
BTs describe switchings between a finite set of tasks in a modular fashion. Their strength comes
from their ability to create complex tasks composed of simple tasks without worrying how the
simple tasks are implemented. In the last decade BTs received an increasing amount of attention
both in computer science, robotics, control systems and video games. For comprehensive survey
of BTs in Artificial Intelligence and Robotic applications see [6].

Despite the fact that there is no formal definition, behavior trees have been comprehensively
described by Champandard [7, 8, 9, 10] and Knafla [11]. Damian Isla has also discussed the
implementation of behavior trees in commercial games [5, 12]. In this section, we introduce a
definition of behavior trees based on the description of Champandard and Knafla.

A behavior tree is a directed acyclic graph consisting of different types of nodes. Most of
the time the behavior tree is tree-shaped, hence the name. However, unlike a traditional tree, a
node in a behavior tree can have multiple parents which allows the reuse of that part of the BT.
The traversal of a behavior tree starts at the top node. When a node is executed, it returns one
of the three states: success, failure or running. The first two are self-explanatory and running
signifies that the node has not yet finished executing. A behavior tree consists of the following
types of nodes.

2.1. Leaf nodes

Action: An action represents a behavior that the character can perform. The action returns
the state success or failure when it completes its execution depending on the outcome. When
an action needs more time to complete, it returns the state running. An action is depicted as a
white, rounded rectangle.

Condition: A condition checks an internal or external state. It returns either success or
failure. Conditions are similar to actions except that they execute immediately and hence never
return running. A condition is represented as a gray, rounded rectangle.

2.2. Inner nodes

Sequence Selector: A sequence selector is a node that typically has several child nodes that
are executed sequentially. As long as a child node completes its execution successfully, the
sequence selector continues executing the next child node in the sequence. If every child node
returns success, then the sequence selector returns success. Should one of the child nodes return
failure, the sequence selector immediately returns failure. If a child node returns running, the
sequence selector also returns running. The sequence selector keeps track of which, if any, of
its child nodes is currently running. A sequence selector is depicted as a gray square with an
arrow across the links to its child nodes.



Figure 1: A general architecture for emotional empathetic agents

Priority Selector: A priority selector has a list of child nodes which it tries to execute one
at a time, with respect to the specified order, until one of the child nodes returns success. If
none of the child nodes executes successfully, the priority selector returns failure. If a child
node returns running, the priority selector also returns running. The priority selector keeps
track of which of its child nodes, if any, is currently running. A priority selector is represented
with a gray circle with a question mark in it.

Parallel Node: A parallel node executes all of its child nodes in parallel. A parallel node can
have different ways of determining when to stop executing its child nodes. One may specify
the number of child nodes that must execute successfully for the parallel node to succeed, and
likewise the number of child nodes that must fail in order for the parallel node to fail. A parallel
node is depicted as a gray circle with a P in it.
Decorator: A decorator is a node that acts as a filter that places certain constraints on the

execution of its single child node without affecting the child node itself. For instance, a decorator
can prevent a child node from executing more often than every five second. Decorators are
represented as diamonds with descriptive text inside.

3. An Architecture for an Emotional Empathetic Agent

In this section we present the proposed architecture for emotional empathetic agents, depicted
in Figure 1 and discuss its main components.

Sensor
Agents act in their environment. The environment contains the user (human) and possibly
other agents. An agent perceives its environment through sensors and acts upon it through
actuators. Every agent perceives its own actions and may perceive their effects later via its



sensory input.

Emotion Recognition
The emotion recognition module (also call affective sensing) receives the raw data from the
sensory input and processes it to synthesize the user’s affective state 𝐸. The output < 𝑃, 𝐸 >
differentiates between the input data 𝑃 from the sensor about the environment and the
synthesized emotional state 𝐸. There are three main approaches to observe emotional traits:
speech analysis; visual observation of gestures, body posture or facial features; and measuring
physiological parameters through sensors with direct body contact. These approaches observe
changes to physiological processes related to emotional states. The reader may refer to [13] for
an approach to emotion recognition via a physiological background.

Affective Appraisal
Affective appraisal refers to the process in which events from the environment are evaluated
in terms of their emotional significance. Appraisal theory is the theory in psychology that
emotions are extracted from our evaluations (appraisals or estimates) of events that cause
specific reactions in different people. Essentially, our appraisal of a situation causes an
emotional, or affective, response that is going to be based on that appraisal. Appraisal theories
of emotion state that emotions result from people’s interpretations and explanations of their
circumstances even in the absence of physiological arousal. There are two basic approaches;
the structural approach and process model. These models both provide an explanation for the
appraisal of emotions and explain in different ways how emotions can develop. In the absence
of physiological arousal we decide how to feel about a situation after we have interpreted
and explained the phenomena. Several appraisal theories have been proposed in literature.
Notably, Lazarus [14, 15] proposes a multidimensional appraisal theory of emotion, where an
appraisal is an evaluation of an external event. His theory of emotion can be broken down
into a sequence: (1) cognitive appraisal, (2) physiological response, and (3) action. Ortony,
Clore and Collins’s [16] model of emotion is a widely used model of emotion that states that
the strength of a given emotion primarily depends on the events, agents, or objects in the
environment of the agent exhibiting the emotion. For an implementation of the OCC model
within an emotional agent architecture for believable characters, the reader may refer to [17].

Affective State
The term “affective state” refers to how an entity is currently feeling, that is the product of its
emotions at a certain moment in time. Within an emotional agent architecture [18], emotions
were represented as signals1 coming from the Affective Appraisal module. The set of all signals
of the same type forms the corresponding emotional state. Each signal has the form of a sigmoid
curve and consists of the following phases: delay, attack, sustain and decay. The sigmoid curve
is defined as:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑡) =
𝑔

1 + 𝑒−(𝑡+ℎ)/𝑠
+ 𝑣

where 𝑡 is the time, 𝑔 is the gain, ℎ is the horizontal shift, 𝑠 is the slope steepness and 𝑣 is the
1The signals correspond to what in neuroscience is the concentration of certain chemical substances in human brain.
The signal we use is a simplified representation of the concentration levels.



vertical shift. Being the signals parameterized, it is possible to create fairly diverse types of
emotion signals. To address more complex emotional situations scenarios, in this approach
emotions could influence each other through a sophisticated filtering system, refer to [19] for a
comprehensive presentation.

Decision Making
This module is responsible for selecting the next action to execute. It receive inputs from the
Emotion Recognition module as well as the Affective State and the Agent Memory module.
Note that here with 𝐸 we indicate the emotional state of the human that interact with the
automation (namely, the agent), and with �̂� we indicate the emotional state of the agent (that
is, the automation). 𝐸 and �̂� are therefore distinct and assume different values. Possibly, the
emotions elicited from the human are different from the emotions designed and deployed
for the agent. In this paper we focus on employing the technique of emotional behavior
trees as core technology for the decisionmakingmodule and discuss it further in the next section.

Agent Memory
The knowledge base represents the memory of the agent. Here all information from sensory
inputs 𝑝 from the environment and user’s emotional state 𝐸 as well the actions 𝐴 selected to be
executed are stored with a time stamp.

Actuator
The actions 𝐴 selected by the Decision Making module are passed to the actuator whose role
is to execute them on the environment. Actions come together with an emotion encoding to
display agents emotions via verbal or visual communication. The actuator, depending on the
type of application, must be equipped with the ability to render the emotional aspect of actions.
One example could be a verbal communication to a human while having a smiling face.

4. Emotional Behavior Trees

It is not straightforward to couple behavior trees with emotions to mimic human emotional
decision making. If we wish to have a natural and interesting behavior, it is important that the
characters behave in an emotional way. It could be claimed that it is possible to incorporate
emotions into behavior trees by merely using emotions in the conditions. However, doing so
may create large cumbersome behavior trees that are difficult to manage. For each behavior,
a specific set of conditions would have to be placed on emotional states. These conditions
would most likely take the form of checking the emotional values against a fixed threshold,
which would disable a subtle emotional effect on decision making. Using this approach would
most likely lead to a large behavior tree with numerous nested conditions, making it difficult
to construct and manage. Furthermore, in this paper we focus on emotion-based interaction
between humans and machines, and human (the end user) will certainly feel that the system is
programmed to react to his/her inputs in a rational way as a machine.



4.1. Emotional Selector

To take emotions into consideration, Johansson and Dell’Acqua [20] extended the definition of
behavior trees and introduced a new type of selector, called the emotional selector. They called
the resulting model the emotional behavior tree (EmoBT).

Emotional Selector: The emotional selector orders its child nodes according to a number of
identified relevant factors (see Method) and the affective state of the agent. Once the ordering
has been established by selecting the child nodes based upon their probabilities, the emotional
selector behaves as a priority selector. When the emotional selector has completed its execution,
and it is executed again, the ordering of the nodes must be re-calculated. An emotional selector
is represented with a gray circle with the character ’E’ in it.

Below we present the methodology to define the ordering of the child nodes of an emotional
selector.

METHOD

1. Define the objectives of the given application.
2. Identify the relevant aspects 𝑅 = {𝑟1, … , 𝑟𝑚} of the human-automation interaction with

respect to the objectives.
3. Identify the emotions of the emotion state 𝐸 = {𝑒1, … , 𝑒𝑛}.
4. For every aspect 𝑟 ∈ 𝑅 define the 𝑟-value of every node type of the behavior tree, that

is, the 𝑟 value of action, condition, sequence selector, priority selector, parallel node and
decorator.

5. For every aspect 𝑟 ∈ 𝑅 define the emotions that affect 𝑟 positively or negatively, and define
the emotional weight 𝐿𝑟 in term of the emotional state 𝐸:

𝐿𝑟 = 𝑓𝑟(𝐸)

6. For every aspect 𝑟 ∈ 𝑅 define the weight 𝑊𝑟 ,𝑖 of every children 𝑖 of emotional selectors in
term of an equation ℎ whose parameters are 𝐿𝑟 and the 𝑟-value of the node:

𝑊𝑟 ,𝑖 = ℎ(𝐿𝑟, 𝑟 (𝑖))

7. Define the overall weight 𝑊𝑖 of every child node 𝑖 of emotional selectors:

𝑊𝑖 = 𝑔(𝑊𝑟1,𝑖, … ,𝑊𝑟𝑚,𝑖)

8. For every child node 𝑖 define the probability 𝑝𝑟𝑜𝑏𝑖 to be selected for execution.

4.2. Modelling Believable NPCs via EmoBTs

In [20] the authors discuss the role of emotions in decision making. In a case study aiming
at modelling realistic, believable non-player characters (NPCs) in video-games, they identify
three relevant aspects for that type of application; Risk, Time and Planning. Below we show
how to incorporate these three aspects into EmoBTs by following the methodological steps. For
simplicity of exposition, we focus on the Risk aspect.



1. Objectives: To model realistic and believable non-player characters.
2. Relevant aspects 𝑅 = {𝑅𝑖𝑠𝑘, 𝑇 𝑖𝑚𝑒, 𝑃 𝑙𝑎𝑛𝑛𝑖𝑛𝑔}

Here we only motivate the Risk aspect. The reader may refer to [20] for a more detailed
account.

Risk perception
The perceived risk of an action is greatly influenced by emotions [21]. Studies by Lerner
and Keltner [22, 23] have shown that happy and angry people are willing to accept
greater risks, while fearful people are more pessimistic. Raghunathan and Pham [24]
proposes that anxiety is connected to risk-avoidance, while sadness allows for greater
risks, but instead gives a focus on high rewards. A study by Maner et al. [25] also shows
that people with anxiety are more prone to risk-avoidance behavior

3. 𝐸 = {fear , fatigue, sadness}.
Only three emotions were identified for simplicitly of exposition.

4. Definition of Risk-value (Risk Assessment):
Risk has to do with how dangerous the character believes a situation is. A risk value is
between 0 and 1; 0 being no risk at all, and 1 being extremely dangerous. The risk value
measures the probability of risk. EmoBTs cannot reason about the risk of performing an
action, but we allow the designer to add a risk value to each leaf node in the tree, and
derive the associated risk for the inner nodes.

Action: An action has a risk value that is set by the designer (0 by default).

Condition: A condition has a risk value that is set by the designer (0 by default).

Sequence Selector : Since a sequence selector performs every child node of the sequence,
the risks of every child nodes must be combined. The overall risk value is calculated as:

Risk𝑗 = 1 −
𝑁
∏
𝑖=1

(1 − Risk𝑖)

where 𝑁 is the number of child nodes of 𝑗.

Priority Selector : A priority selector 𝑗 only executes one of its child nodes. Since we cannot
determine in advance which node will be executed, we define the risk value of 𝑗 as the
average of the risk of every child node 𝑖:

Risk𝑗 =
∑𝑁

𝑖=1(1 − Risk𝑖)
𝑁



Parallel Node: Since all of the child nodes of a parallel node 𝑗 are executed, the risk is
defined as:

Risk𝑗 = 1 −
𝑁
∏
𝑖=1

(1 − Risk𝑖)

where 𝑁 is the number of child nodes of 𝑗.

Decorator : The risk value of a decorator is the same as the one of its child node.
5. To mimic how affective states influence decision making, we introduce emotional weights

for every relevant factor. Below we show the Risk factor. Let 𝑒+1 , … , 𝑒+𝑀 (resp. 𝑒−1 , … , 𝑒−𝑁)
be the values of the emotions that positively (resp., negatively) affect the perception of
risk. We define the emotional weight for risk as:

𝐸Risk =
∑𝑀

𝑖=1 𝑒+𝑖
𝑀

−
∑𝑁

𝑗=1 𝑒−𝑗
𝑁

6. For every aspect 𝑟 ∈ 𝑅 we define the weight 𝑊𝑟 ,𝑖 of every child node 𝑖 of any emotional
selector. We consider the Risk aspect. The weight for risk for a child node 𝑖 is calculated
as:

𝑊Risk,𝑖 = (1 − 𝐸Risk × 𝛿) × Risk𝑖
where Risk𝑖 is the risk value for the child node 𝑖. Note that 𝑊Risk,𝑖 should be clamped to
the interval [0; 1] since it represents a probability. The variable 𝛿 determines how much
emotions affect the weights. Its value must be between 0 and 1, where 0 signifies no
emotional impact and 1 corresponds to full emotional impact.

7. The overall weight of a child node 𝑖 is calculated as:

𝑊𝑖 = 𝛼 × 𝑊Risk,𝑖 + 𝛽 × 𝑊Time,𝑖 + 𝛾 × 𝑊Plan,𝑖

The constants 𝛼, 𝛽 and 𝛾 give importance to their respective factors.
8. For every child node 𝑖 we define the probability 𝑝𝑟𝑜𝑏𝑖 for the node to be selected for

execution. To select which child node to execute, we list them in ascending order according
to the weight value𝑊𝑖. Hence, the lower value of𝑊𝑖, the more desirable is the node. Since
there are only three different factors to use to calculate the weights, but there may be
many child nodes to an emotional selector, we want to make it possible, however unlikely,
that the character will choose a less desirable node. To do so, after the child nodes have
been ordered according to increasing weights𝑊𝑖, we associate a probability prob𝑖 to every
child node 𝑖:

prob𝑖 = 𝑎(1 − 𝑎)𝑖−1 with 0.5 ≤ 𝑎 < 1
where a is chosen depending on which distribution one wants. Let us assume 𝑎 = 0.5.
This will make the most desirable child have a probability of 50% to be selected, the second
child 25% and so on.
Once the ordering has been established by selecting the child nodes based upon their
probabilities, the emotional selector behaves as a priority selector. When the emotional
selector has completed its execution, and it is executed again, the ordering of the nodes
must be re-calculated.



Figure 2: The behavior tree for the NPC fighter.

5. Example: NPC-fighter Behavior

Here we show an example of a virtual character for a fighting scenario. The example is taken
from [20]2. A fighting NPC often has several different ways to attack an enemy, each option
involving different amounts of risk, planning and time. In the example the NPC can choose
the following attacks. It can throw grenades, use a musket, use a sword, or do a fancy knifing
maneuver. The emotional behavior tree used for the example is depicted in Figure 2. The risk,
planning, and time interval values for the respective actions are displayed in Figure 3. The
fighting example above is simulated under different emotional states. In Figure 4, the weight
values for each action are shown under different emotional conditions. It can be seen that the
weight values change widely due to emotional impact. For example, when the character is
afraid, maneuvering is a good choice because it is not risky. When the character is sad and
tired, throwing grenades seems like a good option because it does not involve much planning

2The reader can refer to the paper for a more detailed description.



Figure 3: Time, risk and planning values of leaf nodes. Movements actions refer to step left and right,
and jump in front actions.

Figure 4: The weight values for the fighting game example, given different emotional states. When
listed, each emotion has the maximum value 1.

and it gives fast results.
In Figure 5 the generated probabilities for each child node are displayed, using a = 0.7. Note

that the ordering with respect to weight value is preserved, but there is a greater distinction in
which action is more preferable.

6. Case Study: The Animalistic Project

Some modules of the agent architecture for emotional empathetic agents were first deployed in
the Animalistic project at Norrköpings Visualiseringscenter in 2011 as part of the doctoral work
of Anja Johansson [18]. The overall project architecture is depicted in Figure 6. The Animalistic
project was a half a year long interactive installation at the center. The project made use of the
Kinect device to allow visitors to the center to interact with virtual animals in a virtual world.
The installation was developed mainly for children, but any visitor could use it. The animals in
the virtual world were extra-terrestrial in nature, inhabiting a vast field of grass. The animals
could, depending on their mood, decide to sleep, eat, explore the world or walk up to the screen
to interact with the visitors. There were three different species of animals in the installation.



Figure 5: Resulting probabilities of the fighting game example with a = 0.7

Each had a different type of behavior, such as a preferred resting place. Since the Animals were
not expected to be empathetic with the visitors, the Emotion Recognition module were not used
in the architecture. The form of interaction was, due to limited resources, simple. Standing in
front of the screen attracted animals unless too many people were present, in which case the
animals were frightened.

Figure 6: The architecture for the Animalistic project.

In the installation, the following affective and physiological state were used: hunger, happi-
ness, fear, and socialness (the current need to socialize with a human). While the animals were



Figure 7: A child interacting with the virtual animals in the installation. Photo courtesy of Norrköpings
Visualiseringscenter.

unable to display emotions in a sophisticated way (e.g. through blended animations of different
affect type), they were able to portray their current thoughts and feelings to the visitors through
thought bubbles appearing over their heads. This addition was made partway through the
project when it had become evident that the reason behind the characters’ actions was not clear
to the visitors. A user study was planned and executed during the Animalistic project. The
study was intended to answer the following questions. First, did the animations of the virtual
animals convey the desired behavior to the visitors? Secondly, what were the movements used
by the users when they were asked to interact with the animals? A school class of pupils at
around age 11 volunteered for the user study. The first part of the study was executed using a
questionnaire. The second part used video recordings of the children as they interacted with
the installation. The first question was answered partly during the study, resulting in a slight
change of the animations for final installation. Results for the user interaction part gave few
results, as most children did not to interact with the animals at all. The Animalistic project gave
a much needed opportunity to try out the agent architecture in a real application.

7. Conclusions and Future Work

In this paper we outlined our line of work on emotional human-automation interaction, with
the intention of modeling realistic, believable characters and, more generally, to devise a module
for managing emotions in human-AI interaction, to be potentially incorporated in any agent
architecture.



We focused on presenting how to introduce emotions into behavior trees to enable a dynamic,
changing and adapting behavior. In fact, by taking advantage of known psychology theories
concerning emotions, the EmoBT approach lets emotions affect decision making in a human-like
and intuitive way.

Currently, we are developing a theoretical framework for modeling emotional empathetic
interaction in the context of car interfaces. The research goal is to monitor the emotions
of drivers and to enable novel driver-car interactions. In fact in the context of driving, the
emotional state of drivers plays a critical role in road safety as it has been shown that negative
emotions like anger can significantly increase accidents [26, 27].

Future work will include the deployment the agent architecture presented above in the
context of a companion agent devised to assist and help drivers, by providing emotion-enabled
interventions in risky situations that might arise due to external circumstances and/or to the
driver’s state of mind. Zepf et al. [28] found that events associated with traffic management
were the most frequent source for negative states (e.g., frustration, annoyance, stress) for drivers,
probably because they counteracted the achievement of the drivers’ main goal (i.e., reaching the
destination). If the car automation detects one or several of the highlighted triggers (e.g., red
lights, speed signs), it might provide information about any potential time loss to help correct
unnecessary biases or expectations by the driver. As the authors suggested, this information
may help appease the negative mood and help overlook potential goal-incongruent events.
In [28] another important trigger that elicited negative emotional states was the high traffic
density which require high cognitive demands. A possible method of intervention to help the
driver relax may be that of automatically activating the self-driving mode so the driver can
divert the attention. Alternatively, the car could more actively engage with the driver, e.g., by
recommending relaxing music on a dedicated radio station.
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