
Hypercube-Based Methods for Symbolic Knowledge

Extraction: Towards a Unified Model

Federico Sabbatini
1,*

, Giovanni Ciatto
2
, Roberta Calegari

3
and Andrea Omicini

2

1

Dipartimento di Scienze Pure e Applicate (DiSPeA), Università di Urbino, Italy

2

Dipartimento di Informatica – Scienza e Ingegneria (DISI), Alma Mater Studiorum—Università di Bologna, Italy

3

Alma Mater Research Institute for Human-Centered Artificial Intelligence, Alma Mater Studiorum—Università di

Bologna, Italy

Abstract

Symbolic knowledge-extraction (SKE) algorithms proposed by the XAI community to obtain human-

intelligible explanations for opaque machine learning predictors are currently being studied and developed

with growing interest, also in order to achieve believability in interactions. However, choosing the most

adequate extraction procedure amongst the many existing in the literature is becoming more and more

challenging, as the amount of available methods increases. In fact, most of the proposed algorithms

come with constraints over their applicability.

In this paper we focus upon a quite general class of SKE techniques, namely hypercube-based

methods. Despite being commonly considered as regression-specific, we discuss why hypercube-based

SKE methods are flexible enough to deal with classification problems as well. More generally, we propose

a common generalised model for hypercube-based methods, and we show how they can be exploited to

perform SKE on datasets, predictors, or learning tasks of any sort.

Keywords

explainable AI, knowledge extraction, interpretable prediction, PSyKE

1. Introduction

One of the main features to be underpinned by a believable human-agent interaction is the capa-

bility of being explainable. Along this line, symbolic knowledge extraction (SKE) is a powerful tool

within the scope of explainable artificial intelligence (XAI). It enables reverse-engineering of the

black-box (BB) machine learning algorithms—which are nowadays exploited in many AI tasks [1].

SKE allows data scientists to associate human-comprehensible, post-hoc explanations [2] to

the recommendations or decisions computed by the most common prediction-effective – yet,

poorly interpretable – algorithms. To cite some examples, SKE is widely adopted to credit-risk

evaluation [3, 4, 5], medical diagnosis – i.e., to make early breast cancer prognosis predictions

WOA 2022: 23rd Workshop From Objects to Agents, September 1–2, Genova, Italy

*
Corresponding author.

$ f.sabbatini1@campus.uniurb.it (F. Sabbatini); giovanni.ciatto@unibo.it (G. Ciatto); roberta.calegari@unibo.it

(R. Calegari); andrea.omicini@unibo.it (A. Omicini)

� http://federicosabbatini.apice.unibo.it (F. Sabbatini); https://about.me/gciatto (G. Ciatto);

http://robertacalegari.apice.unibo.it (R. Calegari); http://andreaomicini.apice.unibo.it (A. Omicini)

� 0000-0002-0532-6777 (F. Sabbatini); 0000-0002-1841-8996 (G. Ciatto); 0000-0003-3794-2942 (R. Calegari);

0000-0002-6655-3869 (A. Omicini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:f.sabbatini1@campus.uniurb.it
mailto:giovanni.ciatto@unibo.it
mailto:roberta.calegari@unibo.it
mailto:andrea.omicini@unibo.it
http://federicosabbatini.apice.unibo.it
https://about.me/gciatto
http://robertacalegari.apice.unibo.it
http://andreaomicini.apice.unibo.it
https://orcid.org/0000-0002-0532-6777
https://orcid.org/0000-0002-1841-8996
https://orcid.org/0000-0003-3794-2942
https://orcid.org/0000-0002-6655-3869
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

[6] and for recognising hepatobiliary disorders [7] or other diseases and dysfunctions [8] –,

credit card screening [9], intrusion detection systems [10], keyword extraction [11], and space

mission data prediction [12].

The basic idea behind SKE is to construct symbolic (hence, interpretable) models mimicking

the behaviour of the pre-existing black-box predictors to be explained. Such symbolic models

should describe the corresponding black boxes in terms of the outputs they provide as responses

to (classes of) inputs values. Symbols, in particular, may consist of intelligible knowledge,

e.g., lists or trees of logic rules that can be exploited to obtain predictions as well as to better

understand the underlying predictor. In other words, symbols are both human- and machine-

interpretable.

Because of the many SKE techniques available in the literature, selecting the most appropriate

SKE algorithm for any given learning task may easily become cumbersome. Difficulties may

arise because of the intrinsic design choices behind each extraction algorithm. In fact, SKE

algorithms may commonly target specific learning tasks (classification or regression), specific

sorts of ML predictors (e.g. neural networks, support-vector machines, linear models, etc.), or

specific sorts of training data (e.g. continuous, categorical, or binary).

In this paper we focus upon a quite general class of SKE techniques, namely hypercube-based

methods. Methods of such sort extract symbolic knowledge by querying black-box predictors

as oracles, and by recursively partitioning the input spaces of these black boxes into several

hypercubes—hence following a divide-et-impera approach. Despite being commonly considered

regression-specific, we show that hypercube-based SKE methods are flexible enough to deal with

classification problems as well. More generally, we propose a common model for hypercube-

based methods, and we show how they can be exploited to perform SKE on data sets, predictors,

or learning tasks of any sort.

Accordingly, the contribution of this paper is manifold. First, we provide a general and abstract

description of any hypercube-based SKE workflow. Second, we compare existing hypercube-

based methods (e.g. Iter [13] and GridEx [14]) based on the way they partition the input space,

approximate black-box decisions, and construct the extracted symbolic knowledge. Third,

we discuss how hypercube-based methods can fully support supervised learning tasks—there

including regression and classification ones.

The remainder of this paper is organised as follows. Section 2 describes the state of the art

for SKE as well as some background notions to fully understand the work. Section 3 presents

our model for hypercube-based methods and compares the most relevant methods from the

literature. Finally, conclusions are drawn in Section 4.

2. State of the Art

In this section we provide readers with some details about the state of the art for symbolic

knowledge extraction.

2.1. Knowledge Extraction

Computational systems are considered interpretable when humans are able to easily understand

its operation and outcomes [15]. However, nowadays decision support systems often rely on

ML models having excellent predictive capabilities at the expense of interpretability. These

sub-symbolic predictors of growing complexity, which learn input-output relations from data

and store them as internal parameters, do not provide any kind of symbolic representation of

the acquired knowledge, thus lacking of an interpretable representation to the benefit of human

users. ML algorithms are defined as black boxes for this reason [16].

It is possible to preserve the impressive BB predictive performance and, at the same time,

obtain human-intelligible clues or explanations regarding the BB behaviour by substituting the

opaque model with a mimicking interpretable surrogate. The XAI community, indeed, have

proposed a number of means to produce ex-post explanations for sub-symbolic predictors in

the form of surrogate models based on sets of rules extracted from the underlying opaque

model. Amongst the proposals there are methods to extract lists [17, 13, 14] or trees [18, 19] of

logic rules, usually if-then-else, M-of-N or fuzzy. SKE is particularly important also for another

reason: it may enable further manipulations, for instance to merge the know-how of different

BB models [20].

Knowledge extraction algorithms can be categorised along three orthogonal dimensions [21]:

(i) supported learning tasks, (ii) shape of the symbolic knowledge provided in output, (iii) the

supported underlying ML models, usually known as translucency.

Supported tasks – item (i) – are usually supervised classification or regression. A cluster of SKE

algorithms can only explain BB classifiers – e.g. Rule-extraction-as-learning [17], Trepan [18]

and others [22, 23] –, while a different cluster is designed to support BB regressors—e.g., Iter [13],

GridEx [14], GridREx [24] and others [25, 26, 27]. Finally, a little subset of SKE techniques are

able to handle both tasks, as for the case of G-Rex [28] and Cart [19].

As for the shape of the output knowledge – item (ii) –, decision rules [29, 30, 31] and trees

[32, 33] are usually considered the most human-understandable ways to represent knowledge.

For this reason the majority of SKE methods produce one of these two structures as output.

Regardless of the shape, conditions describing decision rules and nodes are expressed by

using the same input/output data types adopted to train the underlying BB. For instance, SKE

procedures applied to classifiers accepting 𝑁 -dimensional numerical data and providing 𝐾
distinct output classes will produce rule lists or trees involving a certain number of predicates

over 𝑁 input variables 𝑥1, . . . , 𝑥𝑛 and having 𝐾 possible outcomes. A further categorisation

may be performed w.r.t. the kind of predicates contained in the output knowledge. In particular,

it is possible to observe conjunctions or disjunctions of inequalities (e.g. 𝑥𝑖 ≷ 𝑐) as well as

inclusions in or exclusions from intervals (e.g. 𝑥𝑖 ∈ [𝑙, 𝑢]) for numerical data. Categorical data

are usually associated to equalities (e.g. 𝑥𝑖 = 𝑐) and set-inclusions (e.g. 𝑥𝑖 ∈ {𝑐1, 𝑐2, . . .}).

M-of-N or fuzzy rules are other available alternatives.

Finally, the translucency dimension – item (iii) – represents the strategy adopted by the

SKE algorithm to obtain interpretable knowledge from a BB. In particular, extractors may be

decompositional or pedagogical [34, 21]. Decompositional techniques consider the internal

structure of the underlying black box, hence producing symbolic knowledge which mimics

how it internally works. As a side-effect, decompositional algorithms are bound to specific

sorts of ML predictors—and possibly introduce constraints on their internal structures. For

instance, techniques tailored on neural networks are not applicable to support-vector machines.

Similarly, procedures explicitly designed for 3-layered networks are not suitable for deeper ones.

On the other hand, pedagogical methods can extract symbolic knowledge without relying on

any information about the inner structure of predictors. They simply query the predictor as an

oracle, observing its response to particular inputs, and generalise its behaviour accordingly. For

this reason, pedagogical extractors come with no constraints on sorts of predictors they can be

applied to. Hence, they are more general – despite potentially less precise –, but considerations

about the output performance strictly depend on the task at hand.

To evaluate the quality of SKE techniques different indicators are exploited, depending

on the task to solve. Common choices are readability, fidelity and predictive performance

measurements [35]. The former expresses how interpretable is the output knowledge from the

human perspective. It is generally evaluated through the number of extracted rules and the

number of constraints per rule. Fidelity is related to the capability of the extracted knowledge

to mimic the underlying BB predictions, whereas predictive performance measurements are

assessed by comparing the predictions drawn from the extracted knowledge with the expected

data. Measurements involving predictions should be assessed via the same scoring function

used for the underlying BB—which in turn strictly depends on the performed task. Classifiers

are usually evaluated via accuracy, precision, recall, and F1 score. Conversely, common metrics

for regressors are the mean absolute/squared error (MAE/MSE) and the R
2

score.

3. Hypercube-Based Knowledge Extractors

In this section we present a general model for hypercube-based extractors (Subsection 3.1). We

then delve into the details of different algorithms from the literature, discussing how they match

the model (Subsection 3.2).

3.1. Unified Model

Hypercube-based extraction methods are pedagogical extraction procedures which can operate

on trained ML predictors of any sort. They consider the predictor 𝑃 undergoing extraction as

an oracle to be queried multiple times, in order to find a partitioning 𝐻1 ∪ . . . ∪𝐻𝑛 of its input

space 𝒳 such that the output space 𝒴 can be concisely expressed for each partition. Hence,

they extract knowledge in the form of rule lists or trees, where each rule attempts to describe

the outcome of 𝑃 for a particular hypercube 𝐻𝑖 ⊆ 𝒳 . Rules have the following logical form:

x ∈ 𝐻𝑖 → (y = 𝑓𝑖(x))

to be read as “if the input vector x ∈ 𝒳 is in some hypercube 𝐻𝑖, then the prediction y ∈ 𝒴 is

𝑓𝑖(x)”, where 𝑓𝑖(x) is a function that approximates 𝑃 outcomes. Note that each hypercube 𝐻𝑖

is a partition of the input space 𝒳 , and 𝑓𝑖 is the function approximating 𝑃 outcomes related to

that hypercube (could be a costant, a linear function, etc.), i.e.: 𝑓𝑖(x) ≈ 𝑃 (x), ∀x ∈ 𝐻𝑖.

Hypercube-based extraction procedures should then attempt to select hypercubes and local

approximation functions so as to maximise the fidelity of the overall rule set/list w.r.t. 𝑃 .

Accordingly, they follow a pretty linear workflow, which may be roughly summarised in 3 steps,

namely:

1. partitioning the input space into disjoint hypercubes 𝐻1, . . . ,𝐻𝑛, following a selected

strategy and according to possible defined constraints;

• e.g. one may be willing to minimise 𝑛 while maximising the size of each 𝐻𝑖

2. approximating the prediction of 𝑃 for each hypercube 𝐻𝑖, via some function 𝑓𝑖;

• e.g. one may be willing to maximise the similarity among 𝑃 and 𝑓𝑖 in 𝐻𝑖

3. creating a rule set where each rule concisely represents the behaviour of 𝑃 in 𝐻𝑖 via 𝑓𝑖.

In the following, we delve into the details of all the aforementioned phases.

3.1.1. Input space partitioning

Input space partitioning is a recursive computation aimed at finding the optimal number,

shape and size of hypercubes w.r.t. some desiderata, such as: (i) covering the whole input

space; (ii) obtaining disjoint regions; (iii) minimising the number of regions; (iv) maximising

the similarity amongst the samples inside single regions; (v) minimising the predictive error

correlated to each partition.

These conditions cannot be all satisfied simultaneously, especially when dealing with high-

dimensional data sets. Thus, some requirements may be relaxed. For instance, the input space

coverage may be limited only to interesting hypercubes, neglecting the others. Let us consider a

hypercube ‘interesting’ if it contains training samples, as it may have a role to play in drawing

future predictions.

Alternatively, the partitioning process may terminate after a predefined number of iterations,

as some state-of-the-art algorithms actually do. However, this may lead to the indiscriminate

exclusion of some regions of the input space that, conversely, are not negligible. In turn, the

explained model will not be able to provide predictions for a subset of input instances.

Non-contiguous hypercubes may be relaxed into hierarchical or fuzzy regions, possibly

mapped into non-overlapping rules, in order to have unambiguous output predictions.

Similarity and fidelity The amount of hypercubes an input space is partitioned into may

significantly impact the interpretability of the final symbolic model. In fact, hypercube-based

methods will output as many rules as the hypercubes they have partitioned the input space

into—and of course more (or more complex) rules imply lower readability for the human user.

The capability of grouping together similar samples into a single hypercube is so quintessential

for supporting the creation of few, general, and simple rules which capture the behaviour of the

original predictor with high fidelity. This corresponds to (i) data points from the same hypercube

drawing similar predictions, and to (ii) predictions having a high fidelity (or, equivalently, low

error rates) w.r.t. to the original predictor. Accordingly, here we delve into the details of how to

assess (i) similarity amongst data points from contiguous hypercubes, as well as (ii) predictive

errors between a candidate rule and the underlying predictor.

Similarity amongst instances Input space partitions may be considered similar according

to the following definitions:

input closeness if the input variables of both subregions have values ranging in similar do-

mains, as for the case of adjacent disjoint or overlapping regions;

output closeness if the output associated with the instances in the two subregions may be

defined as similar.

While it is straightforward to check input closeness (e.g., through Euclidean distance), dealing

with output closeness requires taking into account the learning problem at hand.

As far as classification is concerned, we may consider two hypercubes 𝐻1 and 𝐻2 as output-

close w.r.t. a predictor 𝑃 if (and only if) the most frequent output class is the same in both

hypercubes:

𝐻1
𝑃≈ 𝐻2 ⇔ mode(𝑃 (𝐻1)) = mode(𝑃 (𝐻2)) (1)

where mode(·) denotes the statistical operator returning the most frequent item over a set, and

𝑃 (𝐻) is a shortcut standing for {𝑃 (x) : x ∈ 𝐻}, to lighten the notation.

Conversely, in the case of regression with constant outputs, output-similarity may be ex-

pressed as a function of the absolute difference between the mean output predictions performed

by the predictor 𝑃 on the two hypercubes 𝐻1 and 𝐻2:

𝐻1
𝑃≈ 𝐻2 ⇔ |mean(𝑃 (𝐻1))− mean(𝑃 (𝐻2))| < 𝜃 (2)

where 𝜃 is a parameter defining the strictness of the similarity criterion.

Of course, definition 2 is not suitable to capture the similarity amongst hypercubes charac-

terised by high variability of 𝑃 . In such a case a more complex solution is required:

𝐻1
𝑃≈ 𝐻2 ⇔ mae(𝑓1,2, 𝐻1 ∪𝐻2) ≤ 0.5(mae(𝑓1, 𝐻1) + mae(𝑓2, 𝐻2)) (3)

where mae(𝑓,𝐻) is the mean absolute error of the linear function 𝑓 in approximating 𝑃 for

data in 𝐻 . In other words, 𝐻1 and 𝐻2 are output-similar if it is possible to (i) merge the

two hypercubes, (ii) find a linear combination 𝑓1,2 of the input variables representing the

input/output relationship of the so merged regions, and (iii) reach a predictive performance

of 𝑓1,2 better than the average performance of the linear functions 𝑓1, 𝑓2 associated with the

corresponding separated subregions.

For instance, in Figure 1 we report examples of similarity assessments calculated for a

generalised extractor applied to a classification task (Figure 1a) and to a regression task (Fig-

ures 1b and 1c). Figures concerning the regression task represent constant and non-constant

extractor outputs, respectively. The example assumes a 2-dimensional data set with continuous

input features both ranging in the interval [0, 5]. In the figures, hypercubes to be expand-

ed/merged are those having coloured backgrounds. Possible adjacent hypercubes to be joined

to them are represented as hypercubes having no background. Adjacent hypercubes that are

similar to the hypercubes to be expanded are represented with hatched background. It is worth

noting that for the example depicted in Figure 1b a similarity threshold 𝜃 equal to 5.0 has been

chosen. In Figure 1c the predictive errors corresponding to the adjacent hypercubes as well as

the calculated errors of the possible merged regions are omitted for the clarity of the image.

Predictive error assessment A generalised metric is necessary to evaluate the predictive

performance of a set of rules for both classifications and regressions. We propose the following

0 1 2 3 4 5

x

0

1

2

3

4

5
y

AA

A

A

A

B

C

B

B B

C

C

A C

A

B

C

(a) Classification labels.

0 1 2 3 4 5

x

0

1

2

3

4

5

y

1.88

4.11

1.48

5.56

16.14

−3.81

14.96

8.51 18.69

−23.17

−18.42

−2.25 −21.15

z

−30

−20

−10

0

10

20

(b) Constant outputs.

0 1 2 3 4 5

x

0

1

2

3

4

5

y

e = 4.09

e = 0.00

e = 5.92

z

−30

−20

−10

0

10

20

(c) Regression laws.

Figure 1: Two-dimensional example of different similarities calculated for generalised extractors.
Hatched regions are suitable to be merged with the adjacent one (coloured background).

0 1 2 3 4 5

x

0

1

2

3

4

5

y

e = 0.10

e = 0.11

e = 0.09

wrong

correct

(a) Classification labels.

0 1 2 3 4 5

x

0

1

2

3

4

5

y

e = 2.43

e = 4.18

e = 7.29

e
0

5

10

15

20

25

30

35

40

(b) Constant outputs.

0 1 2 3 4 5

x

0

1

2

3

4

5

y

e = 1.85

e = 1.78

e = 5.70

e
0

1

2

3

4

5

6

7

8

(c) Regression laws.

Figure 2: Two-dimensional example of different predictive errors measured for generalised extractors.

function as error function for a rule set 𝑅 applied to a data set 𝐷:

error(𝑅,𝐷) =

{︃
mae(𝑅,𝐷) (regression)

1− accuracy(𝑅,𝐷) (classification)

(4)

where mae(𝑅,𝐷) and accuracy(𝑅,𝐷) are the mean absolute error and the classification accu-

racy score, respectively, calculated on the output predictions obtained via the rules in 𝑅, for the

data set 𝐷, and w.r.t. the expected outputs for 𝐷.

In Figure 2 we report some examples of predictive errors measured for a generalised extractor

by assuming a 2-dimensional data set with continuous input features both ranging in the [0, 5]

interval. The figure represents a classification task and two regression tasks. The first regression

task is approximated by the extractor with constant outputs, whereas the second is associated

with non-constant outputs. The predictive error 𝑒 is reported as misclassifications in the first

case and absolute error in the others.

0 1 2 3 4 5

x

0

1

2

3

4

5
y

A

B

C

A

B

C

(a) Classification labels.

0 1 2 3 4 5

x

0

1

2

3

4

5

y

2.70

16.61

−19.24

z

−30

−20

−10

0

10

20

(b) Constant outputs.

0 1 2 3 4 5

x

0

1

2

3

4

5

y

1.2x+ 0.5y

4.9x− 1.4y

1.2x− 6.4y

z

−30

−20

−10

0

10

20

(c) Regression laws.

Figure 3: Two-dimensional example of different predictions provided by generalised extractors.

3.1.2. Approximating predictions

As for the approximation of output predictions associated with each hypercube, they are usually

computed on the basis of the predictions provided by the underlying black box when applied

to an extended training set. The extended training set may consist of the original data the

predictor has been trained upon – or a subset of it –, possibly augmented with some further data.

Data augmentation via random input samples is useful to attain higher predictive performance,

provided that the predictor is used as an oracle to compute the corresponding expected outputs.

Provided that the input space has been adequately partitioned into several hypercubes, the

prediction associated with each hypercube may consist of (i) a constant numerical value (e.g.,

Iter, GridEx) or, (ii) a linear combination of the input variables (e.g., GridREx). The latter

option, in particular, is well-suited for regression tasks, while the former may support both

classification and regression tasks.

To choose the best output value corresponding to each hypercube, one may either (i) ag-

gregate the predictions corresponding to all available points in that hypercube – e.g. via the

‘mean’, ‘mode’, or ‘median’ statistical aggregation functions –, or (ii) fit a local function locally

approximating the predictor in that hypercube. Again, which option is better really depends on

the learning task the underlying predictor has been designed for.

In Figure 3, we report examples of predictions provided by a generalised extractor. As for the

previous examples, a 2-dimensional data set with continuous input features both ranging in

the [0, 5] interval is assumed. The Figure shows a classification task and two regression tasks,

where the former regression task is approximated by the extractor with constant outputs. The

background colour represents the output provided by the extractor.

3.1.3. Output rule set creation

After selecting a set of input space regions and one output decision for each of them, hypercube-

based extractors build a set of rules where each one is composed of a precondition and a

postcondition. The precondition is a formal description of a single input region in terms of

individual features, for instance by means of value inclusion inside an interval. Hypercubic 𝑛-

dimensional regions may be described through the conjunction of (at most) 𝑛 interval inclusion

conditions. On the other hand, the postcondition is simply the decision calculated for the region

on the basis of the task at hand, as previously described. Thus, extracted human-readable logic

rules generally have the following format:

Output is 𝑂 if 𝑋1 ∈ [𝑙1, 𝑢1], 𝑋2 ∈ [𝑙2, 𝑢2], ..., 𝑋𝑛 ∈ [𝑙𝑛, 𝑢𝑛],

where 𝑂 is the output decision and 𝑋1, 𝑋2, ..., 𝑋𝑛 are input variables assuming values included

in the intervals described by corresponding lower-bounds 𝑙𝑖 and upper-bounds 𝑢𝑖.

3.2. Comparison of Existing Methods

In the following a comparison between two hypercube-based SKE algorithms – namely Iter and

GridEx – is provided to give a practical demonstration of our methodology. Differences in the

input space partitioning and in the decision approximation are highlighted in particular. Output

rules are lists of logic rules in both cases, following the convention described in Subsection 3.1.3.

It worths noting that both algorithms assume input features to be continuous and may be

applied to any kind of BB predictor, being pedagogical SKE methods.

Iter The Iter algorithm [13] is based on the iterative creation and expansion of hypercubes

inside the input feature space, until a maximum number of iterations is reached or, otherwise,

the whole input space is covered. The expansion may terminate also if it is not possible to

further expand the hypercubes. In those cases additional cubes may be created to cover the

remaining space.

Iter is limited to regression tasks by design, and performs averaging operations to associate

output values to hypercubes. For each cube, Iter selects all the training samples inside it and

calculates the mean prediction by using the underlying BB as an oracle. If the training samples

are not enough to satisfy the minimum amount specified by the user, extra random samples are

generated and predicted together with the others.

Iter also takes advantage of a similarity criterion to expand the hypercubes. In particular,

at every iteration all the possible expansions around each cube are considered, but only one

is performed, i.e., the one capable of expanding a cube towards the most similar input space

region. Similarity is calculated via mean absolute difference between the output values of the

cubes to be expanded and the eligible cubes around them.

GridEx The GridEx algorithm [14] may be considered as an extension of Iter aimed at

overcoming its major drawback, i.e., the non-exhaustivity of its output rules. GridEx achieves

this goal because it is exhaustive by design. Unlike Iter, GridEx adopts a top-down approach to

split the input feature space into hypercubes. It iteratively partitions the whole space according

to some defined strategy, marking at each iteration if the created partitions are negligible (i.e.,

they contain no training samples, so they are discarded since it is not relevant to have rules

associated to them), eligible for further partitioning (if they contain samples that are not enough

similar), or permanent (otherwise, if they contain similar training instances and, thus, these

cubes should have a good predictive performance). Strategies to split the input space are fixed,

if the user specifies for each iteration how many partitions have to be performed along all the

input dimensions, or adaptive, if the number of splits is determined through the relevance of

each input feature w.r.t. the output variable. Since GridEx has been designed exclusively for

regression tasks, as Iter, also in this case output decisions are obtained via local averaging

calculations and actual regression rules are not supported.

Similarity between samples is assessed through the output value standard deviation of all the

instances included inside a hypercube. If the standard deviation is below a user-defined threshold,

then the cube only contains similar samples and it is not further partitioned. Otherwise, GridEx

attempts to split the cube in smaller regions, possibly enclosing more similar samples. Since the

readability of the output model depends on the number of extracted rules, it is of paramount

importance to keep it as low as possible. For this reason a merging phase is performed after

every splitting iteration as an optimisation to reduce the number of rules. Indeed, adjacent cubes

are pairwise merged according to a similarity criterion on the contained samples. The merging

phase is iterative: at each step are merged only the two adjacent cubes resulting in the merged

hypercube having the lowest standard deviation, and it terminates when it is not possible to

further merge cubes without exceeding the standard deviation user-defined threshold.

A first GridEx generalisation supporting regression rules as output decisions has led to the

GridREx algorithm [24]. GridREx can extract fully regressive rules, with a linear combination of

the input variables as a postcondition. Even though all the other details are identical to GridEx,

GridREx is able to achieve better predictive performance, fidelity, and readability than GridEx.

4. Conclusions

In this paper we generalise a class of SKE techniques, namely hypercube-based methods, to

make them suitable for classification tasks as well as regression tasks. We do so by proposing a

common model for these methods, where algorithmic patterns currently adopted by hypercube-

based SKE algorithms are relaxed, in order to widen their applicability scopes. Our future works

will focus on extending the proposed generalisation to a wider class of SKE techniques, to enable

a higher degree of usability for SKE techniques existing in the literature.

Acknowledgments

This paper has been partially supported by (i) the European Union’s Horizon 2020 research and

innovation programme under G.A. no. 101017142 (StairwAI project), and by (ii) the CHIST-ERA

IV project CHIST-ERA-19-XAI-005, co-funded by the EU and the Italian MUR (Ministry for

University and Research).

References

[1] A. Rocha, J. P. Papa, L. A. A. Meira, How far do we get using machine learning black-

boxes?, International Journal of Pattern Recognition and Artificial Intelligence 26 (2012)

1261001–(1–23). doi:10.1142/S0218001412610010.

http://dx.doi.org/10.1142/S0218001412610010

[2] E. M. Kenny, C. Ford, M. Quinn, M. T. Keane, Explaining black-box classifiers using post-hoc

explanations-by-example: The effect of explanations and error-rates in XAI user studies,

Artificial Intelligence 294 (2021) 103459. doi:10.1016/j.artint.2021.103459.

[3] B. Baesens, R. Setiono, C. Mues, J. Vanthienen, Using neural network rule extraction

and decision tables for credit-risk evaluation, Management Science 49 (2003) 312–329.

doi:10.1287/mnsc.49.3.312.12739.

[4] B. Baesens, R. Setiono, V. De Lille, S. Viaene, J. Vanthienen, Building credit-risk evaluation

expert systems using neural network rule extraction and decision tables, in: V. C. Storey,

S. Sarkar, J. I. DeGross (Eds.), ICIS 2001 Proceedings, Association for Information Systems,

2001, pp. 159–168. URL: http://aisel.aisnet.org/icis2001/20.

[5] M. T. A. Steiner, P. J. Steiner Neto, N. Y. Soma, T. Shimizu, J. C. Nievola, Using neural

network rule extraction for credit-risk evaluation, International Journal of Computer

Science and Network Security 6 (2006) 6–16. URL: http://paper.ijcsns.org/07_book/200605/

200605A02.pdf.

[6] L. Franco, J. L. Subirats, I. Molina, E. Alba, J. M. Jerez, Early breast cancer prognosis

prediction and rule extraction using a new constructive neural network algorithm, in:

Computational and Ambient Intelligence (IWANN 2007), volume 4507 of LNCS, Springer,

2007, pp. 1004–1011. doi:0.1007/978-3-540-73007-1_121.

[7] Y. Hayashi, R. Setiono, K. Yoshida, A comparison between two neural network rule

extraction techniques for the diagnosis of hepatobiliary disorders, Artificial intelligence

in Medicine 20 (2000) 205–216. doi:10.1016/s0933-3657(00)00064-6.

[8] G. Bologna, C. Pellegrini, Three medical examples in neural network rule extraction,

Physica Medica 13 (1997) 183–187. URL: https://archive-ouverte.unige.ch/unige:121360.

[9] R. Setiono, B. Baesens, C. Mues, Rule extraction from minimal neural networks for credit

card screening, International Journal of Neural Systems 21 (2011) 265–276. doi:10.1142/
S0129065711002821.

[10] A. Hofmann, C. Schmitz, B. Sick, Rule extraction from neural networks for intrusion

detection in computer networks, in: 2003 IEEE International Conference on Systems,

Man and Cybernetics, volume 2, IEEE, 2003, pp. 1259–1265. doi:10.1109/ICSMC.2003.
1244584.

[11] A. Azcarraga, M. D. Liu, R. Setiono, Keyword extraction using backpropagation neural

networks and rule extraction, in: The 2012 International Joint Conference on Neural

Networks (IJCNN 2012), IEEE, 2012, pp. 1–7. doi:10.1109/IJCNN.2012.6252618.

[12] F. Sabbatini, C. Grimani, Symbolic knowledge extraction from opaque predictors applied to

cosmic-ray data gathered with LISA Pathfinder, Aeronautics and Aerospace Open Access

Journal 6 (2022) 90–95. URL: https://doi.org/10.15406/aaoaj.2022.06.00145. doi:10.15406/
aaoaj.2022.06.00145.

[13] J. Huysmans, B. Baesens, J. Vanthienen, ITER: An algorithm for predictive regression

rule extraction, in: Data Warehousing and Knowledge Discovery (DaWaK 2006), Springer,

2006, pp. 270–279. doi:10.1007/11823728_26.

[14] F. Sabbatini, G. Ciatto, A. Omicini, GridEx: An algorithm for knowledge extrac-

tion from black-box regressors, in: D. Calvaresi, A. Najjar, M. Winikoff, K. Främ-

ling (Eds.), Explainable and Transparent AI and Multi-Agent Systems. Third Interna-

tional Workshop, EXTRAAMAS 2021, Virtual Event, May 3–7, 2021, Revised Selected

http://dx.doi.org/10.1016/j.artint.2021.103459
http://dx.doi.org/10.1287/mnsc.49.3.312.12739
http://aisel.aisnet.org/icis2001/20
http://paper.ijcsns.org/07_book/200605/200605A02.pdf
http://paper.ijcsns.org/07_book/200605/200605A02.pdf
http://dx.doi.org/0.1007/978-3-540-73007-1_121
http://dx.doi.org/10.1016/s0933-3657(00)00064-6
https://archive-ouverte.unige.ch/unige:121360
http://dx.doi.org/10.1142/S0129065711002821
http://dx.doi.org/10.1142/S0129065711002821
http://dx.doi.org/10.1109/ICSMC.2003.1244584
http://dx.doi.org/10.1109/ICSMC.2003.1244584
http://dx.doi.org/10.1109/IJCNN.2012.6252618
https://doi.org/10.15406/aaoaj.2022.06.00145
http://dx.doi.org/10.15406/aaoaj.2022.06.00145
http://dx.doi.org/10.15406/aaoaj.2022.06.00145
http://dx.doi.org/10.1007/11823728_26

Papers, volume 12688 of LNCS, Springer Nature, Basel, Switzerland, 2021, pp. 18–38.

doi:10.1007/978-3-030-82017-6_2.

[15] G. Ciatto, D. Calvaresi, M. I. Schumacher, A. Omicini, An abstract framework for agent-

based explanations in AI, in: A. El Fallah Seghrouchni, G. Sukthankar, B. An, N. Yorke-Smith

(Eds.), 19th International Conference on Autonomous Agents and MultiAgent Systems,

IFAAMAS, 2020, pp. 1816–1818. URL: http://ifaamas.org/Proceedings/aamas2020/pdfs/

p1816.pdf.

[16] Z. C. Lipton, The mythos of model interpretability, Queue 16 (2018) 31–57. doi:10.1145/
3236386.3241340.

[17] M. W. Craven, J. W. Shavlik, Using sampling and queries to extract rules from trained

neural networks, in: Machine Learning Proceedings 1994, Elsevier, 1994, pp. 37–45.

doi:10.1016/B978-1-55860-335-6.50013-1.

[18] M. W. Craven, J. W. Shavlik, Extracting tree-structured representations of

trained networks, in: D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (Eds.),

Advances in Neural Information Processing Systems 8. Proceedings of the 1995

Conference, The MIT Press, 1996, pp. 24–30. URL: http://papers.nips.cc/paper/

1152-extracting-tree-structured-representations-of-trained-networks.pdf.

[19] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and Regression Trees, CRC

Press, 1984.

[20] G. Ciatto, R. Calegari, A. Omicini, D. Calvaresi, Towards XMAS: eXplainability through

Multi-Agent Systems, in: C. Savaglio, G. Fortino, G. Ciatto, A. Omicini (Eds.), AI&IoT

2019 – Artificial Intelligence and Internet of Things 2019, volume 2502 of CEUR Workshop

Proceedings, CEUR WS, 2019, pp. 40–53. URL: http://ceur-ws.org/Vol-2502/paper3.pdf.

[21] R. Calegari, G. Ciatto, A. Omicini, On the integration of symbolic and sub-symbolic tech-

niques for XAI: A survey, Intelligenza Artificiale 14 (2020) 7–32. doi:10.3233/IA-190036.

[22] N. Barakat, J. Diederich, Eclectic rule-extraction from support vector machines, In-

ternational Journal of Computer and Information Engineering 2 (2008) 1672–1675.

doi:10.5281/zenodo.1055511.

[23] D. Martens, B. Baesens, T. Van Gestel, J. Vanthienen, Comprehensible credit scoring models

using rule extraction from support vector machines, European Journal of Operational

Research 183 (2007) 1466–1476. doi:10.1016/j.ejor.2006.04.051.

[24] F. Sabbatini, R. Calegari, Symbolic knowledge extraction from opaque machine learning

predictors: GridREx & PEDRO, in: G. Kern-Isberner, G. Lakemeyer, T. Meyer (Eds.), 19th

International Conference on Principles of Knowledge Representation and Reasoning (KR

2022), IJCAI Organization, Haifa, Israel, 2022, pp. 554–563. doi:10.24963/kr.2022/57.

[25] R. Setiono, W. K. Leow, J. M. Zurada, Extraction of rules from artificial neural networks

for nonlinear regression, IEEE Transactions on Neural Networks 13 (2002) 564–577.

doi:10.1109/TNN.2002.1000125.

[26] G. P. J. Schmitz, C. Aldrich, F. S. Gouws, ANN-DT: an algorithm for extraction of decision

trees from artificial neural networks, IEEE Transactions on Neural Networks 10 (1999)

1392–1401. doi:10.1109/72.809084.

[27] K. Saito, R. Nakano, Extracting regression rules from neural networks, Neural Networks

15 (2002) 1279–1288. doi:10.1016/S0893-6080(02)00089-8.

[28] R. Konig, U. Johansson, L. Niklasson, G-REX: A versatile framework for evolutionary data

http://dx.doi.org/10.1007/978-3-030-82017-6_2
http://ifaamas.org/Proceedings/aamas2020/pdfs/p1816.pdf
http://ifaamas.org/Proceedings/aamas2020/pdfs/p1816.pdf
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1016/B978-1-55860-335-6.50013-1
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
http://ceur-ws.org/Vol-2502/paper3.pdf
http://dx.doi.org/10.3233/IA-190036
http://dx.doi.org/10.5281/zenodo.1055511
http://dx.doi.org/10.1016/j.ejor.2006.04.051
http://dx.doi.org/10.24963/kr.2022/57
http://dx.doi.org/10.1109/TNN.2002.1000125
http://dx.doi.org/10.1109/72.809084
http://dx.doi.org/10.1016/S0893-6080(02)00089-8

mining, in: 2008 IEEE International Conference on Data Mining Workshops (ICDM 2008

Workshops), 2008, pp. 971–974. doi:10.1109/ICDMW.2008.117.

[29] A. A. Freitas, Comprehensible classification models: a position paper, ACM SIGKDD

Explorations Newsletter 15 (2014) 1–10. doi:10.1145/2594473.2594475.

[30] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, B. Baesens, An empirical evaluation of

the comprehensibility of decision table, tree and rule based predictive models, Decision

Support Systems 51 (2011) 141–154. doi:10.1016/j.dss.2010.12.003.

[31] P. M. Murphy, M. J. Pazzani, ID2-of-3: Constructive induction of M-of-N concepts for

discriminators in decision trees, in: L. A. Birnbaum, G. C. Collins (Eds.), Machine Learning:

Proceedings of the Eight International Workshop (ML91), Morgan Kaufmann Publishers,

Inc., San Mateo, CA, USA, 1991, pp. 183–187.

[32] J. R. Quinlan, C4.5: Programming for machine learning, Morgan Kauffmann (1993). URL:

https://dl.acm.org/doi/10.5555/152181.

[33] J. R. Quinlan, Simplifying decision trees, International Journal of Man-Machine Studies 27

(1987) 221–234. doi:10.1016/S0020-7373(87)80053-6.

[34] R. Andrews, J. Diederich, A. B. Tickle, Survey and critique of techniques for extracting

rules from trained artificial neural networks, Knowledge-Based Systems 8 (1995) 373–389.

doi:10.1016/0950-7051(96)81920-4.

[35] G. G. Towell, J. W. Shavlik, Extracting refined rules from knowledge-based neural networks,

Machine Learning 13 (1993) 71–101. doi:10.1007/BF00993103.

http://dx.doi.org/10.1109/ICDMW.2008.117
http://dx.doi.org/10.1145/2594473.2594475
http://dx.doi.org/10.1016/j.dss.2010.12.003
https://dl.acm.org/doi/10.5555/152181
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://dx.doi.org/10.1016/0950-7051(96)81920-4
http://dx.doi.org/10.1007/BF00993103

	1 Introduction
	2 State of the Art
	2.1 Knowledge Extraction

	3 Hypercube-Based Knowledge Extractors
	3.1 Unified Model
	3.1.1 Input space partitioning
	3.1.2 Approximating predictions
	3.1.3 Output rule set creation

	3.2 Comparison of Existing Methods

	4 Conclusions

