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Abstract
In reverse engineering of database queries, one aims to construct a query from a set of positively and

negatively labelled answers and non-answers. The query can then be used to explore the data further or

as an explanation of the answers and non-answers. We consider this reverse engineering problem for

queries formulated in various fragments of positive linear temporal logic LTL over data instances given

by timestamped atomic concepts. We focus on the design of suitable query languages and the complexity

of the separability problem: ‘does there exist a query in the given query language that separates the

given answers from the non-answers?’. We deal with both plain LTL queries and those that are mediated

by ontologies providing background knowledge and formulated in fragments of clausal LTL.
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1. Introduction

Supporting users of databases by constructing a query from examples of answers and non-

answers to the query has been a major research area for many years [1]. In the database

community, research has focussed on standard query languages such as (fragments of) SQL,

graph query languages, and SPARQL [2, 3, 4, 5, 6, 7, 8, 9]. The KR community has been concerned

with constructing queries from examples under the open world semantics and with background

knowledge given by an ontology [10, 11, 12, 13, 14]. In both cases, the focus has been on

general multi-purpose query languages. A fundamental problem that has been investigated

by both communities is known as separability or query-by-example: given sets 𝐸+
and 𝐸−

of

pairs (𝒟,𝑑) with a database 𝒟 and a tuple 𝑑 in 𝒟, and a query language 𝒬, does there exist

a query 𝑞 ∈ 𝒬 that separates (𝐸+, 𝐸−) in the sense that 𝒟 |= 𝑞(𝑑) for all (𝒟,𝑑) ∈ 𝐸+
and

𝒟 ̸|= 𝑞(𝑑) for all (𝒟,𝑑) ∈ 𝐸−
(or 𝒪,𝒟 |= 𝑞(𝑑) for all (𝒟,𝑑) ∈ 𝐸+

and 𝒪,𝒟 ̸|= 𝑞(𝑑) for all
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(𝒟,𝑑) ∈ 𝐸−
if an ontology 𝒪 is present)?

1
There are various strategies to ensure that the query

𝑞 is a generalisation of the positive examples and does not overfit. For instance, one can ask for

the existence of a small separating query in 𝒬 or one can choose a query language that enforces

generalisation by not admitting disjunction. In the latter case, query-by-example is often very

hard computationally: it is coNExpTime-complete for conjunctive queries (CQs) over standard

relational databases [15, 16] and even undecidable for CQs under ℰℒℐ or 𝒜ℒ𝒞 ontologies [17].

In many applications, the input data is timestamped and queries are naturally formulated in

languages with temporal operators. Taking into account the prohibitive complexity of many

query-by-example problems already in the static case, it does not seem wise to start an investi-

gation of the temporal case by considering temporal extensions of standard query languages

(which can only lead to computationally even harder problems). Instead, we investigate the

simpler but still very useful case in which data, 𝒟, is a set of timestamped atomic concepts.

Our query languages are positive fragments of linear temporal logic LTL with the temporal

operators ◇ (eventually), ○ (next), and U (until) interpreted under the strict semantics [18].

To avoid overfitting, we only consider such fragments without ∨. The most expressive query

language we deal with, 𝒬[U], is thus defined as the set of formulas constructed from atoms

using ∧ and U (via which ○ and ◇ can be defined). The fragments 𝒬[◇], 𝒬[○], and 𝒬[○,◇]
are defined analogously.

Within this temporal setting, we take a broad view of the potential applications of the reverse

engineering of queries and the query-by-example problem. On the one hand, there are non-

expert end-users who would like to explore data via queries but are not familiar with temporal

logic. They usually are, however, capable of providing data examples illustrating the queries

they are after. Query-by-example supports such users in the construction of those queries. On

the other hand, the positive and negative data examples might come from an application, and

the user is interested in possible explanations of the examples. Such an explanation is then

provided by a temporal query separating the positive examples from the negative ones. In this

case, our goal is similar to recent work on learning linear temporal logic formulas and, more

generally, explainable AI [19, 20, 21, 22, 23]. The following example illustrates this point.

Example 1. Imagine an engineer whose task is to explain the behaviour of the monitored

equipment (say, why an engine stops) in terms of qualitative sensor data such as ‘low tempera-

ture’, which can be represented by the atomic concept 𝑇 , ‘strong vibration’, 𝑉 , etc. Suppose the

engine stopped after the runs 𝒟+
1 and 𝒟+

2 shown below but did not stop after the runs 𝒟−
1 , 𝒟−

2 ,

𝒟−
3 , where we assume the runs to start at 0 and measurements to be recorded at 0, 1, 2, . . . :

𝒟+
1 = {𝑇 (2), 𝑉 (4)},𝒟+

2 = {𝑇 (1), 𝑉 (3)},𝒟−
1 = {𝑇 (1)},𝒟−

2 = {𝑉 (4)},𝒟−
3 = {𝑉 (1), 𝑇 (2)}.

The ◇-query 𝑞 = ◇(𝑇 ∧ ◇◇𝑉 ) is true at 0 in the positive data instances 𝒟+
𝑖 , false in the

negative ones 𝒟−
𝑖 , and so provides a possible natural explanation of what could cause the engine

failure. The example set ({𝒟+
3 ,𝒟

+
4 }, {𝒟

−
4 }) with

𝒟+
3 = {𝑇 (1), 𝑉 (2)}, 𝒟+

4 = {𝑇 (1), 𝑇 (2), 𝑉 (3)}, 𝒟−
4 = {𝑇 (1), 𝑉 (3)}

can be explained by the U-query 𝑇 U 𝑉 . Using background knowledge of the domain, we can

1

If such a 𝑞 exists, then (𝐸+, 𝐸−) is often called satisfiable w.r.t. 𝒬 and the construction of 𝑞 is called learning.



compensate for sensor failures, which result in incomplete data. To illustrate, suppose that

𝒟̄+
1 = {𝐻(3), 𝑉 (4)}, where 𝐻 stands for ‘heater is on’. If a background ontology 𝒪 contains

the axiom ○𝐻 → 𝑇 saying that a heater can only be triggered by the low temperature at the

previous moment, then the same 𝑞 will separate {𝒟̄+
1 ,𝒟+

2 } from {𝒟−
1 ,𝒟

−
2 ,𝒟

−
3 } under 𝒪. ⊣

The queries used in Example 1 are of a particular ‘linear’ form and suggest a restriction to

path queries in which the order of the atoms is fixed and not left open as in ◇𝐴 ∧◇𝐵. More

precisely, path ○◇-queries in the class 𝒬𝑝[○,◇] take the form

𝑞 = 𝜌0 ∧ 𝑜1(𝜌1 ∧ 𝑜2(𝜌2 ∧ · · · ∧ 𝑜𝑛𝜌𝑛)), (1)

where 𝑜𝑖 ∈ {○,◇} and 𝜌𝑖 is a conjunction of atoms; 𝒬𝑝[◇] and 𝒬𝑝[○] restrict 𝑜𝑖 to {◇} and

{○}, respectively; and path U-queries in the class 𝒬𝑝[U] take the form

𝑞 = 𝜌0 ∧ (𝜆1 U (𝜌1 ∧ (𝜆2 U (. . . (𝜆𝑛 U 𝜌𝑛) . . . )))), (2)

where 𝜆𝑖 is a conjunction of atoms or ⊥. Path queries are motivated by two observations. First,

if a query language 𝒬 allows conjunctions of queries, then, dually to the overfitting problem

for disjunction, the admission of multiple negative examples becomes trivialised: if queries

𝑞𝒟 separate (𝐸+, {𝒟}) for 𝒟 ∈ 𝐸−
, then the conjunction

⋀︀
𝒟∈𝐸− 𝑞𝒟 separates (𝐸+, 𝐸−). In

particular, the query-by-example problem becomes polynomially reducible to its version with a

single negative example. This is clearly not the case for path queries.

Example 2. Let 𝒟1 = {𝐴(1), 𝐵(2)}, 𝒟2 = {𝐵(1), 𝐴(2)}, 𝒟3 = {𝐴(1)} and 𝒟4 = {𝐵(1)}.

Then ({𝒟1,𝒟2},𝒟3) and ({𝒟1,𝒟2},𝒟4) are separated in 𝒬𝑝[◇] by ◇𝐵 and ◇𝐴, respectively;

({𝒟1,𝒟2}, {𝒟3,𝒟4}) is separated in 𝒬[◇] by ◇𝐵 ∧◇𝐴, but it is not 𝒬𝑝[◇]-separable. ⊣

Second, numerous natural types of query classes from applications are represented by path

queries. For example, the existence of a common subsequence of the positive examples that is

not a subsequence of any negative example corresponds to the existence of a separating query

in 𝒬𝑝[◇] with 𝜌0 = ⊤ and 𝜌𝑖 ̸= ⊤ for 𝑖 > 0, and the existence of a common subword of the

positive examples that is not a subword of any negative example corresponds to the existence

of a separating query of the form ◇(𝜌1 ∧ ○(𝜌2 ∧ · · · ∧ ○𝜌𝑛)). The unique characterisability

and learnability of path queries is investigated in [24].

Except for 𝒬𝑝[○] = 𝒬[○] (modulo logical equivalence), no nontrivial inclusion relations

hold between the separation capabilities of the query languages introduced above, as illustrated

by the following example.

Example 3. (1) Let 𝒟1 = {𝐴(1)}, 𝒟2 = {𝐴(2)} and 𝐸 = ({𝒟1}, {𝒟2}). Then ○𝐴 separates

𝐸 but no query in 𝒬[◇] does. On the other hand, 𝐸 is not 𝒬-separable under 𝒪 = {○𝐴 → 𝐴},

for any class 𝒬 defined above, as 𝒪,𝒟1 |= 𝑞(0) implies 𝒪,𝒟2 |= 𝑞(0) for all 𝑞 ∈ 𝒬.

(2) Let 𝐸 = ({𝒟1,𝒟2}, ∅) with 𝒟1 and 𝒟2 as in (1). Then ◇𝐴 separates 𝐸 but no 𝒬[○]-query

does. Observe that at least two positive examples are needed to achieve this effect. However,

○○○𝐵 separates 𝐸 under 𝒪 = {𝐴 → □𝐵}.

(3) Let 𝐸 = ({{𝐴(1), 𝐵(2)}, {𝐴(2), 𝐵(3)}}, {{𝐴(3), 𝐵(5)}}). Then ◇(𝐴 ∧ ○𝐵) separates

𝐸 but no query in 𝒬[○] or 𝒬[◇] does.

(4) 𝐴 U𝐵 separates ({{𝐵(1)}, {𝐴(1), 𝐵(2)}}, {{𝐵(2)}}) but no 𝒬[○,◇]-query does. ⊣



2. Our Contribution

We now briefly present our initial results on the complexity of the separability problem for LTL
queries, both plain and mediated by an LTL-ontology.

Ontology-free LTL queries. Separability in 𝒬[○] is almost trivial as it corresponds to the existence

of a time point where some atom holds in all positive examples but in no negative example,

which is decidable in polynomial time. For the query languages ranging from 𝒬𝑝[◇] and 𝒬[◇]
to 𝒬𝑝[○,◇] and 𝒬[○,◇] and also 𝒬𝑝[U], separability turns out to be NP-complete. The upper

bound is proved by observing that, in any of these languages, every separable example set

can be separated by a query of polynomial size. The matching lower bound is established

by reduction of the NP-hard problem of deciding whether the words in a given set contain

a common subsequence of a given length [25]. Separability by 𝒬[U]-queries turns out to be

trickier because of the interplay of ∧, the left- and the right-hand sides of the U-operator.

Example 4. The example set below, where the instance on the right is negative, is separated by

0 1 2 3

𝐴2, 𝐵1

4

𝐵2

5 0 1

𝐴1, 𝐵2

2

𝐵1

3 0 1

𝐵1

2 3

𝐵2

4

the 𝒬[U]-query ◇
(︀
(𝐴1 U𝐵1) ∧ (𝐴2 U𝐵2)

)︀
but is not separable in any other class of queries.

We give a separability criterion in terms of U-simulations between subsets of the disjoint

union of the positive examples and points of a negative example (cf. [26]). Then, using a game-

theoretic variant of U-simulations, we show that a separating 𝒬[U]-query can be constructed

in PSpace. However, at the moment, we only have an NP-lower bound for separability.

Separability under LTL Ontologies. Apart from full LTL, we consider its fragment LTL□◇
that

only uses the operators □ and ◇, also known as the Prior logic [27, 28, 29, 30], and the Horn

fragment LTL□○
horn containing axioms of the form 𝐶1∧· · ·∧𝐶𝑘 → 𝐶𝑘+1, where the 𝐶𝑖 are atoms

possibly prefixed by □ and ○ for 𝑖 ≤ 𝑘 + 1, and also by ◇ for 𝑖 ≤ 𝑘. The ontology axioms are

supposed to hold at all times.

Separability by (path) ◇-queries is Σ𝑝
2-complete under LTL□◇

ontologies and PSpace-

complete under LTL□○
horn ontologies. For LTL ontologies, we have a NExpTime upper bound. We

conjecture that exactly the same bounds can be proved for (path) ○◇-queries. As concerns

𝒬𝑝[U]-queries, separability under LTL□○
horn ontologies is shown to be between ExpSpace and

NExpTime; for ‘branching’ 𝒬[U−]-queries without nesting U-operators on the left of U, it can

be decided in ExpTime using U-simulations. We establish the upper bounds by constructing

two exponential-size transition systems 𝑆+
and 𝑆−

from (𝒪, 𝐸+) and (𝒪, 𝐸−) such that (𝑖)
there is a trace-based simulation of 𝑆+

by 𝑆−
iff (𝐸+, 𝐸−) is separated in 𝒬𝑝[U] and (𝑖𝑖) there

is a tree-based simulation of 𝑆+
by 𝑆−

iff (𝐸+, 𝐸−) is separated in 𝒬[U−]. The existence of

trace-based and tree-based simulations can be decided in PSpace- and P, respectively [31].

The obtained complexity results are summarised in the table below:



QBE(ℒ,𝒬) LTL LTL□○
horn LTL□◇ QBE(𝒬)

𝒬[U]

?

?

?

≥ NP,≤ PSpace𝒬[U−] ≤ ExpTime

𝒬𝑝[U] ≥ NExpTime,≤ ExpSpace

= NP

𝒬[○,◇] ≤ ExpTime

𝒬𝑝[○,◇] ≤ ExpSpace

𝒬[◇] ≤ NExpTime = PSpace = Σ𝑝
2𝒬𝑝[◇]
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