
Fine-Grained Forgetting for the Description Logic
ALC
Mostafa Sakr, Renate A. Schmidt

The University of Manchester, Manchester, UK

Abstract
Forgetting is an important ontology extraction technique. A variant of forgetting which has received

significant attention in the literature is deductive forgetting (or uniform interpolation). While deductive
forgetting is attractive as it generates the forgetting view in a language with the same complexity as the

language of the original ontology, it is known that with a slightly extended target language using definer

symbols more information can be preserved. In this paper, we study deductive forgetting of concept

names with the aim of understanding the unpreserved information. We present a system that performs

deductive forgetting and produces a set Δ of axioms representing the unpreserved information in the

forgetting view. Our system allows a new fine-grained ontology extraction process that gives the user

the option to enhance the informativeness of the deductive forgetting view by appending to it axioms

from Δ.

1. Introduction

Forgetting is an important ontology extraction technique. It eliminates from an ontology a

given subset of its vocabulary. The result is a focused ontology, called forgetting view, which

preserves the content of the ontology relative to the non-forgotten vocabulary. Forgetting offers

solutions for many applications such as: computing logical difference [1], information hiding [2],

abduction [3], resolving conflicts [4], relevance [5, 6, 7], and forgetting actions in planning [8].

A variant of forgetting that has been studied in the literature is deductive forgetting (or

uniform interpolation). Given an 𝒜ℒ𝒞 ontology and a forgetting signature, deductive forgetting

produces a view of the ontology which preserves only the information expressible in 𝒜ℒ𝒞 over

the non-forgetting signature [9, 10, 11]. Deductive forgetting is however not precise, because

information expressible with more expressivity may not be preserved. Yet, deductive forgetting

remains an appealing variant of forgetting because when performed on 𝒜ℒ𝒞 ontologies, the

generated forgetting views are (infinitely) representable in 𝒜ℒ𝒞, or finitely representable if

fixpoint operators are allowed [12, 13].

When a deductive view is computed, the following questions arise: Does the deductive view
preserve all information of the non-forgotten vocabulary? If not, what information is not preserved
and what does this information represent? Can some of this information be partially preserved, i.e.,
can a view more informative than the deductive forgetting view be computed? In this paper, we

DL 2022: 35th International Workshop on Description Logics, August 7–10, 2022, Haifa, Israel
$ Mostafa.Sakr@manchester.ac.uk (M. Sakr); Renate.Schmidt@manchester.ac.uk (R. A. Schmidt)

� 0000-0003-4296-5831 (M. Sakr); 0000-0002-6673-3333 (R. A. Schmidt)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Mostafa.Sakr@manchester.ac.uk
mailto:Renate.Schmidt@manchester.ac.uk
https://orcid.org/0000-0003-4296-5831
https://orcid.org/0000-0002-6673-3333
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

aim to address these questions, gain a better understanding of the information not preserved by

deductive forgetting, and provide a practical tool to compute this information. We focus on

concept forgetting for ontologies in the description logic 𝒜ℒ𝒞, the basic logic in the family of

expressive description logics [14].

The main contribution is a novel forgetting method. (1) The method converts the input

ontology into an intermediate ontology in which the forgetting signature has been eliminated.

This intermediate ontology is semantically equivalent to the input ontology with respect to

the non-forgotten vocabulary. That is, the reducts of the models of both ontologies to the non-

forgotten vocabulary coincide. The intermediate ontology may use foreign concept symbols, or

definers, to represent subsets of role successors. (2) The method obtains from the intermediate

ontology two sets 𝒪𝑟𝑒𝑑
and Δ of axioms. The set 𝒪𝑟𝑒𝑑

approximates the deductive view by

allowing the use of foreign symbols. We present a method to eliminate these foreign symbols

from 𝒪𝑟𝑒𝑑
and obtain the final deductive view in 𝒜ℒ𝒞. Complete elimination of the foreign

symbols may not however succeed when the deductive view does not exist finitely in 𝒜ℒ𝒞 due

to cycles occurring over forgetting symbols. The set Δ represents the information difference
between the intermediate ontology and 𝒪𝑟𝑒𝑑

. If all foreign symbols are successfully eliminated

from 𝒪𝑟𝑒𝑑
, then Δ also represents the information difference between the input ontology and

the deductive view.

Several benefits are obtained from our forgetting method. (1) In two different evaluations an

implementation of our forgetting method was compared against the state-of-the-art deductive

forgetting tool Lethe [15]. Our implementation was found to be faster than Lethe. Our analysis

shows that this improvement can be attributed to a novelty of the language of the intermediate

ontology as it allows for avoiding time-consuming operations performed by Lethe. (2) By

inspecting the set Δ, we now understand the difference between the input ontology and the

deductive view as information on the conjunctions of different subsets of role successors. (3) An

empty Δ indicates that the deductive view coincides semantically with the input ontology with

respect to the non-forgotten vocabulary. (4) By incrementing 𝒪𝑟𝑒𝑑
with axioms from Δ, our

method allows for a fine-grained forgetting framework where views of the original ontology

that are more informative than the deductive view can be obtained based on user requirements.

All proofs are provided in the long version https://github.com/e73898ms/

FineGrainedForgetting/blob/main/Fine_Grained_Forgetting-Long%20Version-DL22.pdf.

2. History and Related Work

Forgetting can be traced back to Boole who referred to it as elimination of the middle terms. In

propositional logic, it was studied in relation to relevance, independence, and variable elimina-
tion [6, 7]. A variant of forgetting which preserves semantic equivalences is semantic forgetting.

In the context of first-order logic (FOL), semantic forgetting was viewed as a second-order
quantifier elimination problem [16, 17] finding that the semantic view of a FO theory is not in

general expressible in FOL but is always expressible in second-order logic (SOL). A way to view

the foreign symbols in the intermediate ontology created by our method is as second-order

existentially quantified concept symbols. This is because they are used to represent subsets

of role successors whose first-order definition, as we show, cannot be computed in general.

https://github.com/e73898ms/FineGrainedForgetting/blob/main/Fine_Grained_Forgetting-Long%20Version-DL22.pdf
https://github.com/e73898ms/FineGrainedForgetting/blob/main/Fine_Grained_Forgetting-Long%20Version-DL22.pdf

Therefore, our intermediate ontology adheres to results in the literature [9, 16], and can be

viewed as an approximation to the semantic view of the input ontology. We show that standard

reasoning operations can be performed on the intermediate ontology using standard 𝒜ℒ𝒞
reasoning methods.

Deductive forgetting was considered in [18] under the name weak forgetting. The proposal

in [18] builds on previous work in modal logics which views deductive forgetting as uniform
interpolation [19, 20], i.e., forgetting a signatureℱ from an ontology𝒪 is equivalent to computing

the uniform interpolant over the remaining vocabulary of 𝒪 after excluding ℱ . This allows

characterizing the relationship between the original ontology and the deductive view in terms of

bisimulation over the non-forgotten symbols [10, 9, 21]. Deductive and semantic forgetting are

also closely related to the notions of concept inseparability and model inseparability [22, 23, 24, 25].

Several deductive forgetting methods were proposed in [13, 20, 1].

Deciding the existence of a finitely representable deductive view is 2ExpTime, and its size is,

at most, triple exponential in the size of the original ontology [10]. For 𝒜ℒ𝒞 ontologies, the

deductive view can be captured, possibly infinitely, in 𝒜ℒ𝒞. Infinite forgetting views occur

when cycles over some forgetting symbols exist [13]. In this case, finite representations may

be approximated by fixpoint operators [12, 13, 26, 27] or by using foreign symbols to witness

these cycles [13]. The latter representation can be converted to the former [13].

3. Basic Definitions

Let 𝑁𝑐, 𝑁𝑟 be two disjoint sets of concept symbols and role symbols. Concepts in 𝒜ℒ𝒞 are of

the following forms: ⊥ | 𝐴 | ¬𝐶 | 𝐶 ⊓𝐷 | ∃𝑟.𝐶 where 𝐴 ∈ 𝑁𝑐, 𝑟 ∈ 𝑁𝑟 and 𝐶 and 𝐷 are 𝒜ℒ𝒞
concepts. We also allow the following abbreviations: ⊤ ≡ ¬⊥,∀𝑟.𝐶 ≡ ¬∃𝑟.¬𝐶,𝐶 ⊔ 𝐷 ≡
¬(¬𝐶 ⊓ ¬𝐷). An interpretation in 𝒜ℒ𝒞 is a pair ℐ = ⟨Δℐ , ·ℐ⟩ where the domain Δℐ

is a

nonempty set and ·ℐ is an interpretation function that assigns to each concept symbol 𝐴 ∈ 𝑁𝑐 a

subset of Δℐ
and to each 𝑟 ∈ 𝑁𝑟 a subset of Δℐ ×Δℐ

. The language constructs are interpreted

as follows: ⊥ℐ := ∅, (¬𝐶)ℐ := Δℐ∖𝐶ℐ , (𝐶 ⊓𝐷)ℐ := 𝐶ℐ ∩𝐷ℐ , (∃𝑟.𝐶)ℐ := {𝑥 ∈ Δℐ |∃𝑦 :
(𝑥, 𝑦) ∈ 𝑟ℐ ∧ 𝑦 ∈ 𝐶ℐ}.

A TBox, or an ontology, is a set of axioms of the form 𝐶 ⊑ 𝐷, where 𝐶 and 𝐷 are concepts.

ℐ is model of an ontology 𝒪 if all axioms 𝐶 ⊑ 𝐷 ∈ 𝒪 are true in ℐ , in symbols ℐ |= 𝐶 ⊑ 𝐷.

And, ℐ |= 𝐶 ⊑ 𝐷 if and only if 𝐶ℐ ⊆ 𝐷ℐ
. We say that 𝐶 ⊑ 𝐷 is satisfiable with respect to 𝒪

if and only if ℐ |= 𝐶 ⊑ 𝐷 for some model ℐ of 𝒪. We also say that 𝐶 ⊑ 𝐷 is a consequence

of 𝒪, in symbols 𝒪 |= 𝐶 ⊑ 𝐷, if and only if ℐ |= 𝐶 ⊑ 𝐷 for every model ℐ of 𝒪.

Let 𝐶 be an 𝒜ℒ𝒞 concept, we denote by 𝑠𝑖𝑔(𝐶) the set of concept and role symbols appearing

in 𝐶 . For an ontology 𝒪, 𝑠𝑖𝑔(𝒪) =
⋃︀

𝐶⊑𝐷∈𝒪 𝑠𝑖𝑔(𝐶) ∪ 𝑠𝑖𝑔(𝐷). The size of an ontology is the

number of axioms in it.

Definition 1. Two models ℐ and 𝒥 Σ-coincide iff Δℐ = Δ𝒥 and 𝑝ℐ = 𝑝𝒥 for every concept or
role symbol 𝑝 ∈ Σ.

Definition 2. Let 𝒪1 and 𝒪2 be two ontologies and Σ a set of symbols where Σ ⊆ 𝑁𝑐 ∪𝑁𝑟 . We
say 𝒪1 and 𝒪2 are semantically Σ-equivalent, in symbols 𝒪1 ≡ℳ

Σ 𝒪2, iff for every model ℐ1
of 𝒪1 there is a model ℐ2 of 𝒪2, and vice versa, such that ℐ1 and ℐ2 Σ-coincide.

Resolution (Res)

𝐶1 ⊔𝐴 𝐶2 ⊔ ¬𝐴
𝐶1 ⊔ 𝐶2

where 𝐴 is a forgetting symbol and 𝐶1, 𝐶2 are general concept expressions.

Figure 1: Binary resolution rule

Definition 3. Let𝒪1 and𝒪2 be two𝒜ℒ𝒞 ontologies, and letΣ a set of symbols whereΣ ⊆ 𝑁𝑐∪𝑁𝑟 .
We say 𝒪1 and 𝒪2 are deductively Σ-equivalent, in symbols 𝒪1 ≡𝐶

Σ 𝒪2, iff for every 𝒜ℒ𝒞 concept
inclusion 𝛼, where 𝑠𝑖𝑔(𝛼) ⊆ Σ, we have 𝒪1 |= 𝛼 iff 𝒪2 |= 𝛼.

Deductive forgetting is defined using deductive equivalence [10].

Definition 4. Let 𝒪 be an 𝒜ℒ𝒞 ontology, and let ℱ ⊆ 𝑠𝑖𝑔(𝒪) ∩ 𝑁𝑐 be a forgetting signa-
ture. An ontology 𝒱 is a deductive forgetting view of 𝒪 w.r.t. ℱ iff 𝑠𝑖𝑔(𝒱) ⊆ 𝑠𝑖𝑔(𝒪)∖ℱ , and
𝒪 ≡𝐶

𝑠𝑖𝑔(𝒪)∖ℱ 𝒱 .

4. Computing the Intermediate Ontology

The first stage of our method is to compute the intermediate ontology 𝒪𝑖𝑛𝑡
of the input on-

tology 𝒪 w.r.t. the given forgetting signature ℱ . The method applies resolution to the input

ontology written in clausal form. 𝒪𝑐𝑙𝑎𝑢𝑠𝑎𝑙
is computed by: (1) converting 𝒪 into negation

normal form (NNF), with negation applied only to concept names, (2) miniscoping, i.e., re-

placing ∃𝑟.𝐶 ⊔ ∃𝑟.𝐷 with the semantically equivalent ∃𝑟.(𝐶 ⊔ 𝐷), and ∀𝑟.𝐶 ⊓ ∀𝑟.𝐷 with

the semantically equivalent ∀𝑟.(𝐶 ⊓𝐷), (3) applying structural transformations to extract the

formulas under role restriction that contain the forgetting symbols by introducing fresh concept

symbols (called definers) [28], and (4) converting the result to conjunctive normal form (CNF).

Example 1. Consider the axiom 𝐴 ⊑ ∃𝑟.(𝐵 ⊓ 𝐶) where 𝐵 is a forgetting symbol. It is first
converted to NNF by eliminating the connective ⊑, giving 𝑆1 = {¬𝐴 ⊔ ∃𝑟.(𝐵 ⊓ 𝐶)}. Structural
transformation is applied to extract 𝐵 ⊓ 𝐶 , giving 𝑆2 = {¬𝐴 ⊔ ∃𝑟.𝐷1,¬𝐷1 ⊔ (𝐵 ⊓ 𝐶)} where
𝐷1 ∈ 𝑁𝑑 is a definer symbol. Finally, 𝑆2 is converted to CNF, giving 𝑆3 = {¬𝐴 ⊔ ∃𝑟.𝐷1,¬𝐷1 ⊔
𝐵,¬𝐷1 ⊔ 𝐶}.

The forgetting symbols in ℱ are then eliminated from 𝒪𝑐𝑙𝑎𝑢𝑠𝑎𝑙
by iteratively eliminating

them using the Resolution rule in Figure 1. When all possible resolution inferences have been

performed on a concept symbol in ℱ , clauses that contain this concept symbol are removed in

a purity deletion step. Additionally, the following operations are applied eagerly: (1) Tautology

deletion: clauses of the form 𝐶 ⊔ ¬𝐶 ⊔ 𝐸 are deleted, where 𝐶 and 𝐸 are 𝒜ℒ𝒞 concepts. (2)

Purification: if a forgetting symbol 𝐴 occurs only positively or only negatively in 𝒪, then 𝐴 is

replaced everywhere by ⊤ and ⊥ respectively. Assume 𝒪𝑖𝑛𝑡
is the set of clauses that remain.

Example 2. Let 𝒪 = {𝐴 ⊑ ∀𝑟.𝐵 ⊓ ∀𝑠.¬𝐵,𝐺 ⊑ ∃𝑟.(¬𝐵 ⊔ 𝐶), 𝐵 ⊑ 𝐻}, and ℱ = {𝐵}.
The method starts by generating 𝒪𝑐𝑙𝑎𝑢𝑠𝑎𝑙 = {¬𝐴 ⊔ ∀𝑟.𝐷1,¬𝐴 ⊔ ∀𝑠.𝐷2,¬𝐺 ⊔ ∃𝑟.𝐷3,¬𝐷1 ⊔
𝐵,¬𝐷2 ⊔ ¬𝐵,¬𝐷3 ⊔ ¬𝐵 ⊔ 𝐶,¬𝐵 ⊔ 𝐻}, where 𝐷1, 𝐷2, and 𝐷3 are fresh definers. Then, it
resolves on the concept symbol 𝐵 using the Resolution rule in Figure 1 generating additionally
the clauses {¬𝐷1 ⊔ ¬𝐷2,¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶,¬𝐷1 ⊔𝐻}. Finally, the clauses {¬𝐷1 ⊔𝐵,¬𝐷2 ⊔
¬𝐵,¬𝐷3 ⊔¬𝐵 ⊔𝐶,¬𝐵 ⊔𝐻} are removed by purity deletion. So the intermediate ontology 𝒪𝑖𝑛𝑡

is {¬𝐴 ⊔ ∀𝑟.𝐷1,¬𝐴 ⊔ ∀𝑠.𝐷2,¬𝐺 ⊔ ∃𝑟.𝐷3,¬𝐷1 ⊔ ¬𝐷2,¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶,¬𝐷1 ⊔𝐻}.

Theorem 1. 𝒪 ≡ℳ
𝑠𝑖𝑔(𝒪)∖ℱ 𝒪𝑖𝑛𝑡.

Theorem 2. The size of 𝒪𝑖𝑛𝑡 is in the worst case exponential in the size of the given ontology 𝒪
and double exponential in the number of forgetting symbols.

Definers are used in the intermediate ontology 𝒪𝑖𝑛𝑡
to represent subsets of role successors.

Precise definitions of definers cannot always be given without knowledge of the forgetting

symbols. For instance in Example 1, 𝐷1 is interpreted as 𝐷ℐ
1 = {𝑦 ∈ 𝐵ℐ ∩ 𝐶ℐ | (𝑥, 𝑦) ∈

𝑟ℐ , 𝑥 ∈ 𝐴ℐ} where ℐ is a model of 𝑆. Since the user of the forgetting view may not be aware

of 𝐵, a definition of 𝐷1 in terms of 𝐵 is not conveyed in 𝒪𝑖𝑛𝑡
. Thus, definers may be viewed as

second-order existentially quantified concept symbols because they represent some subsets of

the domain whose definitions cannot be precisely captured. One can observe that 𝒪𝑖𝑛𝑡
can be

viewed as an approximation to the semantic forgetting view of 𝒪 with respect to ℱ .

5. Extracting Δ and 𝒪𝑟𝑒𝑑

The second stage of the method is to obtain the sets Δ and 𝒪𝑟𝑒𝑑
from 𝒪𝑖𝑛𝑡

, where 𝒪𝑟𝑒𝑑
is

an ontology approximating the deductive view and Δ is the information difference between

𝒪𝑖𝑛𝑡
and 𝒪𝑟𝑒𝑑

. The Reduction rule in Figure 2 removes from 𝒪𝑖𝑛𝑡
the clauses with two or more

negative definers. These clauses constitute the set Δ.

The Role Propagation rule in Figure 2 computes the 𝒜ℒ𝒞 consequences that are otherwise

lost when removing the clauses of Δ from 𝒪𝑖𝑛𝑡
by the Reduction rule. Therefore, we require it

to be applied before removing these clauses. The premises of the Role Propagation rule start

with the clause 𝑃0⊔𝐶0, where 𝑃0 takes the form ¬𝐷0⊔¬𝐷1⊔ · · · ⊔¬𝐷𝑛. The second premise

is a set of clauses 𝑃𝑗 ⊔ 𝐶𝑗 . Here, the concepts 𝑃𝑗 takes the same form as the concept 𝑃0, i.e.,

is a disjunction of negative definers, but also Definers(𝑃𝑗) ⊆ Definers(𝑃0) where Definers(𝑃)

denotes the set of definer symbols in 𝑠𝑖𝑔(𝑃). The intuition here is that 𝑃𝑗 ⊑ 𝑃0. Therefore,

every domain element that is not in the interpretation of 𝑃0, consequently 𝑃𝑗 , must be in

the interpretation of 𝐶0 and 𝐶𝑗 . The clauses in the third and the fourth premises take the

same form, except that existential role restriction is only allowed in the third premise. By the

third and fourth premises, every domain element must be in the interpretation of

⨆︀𝑛
𝑖=0𝐸𝑖 or

𝒬𝑟.(
d𝑛

𝑖=0𝐷𝑖). But the latter can be rewritten as 𝒬𝑟.¬𝑃0, which is subsumed by 𝒬𝑟.(
d𝑚

𝑗=0𝐶𝑗)
as concluded by the rule.

Example 3. Continuing with Example 2, the Role Propagation rule applies with its four premises
being:

1. 𝑃0 ⊔ 𝐶0 = ¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶

Role Propagation

𝑃0 ⊔ 𝐶0,
𝑚⋃︀
𝑗=1

{𝑃𝑗 ⊔ 𝐶𝑗},𝐸0 ⊔𝒬𝑟.𝐷0,
𝑛⋃︀

𝑖=1

{𝐸𝑖 ⊔ ∀𝑟.𝐷𝑖}

(
𝑛⨆︀

𝑖=0

𝐸𝑖) ⊔𝒬𝑟.(
𝑚d

𝑗=0

𝐶𝑗)

where 𝑃0 =
𝑛⨆︀

𝑖=0

¬𝐷𝑖, 𝑃𝑗 is any sub-concept of 𝑃0, 𝒬 ∈ {∃,∀}, and 𝐶0 and 𝐶𝑗 do not contain a

definer.
Reduction

𝒪 ∪ {¬𝐷1 ⊔ ... ⊔ ¬𝐷𝑛 ⊔ 𝐶}
𝒪

where 𝐶 is a concept expression that does not contain a negative definer, 𝐷1, ..., 𝐷𝑛 are definer
symbols, and 𝑛 ≥ 2.

Figure 2: 𝒜ℒ𝒞 reduction rules.

2.

𝑚⋃︀
𝑗=1

{𝑃𝑗 ⊔ 𝐶𝑗} = {¬𝐷1 ⊔𝐻}

3. 𝐸0 ⊔𝒬𝑟.𝐷 = ¬𝐺 ⊔ ∃𝑟.𝐷3

4.

𝑛⋃︀
𝑖=1

{𝐸𝑖 ⊔ ∀𝑟.𝐷𝑖} = {¬𝐴 ⊔ ∀𝑟.𝐷1}

The conclusion is ¬𝐴⊔¬𝐺⊔∃𝑟.(𝐶⊓𝐻). Note that the generated conclusion preserves information
that would otherwise be lost when the clause ¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶 is removed by the Reduction rule.

After the Role Propagation rule has been exhaustively applied, the clauses of Δ are removed.

The remaining clauses constitute 𝒪𝑟𝑒𝑑
.

Denote by 𝒪𝑟𝑝
the ontology obtained from 𝒪𝑖𝑛𝑡

by applying the Role Propagation rule.

Example 4. Continuing with Example 2. We have 𝒪𝑟𝑝 = 𝒪𝑖𝑛𝑡 ∪ {¬𝐴 ⊔ ¬𝐺 ⊔ ∃𝑟.(𝐶 ⊓𝐻)}
where the axiom on the right of the union operator is the conclusion of the Role Propagation

rule obtained in Example 3. We also have Δ = {¬𝐷1 ⊔ ¬𝐷2,¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶}, and 𝒪𝑟𝑒𝑑 =
{¬𝐴 ⊔ ∀𝑟.𝐷1,¬𝐴 ⊔ ∀𝑠.𝐷2,¬𝐺 ⊔ ∃𝑟.𝐷3,¬𝐷1 ⊔𝐻,¬𝐴 ⊔ ¬𝐺 ⊔ ∃𝑟.(𝐶 ⊓𝐻)}.

Theorem 3. 𝒪𝑟𝑝 ≡𝐶
𝑠𝑖𝑔(𝒪)∖ℱ 𝒪𝑟𝑒𝑑.

Theorem 3 proves a main contribution of the paper. First, observe that 𝒪𝑟𝑝 ≡ℳ
𝑠𝑖𝑔(𝒪)∖ℱ 𝒪𝑖𝑛𝑡

.

It follows from this observation, and Theorems 1 and 3 that 𝒪 ≡𝐶
𝑠𝑖𝑔(𝒪)∖ℱ 𝒪𝑟𝑒𝑑

. Therefore, if

𝒪𝑢𝑖
is a deductive view of 𝒪𝑟𝑒𝑑

with respect to 𝑠𝑖𝑔(𝒪)∖ℱ , then 𝒪𝑟𝑒𝑑
is deductively equivalent

to 𝒪𝑢𝑖
with respect to 𝑠𝑖𝑔(𝒪)∖ℱ . We shall strengthen this in the next section and show that if

no cycles occur in 𝒪𝑟𝑒𝑑
then it is semantically equivalent to the deductive view with respect to

𝑠𝑖𝑔(𝒪)∖ℱ .

Second, observe that 𝒪𝑟𝑝 = 𝒪𝑟𝑒𝑑 ∪Δ. Additionally, the clauses in Δ have been generated in

𝒪𝑖𝑛𝑡
by resolution inferences over the forgetting symbols, and the premises of these inferences

were removed by purity deletion. Therefore, we find in general that 𝒪𝑟𝑒𝑑 ̸|= Δ. This implies that

Δ can be viewed as representing the information difference between 𝒪𝑟𝑝
and 𝒪𝑟𝑒𝑑

. Altogether

we therefore conclude that Δ can be viewed as the information difference between 𝒪 and the

deductive view with respect to 𝑠𝑖𝑔(𝒪)∖ℱ .

We end this section with a discussion on the extracted set Δ which consists of clauses of

the format ¬𝐷1 ⊔ · · · ⊔ ¬𝐷𝑛 ⊔ 𝐹 where 𝑛 ≥ 2, or in axiom form, 𝐷1 ⊓ · · · ⊓𝐷𝑛 ⊑ 𝐹 . Since

we introduced the definer symbols to represent subsets of role successors, these clauses can

be understood as information on the conjunctions of different subsets of role successors. For

instance, in Example 2, the clause ¬𝐷1 ⊔ ¬𝐷2 ∈ Δ specifies the constraint that the subset of

𝑟-successors and the subset of 𝑠-successors of domain elements in the interpretation of 𝐴 are

disjoint. It was not a coincidence that we introduced definer symbols to represent subsets of

role successors. Using them in this way and introducing them via structural transformation

forces the clauses in Δ to be explicit members of 𝒪𝑖𝑛𝑡
which simplifies their extraction, giving

us a representation of the difference between 𝒪 and the deductive view.

6. Eliminating the Definer Symbols

We identified Δ as the axioms that contain two or more negative definers. 𝒪𝑖𝑛𝑡
and 𝒪𝑟𝑒𝑑

may

contain definer symbols that appear negatively in clauses where no other negative definer is

present. These definers can be eliminated safely while preserving the interpretations of the

non-forgotten vocabulary. For this, we use the Definer Elimination rule in Figure 3.

The side conditions of the Definer Elimination rule exclude the elimination of definers that

may appear both positively and negatively in a clause. We call such definer symbols cyclic
definers. The existence of cyclic definers signifies cycles in the original ontology over some

forgetting symbols. In this case the deductive view may not exist as it requires an infinite

representation.

An approach to eliminate cyclic definers and obtain a finite approximation of the deductive

view is using fixpoint operators [12]. As an alternative, cyclic definers can be left in the deductive

view as witnesses of these cycles [13]. We find this the best option because it defers the decision

of a suitable representation to a later stage.

For clauses that contain only one negative definer symbol, possibly with other positive

definers, the Definer Elimination rule in Figure 3 is applied exhaustively. The rule replaces the

definer symbol 𝐷 with its super-concept 𝐶1 ⊓ ... ⊓ 𝐶𝑛. Note that, in the Definer Elimination
rule, 𝐶 may be ⊥. Besides the Definer Elimination rule, we also eagerly apply the Tautology
Deletion and the Purification rules (see Section 4).

Example 5. Continuing with Example 4, 𝒱 is extracted from 𝒪𝑟𝑒𝑑 as follows:

1. The definers 𝐷2 and 𝐷3 are eliminated using Purification. Since 𝐷2 and 𝐷3 appear only pos-
itively in 𝒪𝑟𝑒𝑑, they are purified by replacing them with ⊤ which gives {¬𝐴⊔∀𝑟.𝐷1,¬𝐴⊔
∀𝑠.⊤,¬𝐺⊔ ∃𝑟.⊤,¬𝐷1 ⊔𝐻,¬𝐴⊔¬𝐺⊔ ∃𝑟.(𝐶 ⊓𝐻)}. As ∀𝑠.⊤ evaluates to ⊤, the result
can be simplified further to {¬𝐴⊔∀𝑟.𝐷1,¬𝐺⊔∃𝑟.⊤,¬𝐷1⊔𝐻,¬𝐴⊔¬𝐺⊔∃𝑟.(𝐶 ⊓𝐻)}.

Definer Elimination

𝒪 ∪ {¬𝐷 ⊔ 𝐶1, ...,¬𝐷 ⊔ 𝐶𝑛}
𝒪[𝐷/𝐶]

where 𝐶 = ⊓𝑛
𝑖=1𝐶𝑖 and 𝐷 /∈ 𝑠𝑖𝑔(𝐶), 𝐶 does not contain any negative definers, and 𝒪 does not

contain 𝐷 negatively.

Figure 3: Definer elimination rule

2. The definer 𝐷1 is eliminated by the Definer Elimination rule in Figure 3 giving {¬𝐴 ⊔
∀𝑟.𝐻,¬𝐺⊔∃𝑟.⊤,¬𝐻⊔𝐻,¬𝐴⊔¬𝐺⊔∃𝑟.(𝐶⊓𝐻)}. The clause ¬𝐻⊔𝐻 is then eliminated
by Tautology Deletion giving 𝒱 = {¬𝐴 ⊔ ∀𝑟.𝐻,¬𝐺 ⊔ ∃𝑟.⊤¬𝐴 ⊔ ¬𝐺 ⊔ ∃𝑟.(𝐶 ⊓𝐻)}

Theorem 4. Let 𝒱 be generated from 𝒪𝑟𝑒𝑑 by applying the Definer Elimination rule from Figure 3
exhaustively. Then, (1) 𝒪𝑟𝑒𝑑 ≡ℳ

𝑠𝑖𝑔(𝒪)∖ℱ 𝒱 ; and (2) if 𝑠𝑖𝑔(𝒱) ∩ 𝑁𝑑 = ∅ then 𝒱 is a deductive
forgetting view of 𝒪 w.r.t. ℱ .

7. Computing More Informative Forgetting Views

Our forgetting method allows customizing the informativeness of the final forgetting view

according to user requirements, which reveals a spectrum of forgetting views that are more

informative than the deductive view and at most as informative as the intermediate ontology.

This can be done by overriding the Reduction rule as illustrated in the following example.

Example 6. Consider 𝒪𝑖𝑛𝑡 from Example 2. Applying the rules in Figure 2 gives 𝒪𝑟𝑒𝑑 and Δ
from Example 4. We may increase the informativeness of the final forgetting view by overriding
the Reduction rule. We describe three different forgetting views that can be generated in this way.

1. If we want to preserve all the information about the 𝑟-successors of 𝐴, then we override the
Reduction rule to retain the clauses where 𝐷1 occurs. In this case, Δ1 = ∅ and the final
forgetting view will be 𝒪𝑟𝑒𝑑

1 = 𝒱1 = {¬𝐴 ⊔ ∀𝑟.𝐷1,¬𝐴 ⊔ ∀𝑠.𝐷2,¬𝐺 ⊔ ∃𝑟.𝐷3,¬𝐷1 ⊔
¬𝐷2,¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶,¬𝐴 ⊔ ¬𝐺 ⊔ ∃𝑟.𝐶}.

2. If we want to preserve the information about the 𝑟-successors of 𝐴 in relation to the 𝑟-
successors of 𝐺, we override the Reduction rule to retain the clauses where both 𝐷1 and
𝐷3 occur. That is, Δ2 = {¬𝐷1 ⊔ ¬𝐷2} and ¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶 ̸∈ Δ. Then, 𝒪𝑟𝑒𝑑

2 =
{¬𝐴⊔ ∀𝑟.𝐷1,¬𝐴⊔ ∀𝑠.𝐷2,¬𝐺⊔ ∃𝑟.𝐷3,¬𝐷1 ⊔¬𝐷3 ⊔𝐶,¬𝐴⊔¬𝐺⊔ ∃𝑟.𝐶}, and 𝒱2 =
{¬𝐴 ⊔ ∀𝑟.𝐷1,¬𝐺 ⊔ ∃𝑟.𝐷3,¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶,¬𝐴 ⊔ ¬𝐺 ⊔ ∃𝑟.𝐶} with 𝐷2 purified away.

3. If we are interested in the relation between the 𝑟 and 𝑠 successors of 𝐴, then we override the
Reduction rule to remove ¬𝐷1 ⊔ ¬𝐷3 ⊔ 𝐶 but not ¬𝐷1 ⊔ ¬𝐷2. That is Δ3 = {¬𝐷1 ⊔
¬𝐷3 ⊔𝐶}. Consequently, we get 𝒪𝑟𝑒𝑑

3 = {¬𝐴 ⊔ ∀𝑟.𝐷1,¬𝐴 ⊔ ∀𝑠.𝐷2,¬𝐺 ⊔ ∃𝑟.𝐷3,¬𝐴 ⊔
¬𝐺⊔∃𝑟.𝐶,¬𝐷1⊔¬𝐷2}. The final forgetting view then becomes 𝒱3 = {¬𝐴⊔∀𝑟.𝐷1,¬𝐴⊔
∀𝑠.𝐷2,¬𝐺 ⊔ ∃𝑟.⊤,¬𝐴 ⊔ ¬𝐺 ⊔ ∃𝑟.𝐶,¬𝐷1 ⊔ ¬𝐷2} with 𝐷3 purified away.

Observe that in 𝒱1 and 𝒱2 the clause ¬𝐴 ⊔ ¬𝐺 ⊔ ∃𝑟.𝐶 is redundant. We can eliminate this

redundancy by applying the Role Propagation rule only when a premise of the rule occurs in Δ.

Since the final forgetting views may use definers, the following question may be asked: Are
definers in forgetting views limiting? We argue that since definers are existentially quantified

and the forgetting view is expressed using 𝒜ℒ𝒞 syntax, standard reasoning tasks such as

satisfiability checking, and query answering, can be performed with respect to the non-forgotten

vocabulary using the existing 𝒜ℒ𝒞 methods. The following example explains the idea.

Example 7. Let ontology 𝒪 = {𝐴1 ⊑ ∀𝑟.𝐵,𝐴2 ⊑ ∀𝑟.¬𝐵} be an ontology, and 𝒪𝑖𝑛𝑡 =
{¬𝐴1 ⊔ ∀𝑟.𝐷1,¬𝐴2 ⊔ ∀𝑟.𝐷2,¬𝐷1 ⊔ ¬𝐷2 ⊑ ⊥} the intermediate ontology of 𝒪 with respect to
ℱ = {𝐵} where 𝐷1 and 𝐷2 are definers. Assume Δ = ∅, then 𝒪𝑖𝑛𝑡 is the final forgetting view.
Both 𝒪 and 𝒪𝑖𝑛𝑡 model the information that the 𝑟-successors of the elements in the interpretation
of 𝐴1 are disjoint from the 𝑟-successors of the elements in the interpretation of 𝐴2. Suppose
we additionally have a database 𝒜 = {𝐴1(𝑎1), 𝐴2(𝑎2), 𝑟(𝑎1, 𝑏)}, and we want to prove the
unsatisfiability of 𝑟(𝑎2, 𝑏) with respect to the knowledge base consisting of 𝒪 and 𝒜. This can be
done by using a standard 𝒜ℒ𝒞 reasoner to show that 𝒪,𝒜, 𝑟(𝑎2, 𝑏) |= ⊥. Replacing 𝒪 with 𝒪𝑖𝑛𝑡,
would still prove the unsatisfiability of 𝑟(𝑎2, 𝑏). Moreover, the reasoner does not require the full
interpretation of 𝐷1 and 𝐷2 to prove that 𝒪𝑖𝑛𝑡,𝒜, 𝑟(𝑎2, 𝑏) |= ⊥.

8. Evaluation

We implemented a prototype of our method based on Java 12 and the OWL API 5.1.11. We refer

to our prototype as SeD. We used a random corpus of 50 ontologies from the NCBO Bioportal

repository to perform the evaluation. Details of the corpus are given in the long version.

We performed two evaluations, each corresponding to a different selection of the forgetting

signature ℱ . Evaluation 1 selected ℱ as a segment of the 𝑁𝑐 sorted by name (recall that 𝑁𝑐 is

the set of concept names of the input ontology), so ℱ contained related concept names. E.g.,

‘Abdomen’ and ‘Abdomen-pain’ were likely to be together in ℱ as they would be adjacent in the

sorted 𝑁𝑐. The intuition was to simulate the use case of extracting the knowledge of a single

topic, e.g., the digestive system from a large biomedical ontology.

Evaluation 2 selected the concept names that occurred most frequently under role restrictions,

aiming for more definers being introduced in 𝒪𝑖𝑛𝑡
and bigger Δ sets. The intuition was to

simulate the worst case when the information difference between the intermediate ontology and

the deductive views would be large, and the performance of our two-stage forgetting method

would be expected to degrade.

In every evaluation and for each ontology in the corpus, three forgetting experiments were

performed to forget 10%, 30%, and 50% of concept symbols in 𝑁𝑐 giving a total of 150 experiments

in each evaluation. Each experiment compared SeD and Lethe (version 2.11-0.026)
1

[15]. Lethe

is an implementation of the deductive forgetting method in [13]. Each tool was allocated 2GB

of memory and five hours time out. All experiments were run on a x64-based processor Intel(R)

Core(TM) i5 CPU @ 2.7GHz with a 64-bit operating system (macOS Catalina 10.15.7).

1

http://www.cs.man.ac.uk/~koopmanp/lethe/index.html

http://www.cs.man.ac.uk/~koopmanp/lethe/index.html

Table 1
Timeouts of SeD and Lethe

Evaluation 1 Evaluation 2

10% 30% 50% 10% 30% 50%

SeD 2 3 5 2 3 3
Lethe 2 7 8 1 6 7

Figure 4: Normal Distribution of the Gain values. Range of X-axes is Average ± 3 Standard Deviations

Table 1 shows the timeouts of SeD and Lethe. SeD appeared to be more reliable than Lethe in

both evaluations. Also, SeD was less affected by increasing the size of ℱ from 10% to 30% to

50% of 𝑁𝑐, suggesting that SeD is more scalable to harder problems than Lethe.

Next we compared the execution times of SeD and Lethe to compute the deductive view. We

first computed the time gained by using SeD over Lethe with the formula Gain = (𝑇𝐿−𝑇𝑆)/𝑇𝐿,

where 𝑇𝐿 and 𝑇𝑆 are the times consumed by Lethe and SeD respectively. Second, we computed

the averages and standard deviations of the Gain values. In line with standard data analysis

methods, outliers were excluded. These were experiments with extreme Gain values compared

to the rest of the experiments. In Evaluation 1 we excluded two experiments in the 10% setting

and one in the 50% setting, whereas in Evaluation 2 we excluded one experiment in the 10%

setting and one from the 50% setting.

The averages and standard deviations in Evaluation 1 were: (0.58, 0.78), (0.60, 0.68), and (0.66,

0.68) in the 10%, 30%, and 50% settings respectively. In Evaluation 2 they were: (0.65, 0.46),

(0.74, 0.50), and (0.74, 0.67) in the 10%, 30%, and 50% settings respectively. Figure 4 shows the

normal distributions of the Gain values in the three settings in the two evaluations. The graphs

reflect the attained positive averages stated above, and compare the gain values across the three

settings in each evaluation, also allowing the two evaluations to be compared. Surprisingly, a

better and more consistent performance was found in Evaluation 2 over Evaluation 1, against

our expectation that Evaluation 2 would represent the worst case scenario for SeD. This is

indicated by the higher peaks indicating higher probability of achieving the average Gain, and

the narrower curves indicating less variation in the results.

The performance improvement happens due to the forgetting method itself not the corpus.

While Lethe translates the input ontology to a clausal form that is similar to ours, it disallows

clauses with two or more negative definers. To compensate for this restriction, Lethe introduces

definer symbols as part of the forgetting calculus, and builds a subsumption hierarchy between

the definers. This hierarchy forces extra resolution inferences to be performed. The following

example illustrates dynamic introduction of definers in Lethe.

Example 8. Let 𝒪 = {𝐴1 ⊑ ∃𝑟.¬𝐵,𝐴2 ⊑ ∀𝑟.𝐵}, and ℱ = {𝐵}. Lethe generates 𝒪𝑐𝑙𝑎𝑢𝑠𝑎𝑙 as
{¬𝐴1 ⊔ ∃𝑟.𝐷1,¬𝐴2 ⊔ ∀𝑟.𝐷2,¬𝐷1 ⊔ ¬𝐵,¬𝐷2 ⊔𝐵}. Instead of resolving 𝐵 directly to compute
the clause ¬𝐷1 ⊔¬𝐷2, Lethe introduces a new definer 𝐷3 and generates an intermediate ontology
𝒪1 = 𝒪𝑐𝑙𝑎𝑢𝑠𝑎𝑙 ∪ {¬𝐴1 ⊔ ¬𝐴2 ⊔ ∃𝑟.𝐷3,¬𝐷3 ⊔ 𝐷1,¬𝐷3 ⊔ 𝐷2}. The last two clauses on 𝒪1

are resolved with ¬𝐷1 ⊔ ¬𝐵 and ¬𝐷2 ⊔𝐵 to give ¬𝐷3 ⊔ ¬𝐵 and ¬𝐷3 ⊔𝐵 which in turn are
resolved together to give ¬𝐷3. All clauses where 𝐵 occurs are then removed to give 𝒪2 = {¬𝐴1 ⊔
∃𝑟.𝐷1,¬𝐴2 ⊔ ∀𝑟.𝐷2,¬𝐴1 ⊔ ¬𝐴2 ⊔ ∃𝑟.𝐷3,¬𝐷3}. The definers 𝐷1, 𝐷2, and 𝐷3 are eliminated
in a similar way to the method described in Section 6 giving 𝒱 = {¬𝐴1 ⊔ ∃𝑟.⊤,¬𝐴1 ⊔ ¬𝐴2}.

Our normal form is more flexible as it allows several negative definers to appear in a clause,

thus avoids the extra resolution inferences performed by Lethe.

We measured the size of the extracted Δ set. In Evaluation 1, Δ was on average 0.01%, 0.66%,

and 18.3% of the size of the original ontology, in the 10%, 30%, and 50% settings respectively. In

Evaluation 2, Δ was on average 0.23%, 0.88%, and 7.13% of the size of the original ontology, in

the 10%, 30%, and 50% settings respectively.

We also measured the number of definers in Δ as a ratio to the forgetting signature. In

Evaluation 1, they were on average 0.03%, 0.63%, and 1.5% in the 10%, 30%, and 50% settings

respectively. In Evaluation 2, they were on average 0.04%, 0%, and 1.4% in the 10%, 30%, and

50% settings respectively. These ratios indicate that our fine-grained method was feasible since

appending 𝒪𝑟𝑒𝑑
with axioms from Δ introduced few definers relative to the size of ℱ .

Finally, we measured the size of the deductive view relative to the original ontology. In

Evaluation 1 it was on average 114%, 103%, and 117% of the size of the original ontology in the

10%, 30%, and 50% settings respectively. In Evaluation 2, it was on average 113%, 95%, and 103%

of the size of the original ontology in the 10%, 30%, and 50% settings respectively.

9. Conclusions and Future Work

We presented a new forgetting method that performs deductive forgetting, and extracts a set

Δ of axioms representing the information difference between the original ontology and the

deductive view. Not only does this give a clearer understanding, in terms of the modelled

information, on the difference between the input ontology and the deductive view, but also it

allows a fine-grained forgetting system that gives control over the information modelled in the

forgetting view. Empirical evaluation suggests that our forgetting method is faster than the

state-of-the-art forgetting tool Lethe despite computing more information. Nevertheless, our

evaluation suggested that appending the deductive forgetting view with information from Δ
introduces few foreign symbols compared to the forgotten symbols. The final forgetting view

therefore remains a compact extract of the original ontology for the use in applications.

Future work will study in greater depth the newly revealed spectrum of forgetting variants,

and their intersections with other forgetting variants in the literature.

References

[1] M. Ludwig, B. Konev, Practical uniform interpolation and forgetting for 𝒜ℒ𝒞 TBoxes with

applications to logical difference, in: Proc. KR 2014, AAAI Press, 2014.

[2] B. C. Grau, B. Motik, Pushing the limits of reasoning over ontologies with hidden content,

in: Proc. KR 2010, AAAI Press, 2010, pp. 214–224. URL: http://www.comlab.ox.ac.uk/

people/Boris.Motik/pubs/gm10pushing-ibq.pdf.

[3] W. Del-Pinto, R. A. Schmidt, ABox abduction via forgetting in ALC, in: Proc. AAAI 2019,

AAAI Press, 2019, pp. 2768–2775.

[4] J. Lang, P. Marquis, Reasoning under inconsistency: A forgetting-based approach, Artificial

Intelligence 174 (2010) 799–823. URL: https://www.sciencedirect.com/science/article/pii/

S0004370210000676. doi:https://doi.org/10.1016/j.artint.2010.04.023.

[5] D. Subramanian, M. R. Genesereth, The relevance of irrelevance., in: Proc. IJCAI, 1987.

[6] G. Lakemeyer, Relevance from an Epistemic Perspective, Artif. Intell. 97 (1997) 137–167.

doi:10.1016/S0004-3702(97)00038-6.

[7] J. Lang, P. Liberatore, P. Marquis, Propositional independence: Formula-variable indepen-

dence and forgetting, Artificial Intelligence Research 18 (2003) 391–443.

[8] E. Erdem, P. Ferraris, Forgetting Actions in Domain Descriptions, in: Proc. AAAI 2007,

AAAI Press, 2007, pp. 409–414.

[9] Y. Zhang, Y. Zhou, Knowledge forgetting: Properties and applications, Artificial Intelli-

gence 173 (2009) 1525–1537. doi:10.1016/j.artint.2009.07.005.

[10] C. Lutz, F. Wolter, Foundations for uniform interpolation and forgetting in expressive

description logics, in: Proc. IJCAI 2011, 2011, p. 989–995.

[11] J. Delgrande, A Knowledge Level Account of Forgetting, Artificial Intelligence Research

60 (2017) 1165–1213. doi:10.1613/jair.5530.

[12] A. Nonnengart, A. Szalas, A fixpoint approach to second-order quantifier elimination with

applications to correspondence theory, in: Logic at Work, Springer, 1998.

[13] P. Koopmann, R. A. Schmidt, Uniform interpolation of 𝒜ℒ𝒞-ontologies using fixpoints,

in: Proc. FroCoS 2013, volume 8152 of LNAI, Springer, 2013, pp. 87–102.

[14] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider, The Description

Logic Handbook, Cambridge Univ. Press, 2003.

[15] P. Koopmann, R. A. Schmidt, Implementation and evaluation of forgetting in ALC-

ontologies, in: Proc. WoMo 2013, volume 1081, CEUR-WS.org, 2013.

[16] F. Lin, R. Reiter, Forget it, in: AAAI Fall Symp. on Relevance, 1994, pp. 154–159.

[17] D. M. Gabbay, H. J. Ohlbach, Quantifier elimination in second-order predicate logic, in:

Proc. KR 1992, Morgan Kaufmann, 1992, pp. 425–435.

[18] Y. Zhang, Y. Zhou, Forgetting revisited, in: Proc. KR, AAAI Press, 2010.

[19] S. Ghilardi, An algebraic theory of normal forms, Ann. Pure Appl. Logic 71 (1995) 189 –

245.

[20] A. Herzig, J. Mengin, Uniform interpolation by resolution in modal logic, in: Proc. JELIA

2008, volume 5293 LNAI, Springer, 2008, pp. 219–231.

[21] H. Ditmarsch, A. Herzig, J. Lang, P. Marquis, Introspective forgetting, in: Proc. AI 2008,

Springer, 2008, pp. 18–29.

[22] B. Konev, D. Walther, F. Wolter, Forgetting and uniform interpolation in large-scale

http://www.comlab.ox.ac.uk/people/Boris.Motik/pubs/gm10pushing-ibq.pdf
http://www.comlab.ox.ac.uk/people/Boris.Motik/pubs/gm10pushing-ibq.pdf
https://www.sciencedirect.com/science/article/pii/S0004370210000676
https://www.sciencedirect.com/science/article/pii/S0004370210000676
http://dx.doi.org/https://doi.org/10.1016/j.artint.2010.04.023
http://dx.doi.org/10.1016/S0004-3702(97)00038-6
http://dx.doi.org/10.1016/j.artint.2009.07.005
http://dx.doi.org/10.1613/jair.5530

description logic terminologies, in: Proc. IJCAI 2009, Morgan Kaufmann, 2009, p. 830–835.

[23] B. Konev, C. Lutz, D. Walther, F. Wolter, Model-theoretic inseparability and modularity

of description logic ontologies, Artificial Intelligence 203 (2013) 66–103. doi:10.1016/j.
artint.2013.07.004.

[24] E. Botoeva, B. Konev, C. Lutz, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Inseparability

and conservative extensions of description logic ontologies: A survey, in: Reasoning

Web 2016, Springer, 2017, pp. 27–89. URL: https://doi.org/10.1007/978-3-319-49493-7_2.

doi:10.1007/978-3-319-49493-7_2.

[25] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions in the description

logic ℰℒ, Symbolic Computation 45 (2010) 194–228. doi:10.1016/j.jsc.2008.10.007.

[26] G. D’Agostino, M. Hollenberg, Uniform interpolation, automata and the modal 𝜇-calculus,

Logic Group Preprint Series 165 (1996).

[27] D. Calvanese, G. De Giacomo, M. Lenzerini, Reasoning in Expressive Description Log-

ics with Fixpoints Based on Automata on Infinite Trees, in: Proc. IJCAI 1999, Morgan

Kaufmann, 1999, pp. 84–89.

[28] A. Nonnengart, C. Weidenbach, Computing small clause normal forms, in: Handbook of

Automated Reasoning, North-Holland, 2001, pp. 335 – 367.

http://dx.doi.org/10.1016/j.artint.2013.07.004
http://dx.doi.org/10.1016/j.artint.2013.07.004
https://doi.org/10.1007/978-3-319-49493-7_2
http://dx.doi.org/10.1007/978-3-319-49493-7_2
http://dx.doi.org/10.1016/j.jsc.2008.10.007

	1 Introduction
	2 History and Related Work
	3 Basic Definitions
	4 Computing the Intermediate Ontology
	5 Extracting Δ and Ored
	6 Eliminating the Definer Symbols
	7 Computing More Informative Forgetting Views
	8 Evaluation
	9 Conclusions and Future Work

