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Abstract
In this paper we present a new labelled Natural Deduction calculus for the logic iALC, an intuitionistic
description logic with nominals originally designed to reason over laws and other normative sentences
in general. Even though this logic already has a formalised Sequent Calculus system, Natural Deduction
is more adequate for extracting explanations for non-logicians - which is further aided by our use of
labels as part of the calculus. We prove soundness and normalisation for the new Natural Deduction
system, and show its completeness.
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1. Introduction

iALC is an intuitionistic description logic with nominals originally designed to model and reason
over norms - especially laws and other forms of juridical norms. It is based on the framework
for intuitionistic modal logic IK [1, 2, 3]. These modal logics arise from interpreting the usual
possible worlds definitions in an intuitionistic metatheory. The logic language also borrows
some of its design principles from [4] where the framework IHL, for intuitionistic hybrid logics,
is introduced. The syntax and semantics of iALC are given in Section 2.

iALC is a combination of logics, inheriting its syntax from description logics and its semantics
from intuitionistic logic. The description logic component allows for modelling normative
sentences whilst avoiding many of the problems that occur in non-modal frameworks when
considering affirmative and normative sentences as the same thing. The intuitionistic aspect is
based on Kelsenian Jurisprudence, which revolves around the concept of ground norms. Norms
can be stratified in such a way that ground norms precede other individual laws (known as legal
individuals and usually referred as Valid Legal Statements, or VLSs), thus creating a hierarchy
of coexisting different legal systems. In iALC, a VLS is represented by a world in a Kripke model
- and a nominal in the language.

As shown in [5], the intuitionistic aspect allows for non-conflicting existence of thought-
to-be contradictory logical formulas that can be modelled in a more natural way than than
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in Description Logics (DLs) that have a classical notion of validity, such as ALC and other
canonical DLs. In the domain of law, this allows for the existence of a model representing two
distinct legal systems, for instance, one in which the death penalty is not allowed and the other
in which it is (referencing the same concept of death penalty). Representing law in a classical
DL would force us to find a more conflated way to insert legal individuals into the logic at the
risk of losing legibility and, even worse, soundness. In the example of death penalty, one would
need a concept DeathPenaltyBrazil and another DeathPenaltyTexas as well as one or more
formulas connecting both concepts in one manner or another (and would have to find another
way to model VLSs, instead of directly having them being worlds in the model). By having
this intuitionistic perception, we better translate the foundations of Private International Law
into the modelling, connecting VLSs which are part of different legal systems via the same
concept, for example, DeathPenalty , without having to resort to many workarounds. Legal
precedence is, as well, something defined constructively in the logic through the VLSs, and does
not need additional formulations in the model. In a regular (i.e. classical) DL, this cannot be
represented as directly as in its intuitionistic counterpart when modelling laws since a Kripke
model for a Classical Logic collapses all worlds (the legal individuals) to the same one, causing
a contradiction by allowing and prohibiting the death penalty at the same time.

The logic iALC has been compared to other logical languages with respect to its adequacy for
representing normative systems. Comparison between iALC and different flavours of Deontic
Logics [6, 7, 8, 9] have been discussed in [10, 5, 11, 12]. There are also other works, such
as [13, 14], in which the logics are bound to the closed world assumption, which may not be
adequate for dealing with legal systems, where unknown facts cannot be considered untrue. In
[15], the presented logic utilises classical negation, despite being very similar to iALC. With
classical negation, different legal systems would be in the complement of others automatically,
not allowing them to have some subset of laws that is the same (at least when considering a
direct modelling approach as the one allowed in iALC).

A Sequent Calculus (SC) for iALC was previously presented [10, 16, 17]. However, later
works argued that ND systems lead to better readability and explainability for non-logicians
when compared to the SC [11, 12, 18] and the Hilbert system to be introduced in Section 3.
ND is an answer provided by Jaskowiski in 1929 to a challenge offered by Lukasiewicz in
his 1926 seminars. He observed that mathematicians do not use axiomatic systems to prove
theorems, using, instead, assumptions and higher patterns of deduction, normally stated in
natural language. As an epistemological argument in favour of the naturality of ND, not only
Jaskowski, but also Gentzen, independently proposed quite similar systems of ND. Of course,
Gentzen’s motivation was his proof-theoretical approach to the consistency proof, which,
nevertheless was only possible, according to his own words, to the definition of SC, a kind of
meta-calculus for ND. We believe that this very motivation for reflecting the logical form of
reasoning that mathematicians usually employ is enough motivation to consider ND as a good
tool to represent formal arguments to people.

In this paper, we formally introduce the Natural Deduction system for iALC for the first time,
bridging the gap between its informal presentation and the new calculus for iALC together with
correctness results. It is our hope that the results contained in this paper will help fostering
the utilisation of iALC not only as a language for the representation of the intended problems
related to laws, but also to the implementation of tools for reasoning about those problems



whilst retaining human-readability.
In the calculus, we introduce the use of labels as syntactic artefacts in order to represent

contexts to formulas of iALC. We assign labels in a similar fashion to [19], where the author
gives a labelled ND system for the classical sibling of iALC, 𝒜ℒ𝒞. Labels represent contexts
for formulas in iALC, and allow for better concept manipulation. The use of labels was made
essential in [11, 12, 5], where, even in an informal introduction to a ND system for iALC, we
noticed it needed a way to carry context over from formula to formula, especially when formulas
involved multiple universal or existential restrictions.

The structure of the paper is as follows. In Section 2, we introduce the logic itself. In Section
3 we present the new Natural Deduction system for iALC, explaining the design choices we
made. In Section 4 we show the normalisation, completeness and soundness proofs for the
system. Finally, in Section 5, we conclude and discuss future work.

2. The Logic iALC

The logic iALC, first introduced in [20] and further developed in [16, 17, 10], is an intuitionistic
description logic with nominals created to represent and reason about legal knowledge. It was
used to answer multiple-choice questions from the Brazilian Bar Exam in [11], to formalise
Brazilian Law in [12], and to model and deal with problems involving trust, privacy and
transparency in knowledge graphs in [5], showing its adequacy to deal with legal representation
and reasoning. We formally introduce its language in the following:

Let 𝛼 and 𝛽 be concepts, 𝐴 be an atomic concept, 𝑅 be an atomic role, 𝛿 be any formula and
𝑥 be a nominal. iALC formulas are described by the following grammar:

𝛿 ::= 𝛼 | 𝑥 : 𝛼

where the concepts 𝛼, 𝛽 are given by the following grammar:

𝛼,𝛽 ::= 𝐴 | ⊥ | ⊤ | ¬𝛼 | 𝛼 ⊓ 𝛽 | 𝛼 ⊔ 𝛽 | 𝛼 ⊑ 𝛽 | ∃𝑅.𝛼 | ∀𝑅.𝛼

where 𝐴 is an atomic concept. Formulas have a restricted use of nominals as nominal assertions
are not concept constructors.

As given by the definition above, the main difference from the grammar of ALC is that, in
iALC, ⊑ is a concept-forming operator, whereas in 𝒜ℒ𝒞 it is not, as defined and explained in
[16]: Because iALC has an intuitionistic semantics, this entailment operator is analogous to the
intuitionistic implication. This construction allows for an abstraction of the precedence relation
⪯ (a pre-order on worlds, as in the Kripke semantics for intuitionistic logics) in TBox reasoning,
as well as allowing us to define negation using ⊑.

A constructive interpretation of iALC is a structure ℐ consisting of a non-empty set Δℐ of
entities in which each entity represents a partially defined individual; a refinement pre-ordering
⪯ℐ on Δℐ , i.e. a reflexive and transitive relation (a pre-order), and an interpretation function ·ℐ
mapping each role name 𝑅 to a binary relation 𝑅ℐ ⊆ Δℐ ×Δℐ and atomic concept 𝐴 to a set
𝐴ℐ ⊆ Δℐ which is closed under refinement, i.e. 𝑥ℐ ∈ 𝐴ℐ and 𝑥ℐ ⪯ℐ 𝑦ℐ implies 𝑦ℐ ∈ 𝐴ℐ .

The logic follows the semantics of IK, where the structures ℐ are models for iALC if they
satisfy two frame conditions:



F1 if 𝑥 ⪯ 𝑥′ and 𝑥𝑅𝑦 then ∃𝑦′.𝑥′𝑅𝑦′ and 𝑦 ⪯ 𝑦′; and
F2 if 𝑦 ⪯ 𝑦′ and 𝑥𝑅𝑦 then ∃𝑥′.𝑥′𝑅𝑦′ and 𝑥 ⪯ 𝑥′.

The interpretation ℐ is lifted from atomic concepts to arbitrary concepts as follows:

⊤ℐ = Δℐ

⊥ℐ = ∅

(𝛼 ⊓ 𝛽)ℐ = 𝛼ℐ ∩ 𝛽ℐ

(𝛼 ⊔ 𝛽)ℐ = 𝛼ℐ ∪ 𝛽ℐ

(¬𝛼)ℐ = {𝑥 ∈ Δℐ | ∀𝑦, 𝑥 ⪯ 𝑦 ⇒ 𝑦 ̸∈ 𝛼ℐ}
(∀𝑅.𝛼)ℐ = {𝑥 ∈ Δℐ | ∀𝑦(𝑥 ⪯ 𝑦 ⇒ ∀𝑧((𝑦, 𝑧) ∈ 𝑅ℐ ⇒ 𝑧 ∈ 𝛼ℐ))}
(∃𝑅.𝛼)ℐ = {𝑥 ∈ Δℐ | ∀𝑦(𝑥 ⪯ 𝑦 ⇒ ∃𝑧((𝑦, 𝑧) ∈ 𝑅ℐ ∧ 𝑧 ∈ 𝛼ℐ))}
(𝛼 ⊑ 𝛽)ℐ = {𝑥 ∈ Δℐ | ∀𝑦, (𝑥 ⪯ 𝑦 ∧ 𝑦 ∈ 𝛼ℐ) ⇒ 𝑦 ∈ 𝛽ℐ}

And the interpretation for formulas with nominals such as (𝑥 : 𝛿)ℐ (where 𝛿 is any formula)
is 𝑥ℐ |=ℐ 𝛿ℐ , where |=ℐ is the usual satisfaction relation of Kripke models.

3. Natural Deduction

The ND system we developed aims to reach TBox validity and it uses Gentzen-style proofs,
based especially on [21]. Formulas are labelled in order to allow for the mixing of nominals and
existential/universal restrictions in a TBox-only style of reasoning, even though role assertions
belong in the ABox.

We expand the language with labels for our ND system, essentially giving context of universal
and existential restrictions in formulas, as explained in Section 1. The grammar for iALC is
then extended with:

𝛼 ::= 𝛼𝐿

𝐿 ::= ∃𝑅,𝐿 | ∀𝑅,𝐿 |∅

As for labelled formulas, following [19], we first define an function 𝜎 to make a labelled ND
system that translates from a non-labelled formula to a labelled formula as given below:

𝜎(𝛼) = 𝛼∅

𝜎(∀𝑅.𝛼) = 𝜎(𝛼)∀𝑅

𝜎(∃𝑅.𝛼) = 𝜎(𝛼)∃𝑅

𝜎(𝛼 ⊓ 𝛽) = 𝜎(𝛼) ⊓ 𝜎(𝛽)

𝜎(𝛼 ⊔ 𝛽) = 𝜎(𝛼) ⊔ 𝜎(𝛽)

𝜎(¬𝛼) = ¬ 𝜎(𝛼)

𝜎(𝛼 ⊑ 𝛽) = 𝜎(𝛼) ⊑ 𝜎(𝛽)

Given 𝜎, the semantics for a labelled formula 𝛿 is given by 𝜎(𝛿)ℐ . This way, 𝛼∀𝑅3,∃𝑅2,∀𝑅1 ,
for example, has the same semantics as ∀𝑅1.∃𝑅2.∀𝑅3.𝛼.



3.1. The Rules

Table 1
Rules of the ND System[︀

𝛼𝐿1
]︀

....
𝛽𝐿2

𝛼𝐿1 ⊑ 𝛽𝐿2
⊑ −𝑖

𝛼𝐿1 𝛼𝐿1 ⊑ 𝛽𝐿2

𝛽𝐿2
⊑ −𝑒

[︀
𝛼𝐿

]︀
....
⊥

(¬𝛼)¬𝐿
¬ − 𝑖

𝛼𝐿 (¬𝛼)¬𝐿

⊥ ⊥− 𝑖
𝛼𝐿∀

𝛽𝐿∀

(𝛼 ⊓ 𝛽)𝐿
∀ ⊓ − 𝑖

(𝛼 ⊓ 𝛽)𝐿
∀

𝛼𝐿∀ ⊓ − 𝑒1
(𝛼 ⊓ 𝛽)𝐿

∀

𝛽𝐿∀ ⊓ − 𝑒2

𝛼𝐿∃

(𝛼 ⊔ 𝛽)𝐿
∃ ⊔ − 𝑖1

𝛽𝐿∃

(𝛼 ⊔ 𝛽)𝐿
∃ ⊔ − 𝑖2

(𝛼 ⊔ 𝛽)𝐿
∃

[︁
𝛼𝐿∃

]︁
....
𝛿

[︁
𝛽𝐿∃

]︁
....
𝛿

𝛿
⊔ − 𝑒

𝑦 : 𝛼∃𝑅,𝐿

𝑥 : (∃𝑅.𝛼)𝐿
∃ − 𝑖

𝑥 : (∃𝑅.𝛼)𝐿

𝑦 : 𝛼∃𝑅,𝐿
∃ − 𝑒

𝑦 : 𝛼∀𝑅,𝐿

𝑥 : (∀𝑅.𝛼)𝐿
∀ − 𝑖

𝑥 : (∀𝑅.𝛼)𝐿

𝑦 : 𝛼∀𝑅,𝐿
∀ − 𝑒

⊥
𝛿

𝑒𝑓𝑞

[︀
𝑥 : 𝛼𝐿1

]︀
....

𝑥 : 𝛽𝐿2

𝑥 : (𝛼𝐿1 ⊑ 𝛽𝐿2)
⊑ −𝑖𝑛

𝑥 : 𝛼𝐿1 𝑥 : (𝛼𝐿1 ⊑ 𝛽𝐿2)

𝑥 : 𝛽𝐿2
⊑ −𝑒𝑛

[︀
𝑥 : 𝛼𝐿

]︀
....

𝑥 : ⊥
𝑥 : (¬𝛼)¬𝐿

¬ − 𝑖𝑛
𝑥 : 𝛼𝐿 𝑥 : (¬𝛼)¬𝐿

𝑥 : ⊥ ⊥− 𝑖𝑛
𝑥 : 𝛼𝐿∀

𝑥 : 𝛽𝐿∀

𝑥 : (𝛼 ⊓ 𝛽)𝐿
∀ ⊓ − 𝑖𝑛

𝑥 : (𝛼 ⊓ 𝛽)𝐿
∀

𝑥 : 𝛼𝐿∀
⊓ − 𝑒1𝑛

𝑥 : (𝛼 ⊓ 𝛽)𝐿
∀

𝑥 : 𝛽𝐿∀
⊓ − 𝑒2𝑛

𝑥 : 𝛼𝐿∃

𝑥 : (𝛼 ⊔ 𝛽)𝐿
∃

⊔ − 𝑖1𝑛

𝑥 : 𝛽𝐿∃

𝑥 : (𝛼 ⊔ 𝛽)𝐿
∃

⊔ − 𝑖2𝑛
𝑥 : (𝛼 ⊔ 𝛽)𝐿

∃

[︁
𝑥 : 𝛼𝐿∃

]︁
....
𝛿

[︁
𝑥 : 𝛽𝐿∃

]︁
....
𝛿

𝛿
⊔ − 𝑒𝑛

𝑥 : ⊥
𝛿

𝑒𝑓𝑞𝑛

𝛼𝐿

𝛼𝐿,∀𝑅 𝐺𝑒𝑛
𝑥 : 𝛼𝐿

𝑦 : 𝛼𝐿,∀𝑅 𝐺𝑒𝑛𝑛

𝑥 : (∃𝑅.𝛼)𝐿1 𝑥 : ∀𝑅.(𝛼𝐿1 ⊑ 𝛽𝐿2)

𝑥 : (∃𝑅.𝛽)𝐿2
𝑝− ∃

Table 1 contains all rules of the calculus. Rules are presented in the usual way, where premises
for each rule are given over the bar and its (single) conclusion lies below. Assumptions in the
premises are enclosed by square brackets. The proofs in ND have a tree-like form, by connecting
together the deduction steps given by the applied rules in the proof. Some of the rules have
formulas surrounded by brackets, indicating that the rule in question can discharge these



hypotheses, i.e. the conclusion of the proof does not depend on them explicitly anymore.
Let 𝛼 and 𝛽 be concepts, 𝑥 and 𝑦 be nominals, 𝛿 be a formula, and 𝑅 be a role. 𝐿 represents a

(possibly empty) list of labels. Labels represent universal or existential restrictions on concepts,
made implicit by the introduction rules - the associated elimination rules make them explicit.
We denote by 𝐿∀ a list that has only universal restrictions, and by 𝐿∃ a list with existential
restrictions only. ¬𝐿 swaps existential and universal restrictions throughout 𝐿.

Rules ∃− 𝑖, ∃− 𝑒, ∀− 𝑖 and ∀− 𝑒 require that there be an assertion 𝑥𝑅𝑦 in order to function.
These rules are what allows our calculus to use the labels as restrictions. Even though this is a
TBox-centered calculus, we assume that there is a subjacent ABox extension that introduces
these role assertions. In [5] there are running examples.

Rules 𝑒𝑓𝑞 and 𝑒𝑓𝑞𝑛 stand for the principle of explosion. The structural rules 𝐺𝑒𝑛 and 𝐺𝑒𝑛𝑛

deal with modal necessitation. Rule 𝑝−∃ allows for context permutation within a subsumption.
Some rules have two versions, one without nominals and one with nominals (notated with a

subscript 𝑛 in the name). For instance, we have ⊓ − 𝑖 and ⊓ − 𝑖𝑛.
From now on, every rule that has a version with nominals (i.e. has a subscript 𝑛) will have

only this version being used, as the other version is trivial in the correctness proofs given in the
next section. As such, they will only be called by their original name, without the 𝑛, in order to
avoid visual clutter. For instance, ⊓ − 𝑖𝑛 will be referred to as ⊓ − 𝑖.

4. Main Properties

In this section we show that important properties which are expected of ND systems hold
in the one here proposed for iALC. Due to limited size and redundancy in arguments, some
proofs are sketched and inductive cases may be omitted - mainly the ones involving operators
analogue to propositional ones, since those are very similar in functionality. Full proofs can be
found in https://github.com/Bpalkmim/iALC_ND_proofs. In order to improve readability, lists
of labels are omitted whenever possible throughout Section 4.1, as they do not interfere with
the process of normalisation. When dealing with soundness and completeness in Sections 4.2
and 4.3, however, labels will be explicitly shown.

Our main focus here is to show that these properties still hold when dealing with labels and
the rules which introduce and eliminate existential and universal restrictions.

4.1. Normalisation

Normalisation is a crucial step to show that the sub-formula principle holds in our system. This
principle states thatevery step in a proof contains only sub-formulas of either the conclusion
or the premises. This is extremely important to order to do proof search in an efficient way.
We will base our normalisation proof on the ones presented in [21, 22, 23, 24]. We will utilise
the words proof and derivation interchangeably from now on (one can see a proof in ND as a
derivation from the premises to the conclusion).

To reach normalisation, the following definitions are needed.

Definition 1 (Major premise). The major premise is the premise of an elimination rule which
contains the operator to be eliminated. Other premises, if existent, are called minor premises.

https://github.com/Bpalkmim/iALC_ND_proofs


Definition 2 (Detour). A detour occurs when a formula is introduced via an introduction rule
only to be eliminated immediately later as the major premise of an elimination rule.

Our goal in the end will be to remove such detours via reductions and arrive at so called
normal proofs, to show that the system has normalisation.

Example 1 (A detour with ⊓). Let Π1 and Π2 be sub-proofs. An example of a detour is given
below, where the list of labels is empty:

Π1
𝑥 : 𝛼

Π2
𝑥 : 𝛽

𝑥 : (𝛼 ⊓ 𝛽)
⊓ − 𝑖

𝑥 : 𝛼 ⊓ − 𝑒1

By introducing and eliminating a conjunction, 𝑥 : 𝛼 occurs twice in the same branch of the
proof. This is clearly an unnecessary step, as no progress is made in the proof.

Maximum formulas are precisely those that represent a detour. Its definition is given next.

Definition 3 (Maximum Formula). A formula 𝛿 in a derivation Π is a maximum formula if:

1. 𝛿 is the conclusion of an application of an introduction rule and the major premise of an
application of an elimination rule of the same operator; or

2. 𝛿 is the conclusion of an application of ⊔ − 𝑒 as well as the major premise of an application
of an elimination rule.

The second case covers a hidden detours in the ⊔ − 𝑒. An example will be shown later.
In order to evaluate how a reduction works in simplifying a proof, it is necessary to have

some kind of measure. We then introduce the concept of degree of a formula, indicating its
size by the number of occurrences of logical operators. Not surprisingly, the name maximum
formula is related to this measurement.

Definition 4 (Degree of a Formula). The degree of a formula is given as follows:

𝑑𝑒𝑔(𝐶) = 0, for an atomic concept C
𝑑𝑒𝑔(𝑥 : 𝛼) = 𝑑𝑒𝑔(𝛼) + 2

𝑑𝑒𝑔(𝛼 ⊔ 𝛽) = 𝑑𝑒𝑔(𝛼) + 𝑑𝑒𝑔(𝛽) + 1

𝑑𝑒𝑔(𝛼 ⊓ 𝛽) = 𝑑𝑒𝑔(𝛼) + 𝑑𝑒𝑔(𝛽) + 1

𝑑𝑒𝑔(𝛼 ⊑ 𝛽) = 𝑑𝑒𝑔(𝛼) + 𝑑𝑒𝑔(𝛽) + 1

𝑑𝑒𝑔(¬𝛼) = 𝑑𝑒𝑔(𝛼) + 1

𝑑𝑒𝑔(∃𝑅.𝛼) = 𝑑𝑒𝑔(𝛼) + 2

𝑑𝑒𝑔(∀𝑅.𝛼) = 𝑑𝑒𝑔(𝛼) + 2

Definition 5 (Degree of a Derivation). The degree of a derivation Π is defined as:

𝑑𝑒𝑔(Π) = 𝑚𝑎𝑥{𝑑𝑒𝑔(𝛿) : 𝛿 is a maximum formula in Π}



Definition 6 (Normal Derivation). A derivation Π is called normal when 𝑑𝑒𝑔(Π) = 0.

In other words, a normal derivation has a maximum formula of degree 0, i.e. has no detours.

Definition 7 (Critical Derivation). A derivation Π is called critical when

1. Π ends with an application of an elimination rule 𝜌;
2. the major premise 𝛿 of 𝜌 is a maximum formula;
3. 𝑑𝑒𝑔(Π) = 𝑑𝑒𝑔(𝛿); and
4. for all Π′ sub-derivation of Π, 𝑑𝑒𝑔(Π′) < 𝑑𝑒𝑔(𝛿) = 𝑑𝑒𝑔(Π).

This way we know that the main detour to be reduced lies (at first) in 𝜌.
A reduction is an operation on proofs that functions as a way to remove maximum formulas

locally. The reductions for the propositionally-based operators are extensions of the usual
Prawitz-reductions. As such, we have a permutation operation in order to arrange a ⊔-maximum
formula to be properly reduced. This will be shown after the more basic cases.

Definition 8 (Reduction). We say a derivation Π reduces to another, Π′, when we apply zero or
more reductions to maximum formulas of Π and it becomes equal to Π′. We denote by Π ◁Π′ the
reduction from Π to Π′.

As a quick note on reductions, they usually end up copying whole sections of proofs (thus
increasing the size of the proof itself), but they do not increase the complexity of the formulas
therein. First we will show some basic cases.

⊓-reduction Taking the derivation from Example 1, we have:

Π1
𝑥 : 𝛼

Π2
𝑥 : 𝛽

𝑥 : (𝛼 ⊓ 𝛽)
⊓ − 𝑖

𝑥 : 𝛼
Π3

⊓ − 𝑒1
◁

Π1
𝑥 : 𝛼
Π3

This way the proof goes directly through 𝑥 : 𝛼, without introducing and eliminating an
unused operator. The reduction utilises ⊓ − 𝑒1, but ⊓ − 𝑒2 is analogous.

⊑-reduction This derivation has a maximum formula whose main operator is ⊑:

Π1
𝑥 : 𝛼

[𝑥 : 𝛼]
Π2
𝑥 : 𝛽

𝑥 : (𝛼 ⊑ 𝛽)
⊑ −𝑖

𝑥 : 𝛽
Π3

⊑ −𝑒

◁

Π1
𝑥 : 𝛼
Π2
𝑥 : 𝛽
Π3

Note that, in this case, there can be multiple occurrences of the hypothesis discharge over
Π2, so this reduction ends up copying the entirety of Π1 possibly many times, increasing the
size of the proof itself, but not its complexity, since the maximum formula was removed.

The case of ¬-reduction via ¬ − 𝑖 and ⊥− 𝑖 (which acts as ¬ − 𝑒) is analogous, as negation
is but a special case of ⊑.



∀-reduction The case for the universal restriction on concepts is rather simple. Let 𝑅 be a role.
As always, we assume that 𝑥𝑅𝑦 is in the ABox.

Π1

𝑦 : 𝛼∀𝑅

𝑥 : ∀𝑅.𝛼
∀ − 𝑖

𝑦 : 𝛼∀𝑅

Π2

∀ − 𝑒

◁

Π1

𝑦 : 𝛼∀𝑅

Π2

The case for ∃-reduction is the analogous.

⊔-reduction This operator, much like ⊓, has two possible reductions, but both are equivalent.
Only the one involving ⊔ − 𝑖1 will be shown.

Π1
𝑥 : 𝛼

𝑥 : 𝛼 ⊔ 𝛽
⊔ − 𝑖1

[𝑥 : 𝛼]
Π2
𝛿

[𝑥 : 𝛽]
Π3
𝛿

𝛿
Π4

⊔ − 𝑒

◁

Π1
𝑥 : 𝛼
Π2
𝛿
Π4

As was the case with ⊑, there can be multiple copies of Π1 to be added.

⊔-permutation This operator has a peculiarity in that it may hide a maximum formula, since
𝛿 can be the major premise of another elimination rule. Let us, then, define a ⊔-permutation
that allows for a rearrangement of the proof tree around the ⊔ − 𝑒. Here we will only show
the case of ⊔ − 𝑖1, without loss of generality. Let 𝜌 be an elimination rule with major premise
𝛿1, minor premise 𝛿2 and conclusion 𝛿3. Due to limited space, we assume that 𝜌 has only one
minor premise; with more premises the argument is analogous.

Π1
𝑥 : 𝛼

𝑥 : 𝛼 ⊔ 𝛽
⊔ − 𝑖1

[𝑥 : 𝛼]
Π2
𝛿1

[𝑥 : 𝛽]
Π3
𝛿1

𝛿1
⊔ − 𝑒 Π4

𝛿2
𝛿3
Π5

𝜌

◁

Π1
𝑥 : 𝛼

𝑥 : 𝛼 ⊔ 𝛽
⊔ − 𝑖1

[𝑥 : 𝛼]
Π2
𝛿1

Π4
𝛿2

𝛿3
𝜌

[𝑥 : 𝛽]
Π3
𝛿1

Π4
𝛿2

𝛿3
𝜌

𝛿3
Π5

⊔ − 𝑒

With this derivation in hand, the detour that may happen with 𝜌 becomes apparent, since 𝜌
is an elimination rule and there may be other detours to be reduced in the sub-derivations. It is
important to note that this permutation does not increase the degree of the derivation, since
the maximum formula, be it 𝑥 : 𝛼 ⊔ 𝛽 or any of the 𝛿’s, does not increase in complexity.

In order to optimise space, from here on we will refer to simple derivations utilising the
following notation: Π/𝛿 represents a derivation Π with 𝛿 as a conclusion. Conversely, 𝛿/Π
represents a derivation Π with 𝛿 as a premise. Note that there may be more copies of 𝛿 in the
actual derivation Π, as stated previously.

Lemma 1. Let Π1/𝛿 and 𝛿/Π2 be two derivations in the ND system such that 𝑑𝑒𝑔(Π1) = 𝑛1 and
𝑑𝑒𝑔(Π2) = 𝑛2. Then, 𝑑𝑒𝑔(Π1/[𝛿]/Π2) = 𝑚𝑎𝑥{𝑑𝑒𝑔(𝛿), 𝑛1, 𝑛2}.

Proof. Directly from Definition 5: the maximum formula in this derivation is either in Π1, in
Π2 or is 𝛿 itself.



Lemma 2. If Π reduces to Π′, then 𝑑𝑒𝑔(Π′) ≤ 𝑑𝑒𝑔(Π).

Proof. It follows directly from the reductions in Definition 8 and the degree of a formula in
Definition 4: Since a reduction always lowers the degree of a maximum formula, it also lowers
the degree of the derivation in which it is contained (as per Definition 5).

Lemma 3. Let 𝛿 be a formula in iALC, Γ be a set of formulas, Δ ⊆ Γ and Π be a critical derivation
of Γ ⊢𝑁𝐷 𝛿. Then, Π reduces to a derivation Π′ of Δ ⊢𝑁𝐷 𝛿 such that 𝑑𝑒𝑔(Π′) < 𝑑𝑒𝑔(Π).

Proof. The proof follows by induction on the structure of Π. We will use the reductions shown
in Definition 8, but assuming they are critical derivations. We will call each derivation before a
reduction Π, and Π′ after the reduction.

Lemma 4. Let 𝛿 be a formula in iALC, Γ be a set of formulas, Δ ⊆ Γ and Π be a derivation
of Γ ⊢𝑁𝐷 𝛿 such that 𝑑𝑒𝑔(Π) > 0. Then, Π reduces to a derivation Π′ of Δ ⊢𝑁𝐷 𝛿 such that
𝑑𝑒𝑔(Π′) < 𝑑𝑒𝑔(Π).

Proof. It follows directly from Lemmas 2 and 3 using induction on the length of Π.

Theorem 1 (Normalisation). Let Π be a derivation of Γ ⊢𝑁𝐷 𝛿. Then, Π reduces to a normal
derivation Π′ of Δ ⊆ Γ ⊢𝑁𝐷 𝛿.

Proof. This follows directly from Lemma 4 by applying the reductions (and the permutation
when necessary) inductively over the degree of Π in order to remove its maximum formulas.
In the end, the proof generated will be normal. Moreover, since it is done inductively, the
normalisation process is terminating.

4.2. Soundness

Theorem 2 (Soundness). Let 𝛿 be a formula in iALC and Γ a set of formulas. Then, Γ ⊢𝑁𝐷 𝛿
implies Γ |= 𝛿.

Proof. The proof follows by showing that each rule preserves soundness. For rules that involve
hypothesis discharge, we use induction on the length of derivations.

4.3. Completeness

Theorem 3 (Completeness). Let 𝛿 be a formula in iALC and Γ a set of formulas. Then, Γ |= 𝛿
implies Γ ⊢𝑁𝐷 𝛿.

Proof. We prove completeness in regards to TBox reasoning. In [17, 10], the authors provide
a Hilbert system that implements TBox validity for iALC as per [1, 2, 3, 25] consisting of the
following axioms and inference rules:

(IPL) all axioms of intuitionistic propositional logic

(∀K) (∀𝑅.(𝛼 ⊑ 𝛽)) ⊑ (∀𝑅.𝛼 ⊑ ∀𝑅.𝛽)

(∃K) (∀𝑅.(𝛼 ⊑ 𝛽)) ⊑ (∃𝑅.𝛼 ⊑ ∃𝑅.𝛽)



(DIST) ∃𝑅.(𝛼 ⊔ 𝛽) ⊑ (∃𝑅.𝛼 ⊔ ∃𝑅.𝛽)

(DIST0) ∃𝑅.⊥ ⊑ ⊥
(DISTm) (∃𝑅.𝛼 ⊑ ∀𝑅.𝛽) ⊑ ∀𝑅.(𝛼 ⊑ 𝛽)

(Nec) If 𝛼 is a theorem, then ∀𝑅.𝛼 is a theorem too.

(MP) If 𝛼 and 𝛼 ⊑ 𝛽 are theorems, then 𝛽 is a theorem too.

In [25], the authors prove that this system is sound and complete for TBox validity. So, in
order to prove completeness of our ND system, all we have to do is prove each of these axioms.
Axiom (IPL) is easily proven since all substitution instances of IPL theorems can be proven in
our ND system using only propositional rules. (MP) is covered by our ⊑ −𝑒 rule, and (Nec), by
the 𝐺𝑒𝑛 rule. We, then, only have to prove the remaining five axioms. Full proofs can be found
in https://github.com/Bpalkmim/iALC_ND_proofs.

5. Final Remarks

In this paper we presented a Natural Deduction system for the intuitionistic description logic
iALC, originally tailored to deal with norms, especially in a legal context. Although iALC had a
Sequent Calculus (SC) system formalised, it was not widely used due to the interdisciplinary
characteristic of the application of this logic, which favoured a more readable style of making
proofs - Natural Deduction (ND).

The ND system is sound and complete and its normalisation is terminating. The proofs for
those properties closely follow the ones presented previously for the SC system, with roots on
the ND system designed for classical 𝒜ℒ𝒞, so they share many similarities.

With the formalisation of this system, we intend to further apply iALC to contexts involving
law and norms, and expand its usage to different areas, now with a more approachable style of
showing proofs for non-logicians.

A version of this system without nominals would be PSPACE-complete. We believe that he
labelled ND system for iALC with nominals has 2-EXPTIME-hard complexity. We intend to
formally establish this using the same techniques given in [17, 26], which were used for the SC
system for iALC. Establishing complexity is a future work.

We intend, in the future, to implement these proofs in an interactive theorem prover such
as Coq and plan to create an automated theorem prover for iALC. In the theoretical side, we
aim to increment iALC with some kind of non-monotonic reasoning, which will most likely be
related to default logic.
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