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Abstract

In ontology-mediated query answering, access to incomplete data sources is mediated by a conceptual

layer constituted by an ontology. To correctly compute answers to queries, it is necessary to perform

complex reasoning over the constraints expressed by the ontology. In the literature, there exists a

multitude of techniques incorporating the ontological knowledge into queries. However, few of these

approaches were designed for comprehensibility of the query answers. In this article, we try to bridge

these two qualities by adapting a proof framework originally applied to axiom entailment for conjunctive

query answering. We investigate the data and combined complexity of determining the existence of

a proof below a given quality threshold, which can be measured in different ways. By distinguishing

various parameters such as the shape of a query, we obtain an overview of the complexity of this problem

for the lightweight ontology languages DL-Lite𝑅,and also have a brief look at temporal query answering.

1. Introduction

Explaining description logic (DL) reasoning has a long tradition, starting with the first works on

proofs for standard DL entailments [1, 2]. A popular and very effective method is justifications,

which simply point out the axioms from an ontology that are responsible for an entailment [3,

4, 5, 6]. More recently, work has resumed on techniques to find proofs for explaining more

complex logical consequences [7, 8, 9, 10, 11]. On the other hand, if a desired entailment

does not hold, one needs different explanation techniques such as abduction [12, 13, 14] or

counterinterpretations [15]. Explaining answers to conjunctive queries (CQs) has also been

investigated before, in the form of abduction for missing answers over DL-Lite ontologies [14],

provenance for positive answers in DL-Lite and ℰℒ [16, 17], as well as proofs for DL-Lite query

answering [18, 19, 20].

Here, we also investigate proofs for CQ answers, inspired by [18, 19, 20], but additionally

consider the problem of generating good proofs according to some quality measures and provide

a range of complexity results focussing on DL-Lite𝑅.In addition to classical OMQA, we also have

a brief look at explaining inferences over temporal data using a query language incorporating

metric temporal operators. Our results are based on a framework developed for proofs of

standard DL reasoning [9]. There, proofs are formalized as directed, acyclic hypergraphs and
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proof quality can be measured in different ways. We mainly consider the size (the number of

formulas) of a proof as well as its tree size, which corresponds to the size when the proof is

presented in a tree-shaped way (which may require repeating subproofs), as it is often done

in practice [8, 21]. The quest for good proofs is formalized as a search problem in a so-called

derivation structures produced by a deriver, which specifies the possible inferences.

In this paper, we consider two different kinds of derivers for generating proofs for CQ answers.

These loosely correspond to the approaches in [18, 19, 20], but are generalized to apply to a larger

class of DLs. Specifically, our structures rely on a translation of DLs to existential rules [22], and

thus apply to any DL that can be expressed in this formalism. One deriver, denoted by Dcq and

inspired by [19, 20], focuses on the derivation of CQs, which can be derived from other CQs and

ontology axioms. Inferences in Dcq are logically sound, but can be harder to understand. The

reason is the local scope of existential quantification in a CQ, which forces atoms connected

by the same variables to be carried along inferences they are not relevant for. This problem

is circumvented with the deriver Dsk, which relies on a Skolemized version of the TBox. This

allows one to focus on inferences of single atoms that are only later aggregated into the final

CQ, leading to simpler sentences within the proof. Focusing on the particular cases of DL-Lite𝑅

and ℰℒ, we consider the complexity of the decision problems of finding proofs of (tree) size

below a given threshold 𝑛 in these derivation structures. We find that for DL-Lite𝑅 and any

DL in which CQ answering is UCQ-rewritable, all of these problems (regardless of derivation

structure and quality measure) are in AC0
in data complexity. In combined complexity, these

problems are NP-complete in general, but polynomial when considering only acyclic queries

and tree size. We also obtain similar results for the case of Dsk w.r.t. ℰℒ ontologies and tree size,

but for size the situation is not clear yet because we suspect that for ℰℒ proofs may actually get

exponentially large. To explain answers to temporal queries, we extend our derivers with new

inference schemes to deal with metric temporal operators, allowing us to lift some of our results

also to this setting. The full details can be found in a technical report [23], but we describe the

main ideas here.

2. Preliminaries

Proofs In our setting, a logic ℒ = (𝒮ℒ, |=ℒ) consists of a set 𝒮ℒ of ℒ-sentences and a con-

sequence relation |=ℒ ⊆ 𝑃 (𝒮ℒ)× 𝒮ℒ between ℒ-theories (subsets of ℒ-sentences) and single

ℒ-sentences; we usually write only |= instead of |=ℒ. We assume that the size |𝜂| of an ℒ-

sentence 𝜂 is defined in some way, e.g. by the number of symbols in 𝜂. We require that ℒ is

monotonic, i.e. that 𝒯 |= 𝜂 implies 𝒯 ′ |= 𝜂 for all 𝒯 ′ ⊇ 𝒯 . For example, ℒ could be first-order

logic or some DL.

As in [9, 10, 11], we view proofs as directed hypergraphs (see the appendix for details).

Definition 1 (Derivation Structure). A derivation structure 𝒟 = (𝑉,𝐸, ℓ) over a theory 𝒰 is a

directed, labeled hypergraph that is

• grounded, i.e. every leaf 𝑣 in 𝒟 is labeled by ℓ(𝑣) ∈ 𝒰 ; and

• sound, i.e. for every hyperedge (𝑆, 𝑑) ∈ 𝐸, the entailment {ℓ(𝑠) | 𝑠 ∈ 𝑆} |= ℓ(𝑑) holds.



We call hyperedges (𝑆, 𝑑) ∈ 𝐸 inferences or inference steps, with 𝑆 being the premises and 𝑑
the conclusion, and may write them like

𝑝 𝑝→ 𝑞
𝑞 or

𝑝 𝑝→ 𝑞

𝑞

Proofs are special derivation structures that derive a goal sentence.

Definition 2 (Proof). Given a sentence 𝜂 and a theory 𝒰 , a proof of 𝒰 |= 𝜂 is a finite derivation

structure 𝒫 = (𝑉,𝐸, ℓ) over 𝒰 such that

• 𝒫 contains exactly one sink 𝑣𝜂 ∈ 𝑉 , which is labeled by 𝜂,

• 𝒫 is acyclic, and

• every vertex has at most one incoming hyperedge, i.e. there exist no two hyperedges

(𝑆1, 𝑣), (𝑆2, 𝑣) ∈ 𝐸 with 𝑆1 ̸= 𝑆2.

A tree proof is a proof that is a tree. A subproof 𝑆 of a hypergraph 𝐻 is a subgraph of 𝐻 that is

a proof with leaf(𝑆) ⊆ leaf(𝐻).

To compute proofs, we assume that there is some reasoning system or calculus that defines

a derivation structure for a given entailment 𝜂, and the structure may contain several proofs

for that entailment. Formally, a deriver D for a logic ℒ takes as input an ℒ-theory 𝒰 and an

ℒ-sentence 𝜂, and returns a (possibly infinite) derivation structure D(𝒰 , 𝜂) over 𝒰 that describes

all inference steps that D could perform in order to derive 𝜂 from 𝒰 . This derivation structure

is not necessarily computed explicitly, but can be accessed through an oracle (which checks,

for example, whether an inference conforms to the underlying calculus). The task of finding a

good proof then corresponds to finding a (finite) proof that can be homomorphically mapped

into this derivation structure and which is minimal according to some measure of proof quality.

We consider two such measures here: the size of a proof 𝒫 = (𝑉,𝐸, ℓ) is ms(𝒫) := |𝑉 |,1 and

the tree size mt(𝒫) is the size of a tree unraveling of 𝒫 [11]. The depth of 𝒫 is the length of the

longest path from a leaf to the sink (see appendix).

DLs and Existential Rules We assume that the reader is familiar with DLs, in particular

DL-Lite𝑅 [24] and ℰℒ [25], where theories 𝒰 = 𝒯 ∪ 𝒜 are called ontologies or knowledge bases

and are composed of a TBox 𝒯 and an ABox 𝒜. Many DL ontologies can be equivalently

expressed using the formalism of existential rules [22]. Existential rules are first-order sentences

of the form ∀�⃗�, �⃗�. 𝜓(�⃗�, �⃗�) → ∃�⃗�. 𝜒(�⃗�, �⃗�), with the body 𝜓(�⃗�, �⃗�) and the head 𝜒(�⃗�, �⃗�) being

conjunctions of atoms of the form 𝐴(𝑥) or 𝑃 (𝑥1, 𝑥2), for a concept name 𝐴, role name 𝑃 and

terms 𝑥, 𝑥1 and 𝑥2, which are individual names or variables from �⃗�, �⃗� and �⃗�. We usually omit the

universal quantification. Notable DLs that can be equivalently expressed as sets of existential

rules are ℰℒ, Horn-𝒮ℛℐ𝒬 and DL-Lite𝑅.

1

Since every vertex has at most one incoming hyperedge, the size of 𝐸 is at most quadratic in |𝑉 |.



Conjunctive Queries In this paper, we want to construct proofs for ontology-mediated

conjunctive query entailments. A conjunctive query (CQ) q(�⃗�) is an expression of the form

∃�⃗�. 𝜑(�⃗�, �⃗�), where 𝜑(�⃗�, �⃗�) is a conjunction of atoms using answer variables �⃗� and existentially

quantified variables �⃗�. If �⃗� = (), then q(�⃗�) is called Boolean. ABox assertions are a special case

of Boolean CQs with only one atom and no variables. A tuple �⃗� of individual names from𝒜 is a

certain answer to q(�⃗�) over 𝒯 ∪ 𝒜, in symbols 𝒯 ∪ 𝒜 |= q(�⃗�), if, for any model of 𝒯 ∪ 𝒜, the

sentence q(�⃗�) is true in this model. Any CQ q(�⃗�) = ∃�⃗�. 𝜑(�⃗�, �⃗�) is associated with the set of

atoms in 𝜑, so we can write e.g. 𝐴(𝑧) ∈ q(�⃗�).

Example 1. For the following DL-Lite𝑅 ontology and query, we have 𝒯 ∪ {𝐵(b)} |= q(b).

𝒯 = {𝐴 ⊑ ∃𝑅, ∃𝑅− ⊑ ∃𝑇, 𝐵 ⊑ ∃𝑃, ∃𝑃− ⊑ ∃𝑆, 𝑃 ⊑ 𝑅−}
q(𝑦′′) = ∃𝑥, 𝑥′, 𝑥′′, 𝑦, 𝑦′, 𝑧, 𝑧′. 𝑅(𝑥, 𝑦) ∧ 𝑇 (𝑦, 𝑧) ∧ 𝑇 (𝑦′, 𝑧) ∧ 𝑅(𝑥′, 𝑦′) ∧ 𝑆(𝑥′, 𝑧′)

∧ 𝑆(𝑥′′, 𝑧′) ∧ 𝑃 (𝑦′′, 𝑥′′).

In the next section, we explore different ways to explain this inference (see Figures 2 and 4).

3. Derivation Structures for Certain Answers

In the following, let 𝒯 ∪ 𝒜 be a knowledge base in some DL ℒ, q a conjunctive query, and �⃗� a

certain answer, i.e. 𝒯 ∪ 𝒜 |= q(�⃗�), which we want to explain. We can use derivation structures

over ℒcq (the extension of ℒ with all Boolean CQs) to explain query answers. For example, the

following derivation step involving the ontology from Example 1 is a sound inference:

𝐵(b) 𝒯
q(b)

However, to define a derivation structure that yields proofs suitable for explanations to users,

inferences that only make small deduction steps are more valuable. For this purpose, we define

derivers that capture which inference steps are admitted. For TBox entailment, in [9, 10, 11], we

considered derivers based on the inference schemas used by a consequence-based reasoner. To

obtain proofs for CQ entailment, we follow the ideas of chase procedures that replace atoms in

CQs by other atoms by “applying” rules to them [26, 22, 24, 18]. We will introduce two derivers

that represent different paradigms of what constitutes a proof.

3.1. The CQ Deriver

Similarly to the approach used in [19, 20], inferences in our first deriver, Dcq, always produce

Boolean CQs. This deriver is defined for DLs that can be expressed using existential rules. An in-

ference step is obtained by matching the left-hand side of a rule to part of a CQ and then replacing

it by the right-hand side. For example, starting from ∃𝑧. 𝑃 (b, 𝑧) and 𝑃 (𝑥, 𝑦)→ 𝑅(𝑦, 𝑥), we can

apply the substitution {𝑥 ↦→ b, 𝑦 ↦→ 𝑧} to obtain ∃𝑧.𝑅(𝑧, b). Additionally, we allow to keep any

of the replaced atoms from the original CQ, e.g. to produce the conclusion ∃𝑧. 𝑃 (b, 𝑧)∧𝑅(𝑧, b).
A second type of inference allows one to combine two Boolean CQs using conjunction. To

duplicate variables, we additionally introduce tautological rules such as 𝑃 (𝑥, 𝑧)→ ∃𝑧′. 𝑃 (𝑥, 𝑧′),



∃�⃗�. 𝜑(�⃗�) 𝜓(�⃗�, �⃗�)→ ∃�⃗�. 𝜒(�⃗�, �⃗�)
(MP)

∃�⃗�.𝜌(�⃗�)
∃�⃗�. 𝜑(�⃗�) ∃�⃗�. 𝜓(�⃗�)

(C)
∃�⃗�, �⃗�′.𝜑(�⃗�) ∧ 𝜓(�⃗�′)

(T)
𝜑(�⃗�, �⃗�)→ ∃�⃗�. 𝜑(�⃗�, �⃗�)

∃�⃗�. 𝜑(�⃗�, �⃗�)
(E)

∃�⃗�, �⃗�. 𝜑(�⃗�, �⃗�)

Figure 1: Inference schemas for Dcq. (MP) and (T) refer to modus ponens and tautology.

which yields ∃𝑧, 𝑧′. 𝑃 (b, 𝑧) ∧ 𝑃 (b, 𝑧′) when combined with ∃𝑧. 𝑃 (b, 𝑧). Finally, we use an

inference schema that allows us to replace constants by variables, e.g. to capture that ∃𝑧. 𝑃 (b, 𝑧)
implies ∃𝑥, 𝑧. 𝑃 (𝑥, 𝑧).

The detailed inference schemas can be found in Figure 1. (MP) is admissible only if there

exists a substitution 𝜋 such that 𝜋(𝜓(�⃗�, �⃗�)) ⊆ 𝜑(�⃗�), and then 𝜌(�⃗�) is the result of replacing any

subset of 𝜋(𝜓(�⃗�, �⃗�)) in 𝜑(�⃗�) by any subset of 𝜋(𝜒(�⃗�, �⃗�′)), where the variables �⃗� are renamed

into new existentially quantified variables �⃗�′ to ensure that they are disjoint with �⃗�. In (C),
we again rename the variables �⃗� to �⃗�′ to avoid overlap with �⃗�. Since every ABox assertion

corresponds to a ground CQ, this inference also allows one to collect ABox assertions into a

single CQ. (T) introduces an existential rule that allows us, together with (MP), to create copies

of variables in CQs (see Fig. 2). Finally, (E) transforms individual names in some positions into

existentially quantified variables.

Definition 3 (CQ Deriver). Dcq(𝒯 ∪𝒜,q(�⃗�)) is a derivation structure over 𝒯 ∪𝒜with vertices

labeled by the axioms in 𝒯 ∪ 𝒜 and all Boolean CQs over the signature of 𝒯 ∪ 𝒜, and its

hyperedges represent all possible instances of (MP), (C), (T), and (E) over these vertices. An

(admissible) proof in Dcq(𝒯 ∪ 𝒜,q(�⃗�)) is a proof of 𝒯 ∪ 𝒜 |= q(�⃗�) that has a homomorphism

into this derivation structure.

It is easy to check that the inferences used by Dcq are sound. Moreover, we can show that

they are complete, i.e. that any CQ entailed by 𝒜 ∪ 𝒯 has a proof in Dcq(𝒯 ∪ 𝒜,q(�⃗�)) (see

Lemma 5). A proof for Example 1 w.r.t. Dcq is depicted in Figure 2.

3.2. Skolemized Derivation Structure

To explain a Boolean CQ, using a derivation structure that works on CQs seems natural. However,

a downside is that we have to “collect” quantified variables along the proof and label vertices with

complex expressions. Since the inference rules apply on sub-expressions, it may be challenging

to understand on which part of the CQ an inference is performed—indeed, finding a match for the

body o a rule in a CQ is NP-hard. The problem is that we cannot separate inference steps on the

same variable without affecting soundness, as the existential quantification only applies locally

in the current CQ. To follow our example: 𝑥′′ and 𝑧′ in Figure 2 are connected to each other and to

the constant b, and thus have to be kept together: although ∃𝑥′′, 𝑧′.𝑃 (b, 𝑥′′)∧𝑆(𝑥′′, 𝑧′) implies

∃𝑥′′.𝑃 (b, 𝑥′′) and ∃𝑥′′, 𝑧′.𝑆(𝑥′′, 𝑧′), those two CQs do not imply the original CQ anymore. To

overcome these issues, we consider a second type of deriver that relies on Skolemization, and is

inspired by the approach from [18].



𝐵(b) 𝐵 ⊑ ∃𝑃

∃𝑥′′. 𝑃 (b, 𝑥′′) ∃𝑃− ⊑ ∃𝑆

∃𝑥′′, 𝑧′ 𝑃 (b, 𝑥′′) ∧ 𝑆(𝑥′′, 𝑧′)𝑃 ⊑ 𝑅−

∃𝑥′′, 𝑧′. 𝑅(𝑥′′, b) ∧ 𝑆(𝑥′′, 𝑧′) ∧ 𝑃 (b, 𝑥′′) ∃𝑅− ⊑ ∃𝑇

∃𝑥′′, 𝑧, 𝑧′. 𝑅(𝑥′′, b) ∧ 𝑇 (b, 𝑧) ∧ 𝑆(𝑥′′, 𝑧′) ∧ 𝑃 (b, 𝑥′′)

𝑅(𝑥, 𝑦) ∧ 𝑇 (𝑦, 𝑧) → ∃𝑦′. 𝑅(𝑥, 𝑦′) ∧ 𝑇 (𝑦′, 𝑧)

∃𝑥′′, 𝑦′, 𝑧, 𝑧′. 𝑅(𝑥′′, b) ∧ 𝑇 (b, 𝑧) ∧ 𝑇 (𝑦′, 𝑧) ∧ 𝑅(𝑥′′, 𝑦′) ∧ . . .

𝑆(𝑥, 𝑧) → 𝑆(𝑥, 𝑧)

. . .

𝑅(𝑥′′, 𝑦′) ∧ 𝑆(𝑥′′, 𝑧′) → ∃𝑥′. 𝑅(𝑥′, 𝑦′) ∧ 𝑆(𝑥′, 𝑧′)

. . .𝑅(𝑥′′, 𝑦) → ∃𝑥.𝑅(𝑥, 𝑦)

∃𝑥, 𝑥′, 𝑥′′, 𝑦′, 𝑧, 𝑧′. 𝑅(𝑥, b) ∧ 𝑇 (b, 𝑧) ∧ 𝑇 (𝑦′, 𝑧) ∧ 𝑅(𝑥′, 𝑦′) ∧ 𝑆(𝑥′, 𝑧′) ∧ 𝑆(𝑥′′, 𝑧′) ∧ 𝑃 (b, 𝑥′′)

∃𝑥, 𝑥′, 𝑥′′, 𝑦, 𝑦′, 𝑧, 𝑧′. 𝑅(𝑥, 𝑦) ∧ 𝑇 (𝑦, 𝑧) ∧ 𝑇 (𝑦′, 𝑧) ∧ 𝑅(𝑥′, 𝑦′) ∧ 𝑆(𝑥′, 𝑧′) ∧ 𝑆(𝑥′′, 𝑧′) ∧ 𝑃 (b, 𝑥′′)

(T)

(T)

(T)

(T)

(MP)

(MP)

(MP)

(MP)

(MP)

(MP)

(MP)

(MP)

(E)

Figure 2: A CQ proof for Example 1 (inferences (E) and (T) are delayed to the last steps)

This deriver, Dsk, mainly operates on ground CQs, and requires the theory to be Skolemized.

This means that it cannot contain existential quantification, it may however contain function

symbols. To Skolemize existential rules, for each existentially quantified variable a fresh function

symbol is introduced; for the CI ∃𝑃− ⊑ ∃𝑆 this results in 𝑃 (𝑥, 𝑦) → 𝑆(𝑦, 𝑔(𝑦)), where 𝑔 is

a unary function symbol whose argument denotes the dependency on the variable 𝑦 shared

between the body and head of the rule. Let 𝒯 𝑠
be the set of Skolemized rules resulting from this

transformation and note that the entailments 𝒯 ∪𝒜 |= q(�⃗�) and 𝒯 𝑠∪𝒜 |= q(�⃗�) are equivalent

for CQs q(�⃗�) that do not use function symbols. Our deriver internally considers two kinds of

formulas: 1) CQs that may use function symbols and 2) rules of the form ∀�⃗�.𝜑(�⃗�) → 𝜓(�⃗�),
where 𝜓(�⃗�) may now contain function terms, but no further quantified variables. Since we

are only interested in CQs that are entailed by 𝒯 𝑠 ∪ 𝒜, we can assume w.l.o.g. that this

entailment can be shown solely using domain elements denoted by ground terms, e.g. 𝑓(𝑓(a)),
which allows us to eliminate variables from most of the inferences. For example, instead of

∃𝑥′′, 𝑧′. 𝑃 (b, 𝑥′′)∧𝑆(𝑥′′, 𝑧′) in Figure 2 we now use 𝑃 (b, 𝑓(b))∧𝑆(𝑓(b), 𝑔(𝑓(b))). Since these

atoms do not share variables, in our derivation structure we mainly need to consider inferences

on single atoms, which allows for more fine-grained proofs (see Figure 4). Only at the end we

need to compose atoms to obtain a CQ.

The simplified inference schemas are shown in Figure 3. In (MPs), 𝛼𝑖(�⃗�𝑖) and 𝛽(�⃗�) are ground

atoms with terms composed from individual names and Skolem functions, and likewise 𝜒(�⃗�)



𝛼1(�⃗�1) . . . 𝛼𝑛(�⃗�𝑛) 𝜓(�⃗�, �⃗�)→ 𝜒(�⃗�)
(MPs)

𝛽(�⃗�)
𝛼1(�⃗�1) . . . 𝛼𝑛(�⃗�𝑛) (Cs)
𝛼1(�⃗�1) ∧ · · · ∧ 𝛼𝑛(�⃗�𝑛)

𝜑(�⃗�)
(Es)∃�⃗�.𝜑(�⃗�)

Figure 3: Inference schemas for Dsk.

may contain Skolem functions; similar to (MP), we require that there is a substitution 𝜋 such

that 𝜋(𝜓(�⃗�, �⃗�)) = {𝛼1(�⃗�1), . . . , 𝛼𝑛(�⃗�𝑛)} and 𝛽(�⃗�) ∈ 𝜋(𝜒(�⃗�)). In (Es), �⃗� is now a vector of

ground terms which may contain function symbols. Since (MPs) works only with ground

atoms, (Cs) and (Es) can now only be used at the end of a proof to obtain the desired CQ (see

Figure 4). Moreover, we do not need a version of (T) here since it would be trivial for ground

atoms. Its effects in Dcq can be simulated here due to the fact that the same atom can be used

several times as a premise for (MPs) or (Cs).

Definition 4 (Skolemized Deriver). The derivation structure Dsk(𝒯 𝑠 ∪ 𝒜,q(�⃗�)) is defined

similarly to Definition 3, but using 𝒯 𝑠
and the inference schemas (MPs), (Cs) and (Es).

Though different presentations with different advantages and disadvantages, it is not hard to

translate proofs based on Dsk into proofs in Dcq and vice versa.

Lemma 5. Any proof𝒫 inDcq(𝒯 ∪𝒜,q(�⃗�)) can be transformed into a proof inDsk(𝒯 𝑠∪𝒜,q(�⃗�))
in time polynomial in the sizes of 𝒫 and 𝒯 , and conversely any proof 𝒫 in Dsk(𝒯 𝑠 ∪ 𝒜,q(�⃗�))
can be transformed into a proof in Dcq(𝒯 ∪ 𝒜,q(�⃗�)) in time polynomial in the sizes of 𝒫 and 𝒯 .

The latter also holds for tree proofs.

However, it is not the case that minimal proofs are equivalent for these two derivers, i.e. a

minimal proof may become non-minimal after the transformation.

This lemma also shows that our derivation structures are complete, i.e. if 𝒯 ∪𝒜 |= q(�⃗�) holds,

then we can provide a proof for it. To see this, consider the minimal Herbrand model𝐻 of 𝒯 𝑠∪𝒜,

which can be computed using the (Skolem) chase procedure for existential rules—essentially,

applying the rules step-by-step to obtain new ground atoms, in a way very similar to (MPs).
This model is a universal model for CQ answering over 𝒯 ∪𝒜, which means that 𝒯 ∪𝒜 |= q(�⃗�)
implies 𝐻 |= q(�⃗�), which, in turn, means that there must be a proof in Dsk(𝒯 𝑠 ∪𝒜,q(�⃗�)), and

hence by Lemma 5 also one in Dcq(𝒯 ∪𝒜,q(�⃗�)). For convenience, we assume in the following

that TBoxes are silently Skolemized when constructing derivation structures using Dsk, that is,

we identify Dsk(𝒯 ∪ 𝒜,q(�⃗�)) with Dsk(𝒯 𝑠 ∪ 𝒜,q(�⃗�)).

4. The Complexity of Finding Good Proofs

It is our intution that proofs in Dsk are more comprehensible than in Dcq because of its simpler

labels. Moreover, we assume small proofs (w.r.t. size ms or tree size mt) to be more comprehen-

sible than large ones (but one can certainly also consider other measures [10, 11]). Therefore,



𝐵(b) 𝐵 ⊑ ∃𝑃

𝑃 (b, 𝑓(b)) ∃𝑃− ⊑ ∃𝑆𝑃 ⊑ 𝑅−

𝑆(𝑓(b), 𝑔(𝑓(b)))𝑅(𝑓(b), b)∃𝑅− ⊑ ∃𝑇

𝑇 (b, ℎ(b))

𝑅(𝑓(b), b) ∧ 𝑇 (b, ℎ(b)) ∧ 𝑇 (b, ℎ(b)) ∧𝑅(𝑓(b), b) ∧ 𝑆(𝑓(b), 𝑔(𝑓(b))) ∧ 𝑆(𝑓(b), 𝑔(𝑓(b))) ∧ 𝑃 (b, 𝑓(b))

∃𝑥, 𝑥′, 𝑥′′, 𝑦, 𝑦′, 𝑧, 𝑧′. 𝑅(𝑥, 𝑦) ∧ 𝑇 (𝑦, 𝑧) ∧ 𝑇 (𝑦′, 𝑧) ∧ 𝑅(𝑥′, 𝑦′) ∧ 𝑆(𝑥′, 𝑧′) ∧ 𝑆(𝑥′′, 𝑧′) ∧ 𝑃 (b, 𝑥′′)

(MPs)

(MPs)(MPs)

(MPs)

(Cs)

(Es)

Figure 4: A Skolemized proof for Example 1

we now study the complexity of finding small proofs automatically (which is independent of the

comprehensibility of the resulting proofs). More precisely, we are interested in the following

decision problem OPx(ℒ,m) for a deriver Dx ∈ {Dcq,Dsk}, a DL ℒ ∈ {ℰℒ,DL-Lite𝑅}, and

a measure m ∈ {ms,mt}: given an ℒ-KB 𝒯 ∪ 𝒜, a query q(�⃗�) with certain answer �⃗�, and a

natural number 𝑛 (in binary encoding), is there a proof 𝒫 for q(�⃗�) in Dx(𝒯 ∪ 𝒜,q(�⃗�)) with

m(𝒫) ≤ 𝑛? To better distinguish the complexity of finding small proofs from that of query

answering, we assume 𝒯 ∪𝒜 |= q(�⃗�) as prerequisite, which fits the intuition that users request

an explanation only after they know that �⃗� is a certain answer. Lemma 7 in [11] shows that,

instead of looking for arbitrary proofs and homomorphisms into the derivation structure, one

can restrict the search to subproofs of Dx(𝒯 ∪ 𝒜,q(�⃗�)), which we will often do implicitly.

It is common in the context of OMQA to distinguish between data complexity, where only

the data varies, and combined complexity, where also the influence of the other inputs is taken

into account. This raises the question whether the bound 𝑛 is seen as part of the input or not.

It turns out that fixing 𝑛 trivializes the data complexity, because then 𝑛 also fixes the set of

relevant ABoxes modulo isomorphism.

Theorem 6. For a constant bound 𝑛, OPx(ℒ,m) is in AC0
in data complexity.

One may argue that, since the size of the proof depends on 𝒜, the bound 𝑛 on the proof size

should be considered part of the data as well. Under this assumption, our decision problem is not

necessarily in AC0
anymore. For example, consider the ℰℒ TBox {∃𝑟.𝐴 ⊑ 𝐴} and 𝑞(𝑥)← 𝐴(𝑥).

For every 𝑛, there is an ABox 𝒜 such that 𝐴(𝑎) is entailed by a seqeuence of 𝑛 role assertions,

and thus needs a proof of size at least 𝑛. Deciding whether this query admits a bounded proof is

thus as hard as deciding whether it admits an answer at all in𝒜, i.e. P-hard [27]. However, we at

least stay in AC0
for DLs over which CQs are rewritable, e.g. DL-Lite𝑅 [24], because the number

of (non-isomorphic) proofs that we need to consider is bounded by the size of the rewriting,

which is constant in data complexity.

Theorem 7. If all CQs are UCQ-rewritable over ℒ-TBoxes, then OPx(ℒ,m) is in AC0
in data

complexity.



We now consider the combined complexity. In [9, 11], we established general upper bounds

for finding proofs of bounded size. These results depend only on the size of the derivation

structure obtained for the given input. Both Dcq and Dsk may produce derivation structures of

infinite size, as Dcq contains CQs of arbitrary size, and Dsk also has Skolem terms of arbitrary

nesting depth. However, we can sometimes bound the number of relevant Skolem terms in Dsk

by considering only the part of the minimal Herbrand model 𝐻 that is necessary to satisfy

the query q(�⃗�). For example, in logics with the polynomial witness property [28], including

DL-Lite𝑅, we know that any query that is entailed is already satisfied after polynomially many

chase steps used to construct 𝐻 . In particular, this means that the nesting depth of Skolem

terms in a proof is bounded polynomially (in the size of the TBox and the query), and hence the

part of Dsk(𝒯 𝑠 ∪ 𝒜,q(�⃗�)) that we need to search for a (small) proof is bounded exponentially.

For such structures, our results from [9, 11] give us a NExpTime-upper bound for size, and a

PSpace-upper bound for tree size, upon which we can improve with the following lemma.

Lemma 8. There is a polynomial 𝑝 such that for any DL-Lite𝑅 KB 𝒯 ∪ 𝒜, CQ q(�⃗�), and certain

answer �⃗�, there is a proof in Dsk(𝒯 ∪ 𝒜,q(�⃗�)) of tree size at most 𝑝(|𝒯 |, |q(�⃗�)|).

A direct consequence of Lemmas 5 and 8 is the upper bound in the following theorem.

The lower bound can be shown by a reduction from Boolean query entailment over DL-Lite𝑅

ontologies: for this, we extend the KB in a given query answering problem by axioms that

trivially entail the query, but only yield proofs larger than 𝑛.

Theorem 9. OPx(DL-Lite𝑅,m) is NP-complete.

To obtain tractability, we can restrict the shape of the query. Recall that the Gaifman graph

of a query q is the undirected graph using the terms of q as nodes and has an edge between

terms occurring together in an atom. A query is tree-shaped if its Gaifman graph is a tree.

Theorem 10. Given a DL-Lite𝑅 KB 𝒯 ∪ 𝒜 and a tree-shaped CQ q(�⃗�) with certain answer �⃗�,

one can compute in polynomial time a proof of minimal tree size in Dsk(𝒯 ∪ 𝒜,q(�⃗�)).

The central property used in the proof of Theorem 10 is that for tree size every atom in q(�⃗�)
has a separate proof, even if two atoms are proven in the same way. To avoid this redundancy,

one could think about modifying (Es) slightly:

𝜑(�⃗�)
(E′

s)∃�⃗�.𝜑′(�⃗�)
, provided there exists 𝜎 : �⃗�→ �⃗� s.t. 𝜑′(�⃗�)𝜎 = 𝜑(�⃗�)

Denote the resulting deriver by D′
sk. Using (E′

s), we can derive ∃𝑥, 𝑦.𝐴(𝑥) ∧𝐴(𝑦) from 𝐴(𝑎);
with (Es), the premise would need to be 𝐴(𝑎) ∧ 𝐴(𝑎). However, this modification is already

sufficient to make our problem NP-hard for tree-shaped queries, even without a TBox. The same

problem arises in Dcq (where atoms can be duplicated using (T)), and if we consider ms.

Theorem 11. For tree-shaped CQs, OP′
x(ℒ,mt) is NP-hard. The same holds for OPsk(ℒ,ms) and

OPcq(ℒ,mt).



Table 1
Semantics of (Boolean) MTCQs for I = (ΔI, (ℐ𝑖)𝑖∈Z) and 𝑖 ∈ Z.

𝜑 I, 𝑖 |= 𝜑 iff

CQ 𝜓 ℐ𝑖 |= 𝜓
⊤ true
𝜑 ∧ 𝜓 I, 𝑖 |= 𝜑 and I, 𝑖 |= 𝜓
𝜑 ∨ 𝜓 I, 𝑖 |= 𝜑 or I, 𝑖 |= 𝜓
⊞𝐼𝜑 ∀𝑘 ∈ 𝐼 such that I, 𝑖+ 𝑘 |= 𝜑
⊟𝐼𝜑 ∀𝑘 ∈ 𝐼 such that I, 𝑖− 𝑘 |= 𝜑
𝜑𝒰𝐼𝜓 ∃𝑘 ∈ 𝐼 such that I, 𝑖+𝑘 |= 𝜓 and ∀𝑗 : 0 ≤ 𝑗 < 𝑘 : I, 𝑖+𝑗 |= 𝜑
𝜑𝒮𝐼𝜓 ∃𝑘 ∈ 𝐼 such that I, 𝑖−𝑘 |= 𝜓 and ∀𝑗 : 0 ≤ 𝑗 < 𝑘 : I, 𝑖−𝑗 |= 𝜑

5. Metric Temporal CQs

We now consider proofs for temporal query answering. In this setting, TBox axioms hold

globally, i.e. at all time points, the ABox contains information about the state of the world in

different time intervals, and the query contains (metric) temporal operators.

An interval 𝜄 is a nonempty subset of Z of the form [𝑡1, 𝑡2], where 𝑡1, 𝑡2 ∈ Z ∪ {∞} and

𝑡1 ≤ 𝑡2 (for simplicity, we write [∞, 𝑡2] for (−∞, 𝑡2] and [𝑡1,∞] instead of [𝑡1,∞));2 𝑡1 and

𝑡2 are encoded in binary. A temporal ABox 𝒜 is a finite set of facts of the form 𝐴(𝑎)@𝜄 or

𝑃 (𝑎, 𝑏)@𝜄, where 𝐴(𝑎) and 𝑃 (𝑎, 𝑏) are assertions and 𝜄 is an interval. The fact 𝐴(𝑎)@𝜄 states

that 𝐴(𝑎) holds throughout the interval 𝜄. We denote by tem(𝒜) the multiset of intervals that

occur in𝒜 and |tem(𝒜)| is the sum of their lengths. A temporal interpretation I = (ΔI, (ℐ𝑖)𝑖∈Z),
is a collection of DL interpretations ℐ𝑖 = (ΔI, ·ℐ𝑖), 𝑖 ∈ Z, over ΔI

. I satisfies a TBox axiom 𝛼 if

each ℐ𝑖, 𝑖 ∈ Z, satisfies 𝛼, and it satisfies a temporal assertion 𝛼@𝜄 if each ℐ𝑖, 𝑖 ∈ 𝜄, satisfies 𝛼.

We use the finite-range positive version of metric temporal conjunctive queries (MTCQs)

introduced in [29, 30], combining CQs with MTL operators [31, 32, 33].

Definition 12. An MTCQ is of the form q(�⃗�, 𝑤) = 𝜑(�⃗�)@𝑤, where 𝜑 is built according to

𝜑 ::= 𝜓 | ⊤ | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ⊟𝐼𝜑 | ⊞𝐼𝜑 | 𝜑𝒰𝐼𝜑 | 𝜑𝒮𝐼𝜑,

with 𝑤 an interval variable, 𝜓 a CQ, 𝐼 a finite interval with non-negative endpoints, and �⃗� the

free variables of all CQs in 𝜑. A certain answer to q(�⃗�, 𝑤) over 𝒯 ∪ 𝒜 is a pair (�⃗�, 𝜄) such that

�⃗� ⊆ ind(𝒜), 𝜄 is an interval and, for any 𝑡 ∈ 𝜄 and any model I of 𝒯 ∪ 𝒜, we have I, 𝑡 |= 𝜑(�⃗�)
according to Table 1. We denote this as 𝒯 ∪ 𝒜 |= q(�⃗�, 𝜄).

For temporal extensions of Definitions 3 and 4, we will interpret 𝐴 ⊑ 𝐴′
now as the global

temporal rule 𝐴(𝑥)→ 𝐴′(𝑥) holding in any possible interval.

(∃�⃗�. 𝜑(�⃗�))@𝜄 𝜓(�⃗�, �⃗�)→ ∃�⃗�. 𝜒(�⃗�, �⃗�)
(TMP)

(∃�⃗�.𝜌(�⃗�))@𝜄
Similarly, we need temporal versions of (C) and (E), where all CQs are annotated with the

same interval variable. In addition, we need an inference for disjunctive MTCQS:

2

This allows us to avoid considering special cases in the interval arithmetic below.



𝜑(�⃗�)@𝜄
(DISJ)

(𝜑(�⃗�) ∨ 𝜓(�⃗�))@𝜄
To provide a proof for a temporal query, we need to be able to coalesce, i.e. merge intervals:

∃�⃗�1. 𝜑(�⃗�1)@𝜄1 . . . ∃�⃗�𝑛. 𝜑(�⃗�𝑛)@𝜄𝑛 (COAL)
(∃�⃗�. 𝜑(�⃗�))@

⋃︀𝑛
𝑖=1 𝜄𝑖

where

⋃︀𝑠
𝑖=1 𝜄𝑖 is a single interval and 𝜑(�⃗�1), . . . , 𝜑(�⃗�𝑛) are identical up to variable renaming.

On the other hand, we also need an inverse operation to shrink intervals:

∃�⃗�. 𝜑(�⃗�)@𝜄
(SEP)

∃�⃗�. 𝜑(�⃗�)@𝜄′

where 𝜄′ ⊆ 𝜄. Both inferences are needed to infer all intervals 𝜄 with 𝒯 ∪ 𝒜 |= ∃�⃗�. 𝜑(�⃗�)@𝜄.
Finally, we need inferences for the temporal operators, where for 𝒰[𝑟1,𝑟2] we only consider

the case where 𝑟1 > 0 since 𝜑𝒰[0,𝑟2]𝜓 is equivalent to 𝜓 ∨ (𝜑𝒰[1,𝑟2]𝜓):

𝜑(�⃗�)@[𝑡1, 𝑡2] (⊞)
⊞[𝑟1,𝑟2]𝜑(�⃗�)@[𝑡1 − 𝑟1, 𝑡2 − 𝑟2]

𝜑(�⃗�)@𝜄 𝜓(�⃗�)@𝜄′
(𝒰 )

𝜑(�⃗�)𝒰[𝑟1,𝑟2]𝜓(�⃗�)@(𝜈 − [𝑟1, 𝑟2]) ∩ 𝜄

where 𝜈 := (𝜄 + 1) ∩ 𝜄′ (all time points where 𝜓-s are immediately preceded by 𝜑-s) and

[𝑤1, 𝑤2]− [𝑟1, 𝑟2] := [𝑤1 − 𝑟2, 𝑤2 − 𝑟1], and none of the involved intervals should be empty.

Inferences for ⊟ and 𝒮 are similar. We denote the resulting deriver by Dtcq. A Skolemized

variant Dtsk can be defined similarly with temporalized versions of (MPs), (Cs), and (Es). We

can now lift Theorems 7 and 9 to this setting.

Theorem 13. If CQ answering in ℒ is UCQ-rewritable, then MTCQ answering is also UCQ-

rewritable and OPtx(ℒ,m) is in AC0
in data complexity. Moreover, OPtx(DL-Lite𝑅,m) is NP-

complete. Let D ∈ {Dtcq,Dtsk}. Then, it is NP-complete to decide whether, given a DL-Lite𝑅 TBox

𝒯 , a temporal ABox 𝒜, q(�⃗�, 𝜄) s.t. 𝒯 ∪ 𝒜 |= q(�⃗�, 𝜄), and 𝑛 in unary or binary encoding, there

exists a proof in D(𝒯 ∪ 𝒜,q(�⃗�, 𝜄)) of (tree) size at most 𝑛.

6. Conclusion

We started to explore a framework for proofs of answers to conjunctive queries. In the future,

we want to extend our complexity results to other DLs, and our framework to DLs that cannot

be translated to existential rules. Other interesting research questions include derivers that

combine TBox and query entailment rules, e.g. Dcq plus the rules of the ELK reasoner [34].

Instead of proofs, one could also try to show a canonical model to a user in order to explain

query answers. For explaining missing answers, we also want to continue investigating how to

find (optimal) counter-interpretations or abduction results [12].
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