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Graph convolutional networks (GCNs) have recently been shown to improve the recommendation accuracy of collaborative filtering
algorithms. Their message-passing schema refines user and item node representation by aggregating the informative content from
the neighborhood. However, noisy contributions can flatten the differences among nodes after multiple hops, as not all user-item
interactions are equally important. This impact is mitigated by (i) restricting the exploration depth in the graph and optionally
weighting the neighbor contribution and (ii) going beyond the traditional message propagation at multiple hops. Nevertheless, it
remains unclear how these exploration strategies affect the recommendation of novel and diverse products. This study investigates
the influence of such GCN techniques on novelty and diversity of recommendations. It also assesses and motivates the impact of
the number of exploration hops on the same metrics by analyzing interactions between same-type and different-type nodes, such as
user-user and user-item. Code and datasets are available at: https://github.com/sisinflab/Novelty-Diversity-Graph.

CCS Concepts: • Information systems → Recommender systems; • Computing methodologies→ Neural networks.
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1 INTRODUCTION

In the challenge of bridging the gap between supply and demand, popular companies (e.g., Amazon, Booking) have opted
to integrate recommendation systems into their online platforms. These algorithms attempt to present customers with
personalized lists of preferred products by identifying preference patterns among users and items. Among the existing
recommendation paradigms, collaborative filtering (CF) [9] has long settled as the dominant approach, suggesting that
like-minded users could interact with similar items. CF models optimize an objective score function between users and
items, where both of them are mapped into embeddings and combined linearly (e.g., inner product [21]) or non-linearly
(e.g., neural networks [16] and probabilistic models [24]).

At the same time, the natural representation of users and items in a recommendation system is a bipartite, undirected
graph, where users and items are the nodes and recorded interactions are the edges linking them. For this reason, graph
convolutional networks (GCNs) [20] have gained traction in CF-based recommendation, from pioneering works [38, 42]
to more recent solutions [15, 25, 29].

Graph convolution relies upon the concept of message-passing networks [11] to refine nodes’ representation,
where each ego node embedding is refined by aggregating its’ neighbors node embeddings (i.e., whose contribution
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is called message). The procedure is performed iteratively over multiple hops, therefore exploring deeper and deeper

neighborhoods surrounding the ego node. Differently from previous CF approaches, the adoption of a message-passing
schema helps explicitly incorporate user and item high-order relationships into their embedding representations,
therefore effectively distilling the collaborative signal [38]. Nevertheless, GCN performance has been shown to decrease
as the number of explored hops increases since graph convolution indiscriminately aggregates all contributions from
the neighbor nodes (even unimportant ones), eventually smoothing the differences in the neighborhood [7, 45].

To mitigate this over-smoothing effect, graph-based techniques for collaborative filtering limit the exploration of
neighborhood to three hops [8, 15, 38]. Similar approaches are designed to weight the importance of each neighbor
node on its ego node through attention mechanisms [36], which allows the exploration of even smaller portions of the
neighborhood to reach remarkable results [39].

Conversely, recent works [25, 29] highlight critical limitations in the adoption of graph convolution to explore users’
and items’ neighborhoods. Starting from the idea described in [15], they propose alternative reformulations of GCN
for the recommendation task, providing simplified and lighter versions which go beyond the traditional concept of
multi-hop message-passing. By comparing these latter approaches to the ones described earlier, we might categorize
them all into two families, namely, graph recommendation techniques performing explicit (e.g., [8, 15, 38, 39]) and
implicit (e.g., [25, 29]) message-passing.

Although the literature has widely shown the recommendation accuracy boost of such models to traditional (i.e., non-
graph) CF baselines, their ability to produce novel and diverse recommendation lists [34, 35] remains poorly investigated.
While the topic of multi-objective recommendation has been addressed only recently by few works in graph CF [32, 44],
modern recommender systems are more and more required to reach a sufficient trade-off between accurate and
novel/diverse recommendations [23, 31, 41], as a renewed need from both user’s and business’s perspectives [1, 2, 22].

This paper seeks to understand how and why the neighborhood exploration strategy and (optionally) depth may
influence novelty and diversity recommendation metrics in graph collaborative filtering. To this aim, we run extensive
experiments by training and evaluating six state-of-the-art graph CF models on three popular recommendation datasets.

Our contributions are threefold: (i) to the best of our knowledge, no previous work has evaluated approaches
from the two recognized graph recommendation families (i.e., explicit and implicit message-passing) on a grid of
accuracy/novelty/diversity recommendation metrics, (ii) to provide a fair comparison, we train all explicit message-
passing models exploring the whole hop range 1-4, which also allows examining the accuracy/novelty/diversity trade-off
on the neighborhood size, and (iii) we propose a simple reformulation of the explicit message-passing schema where
same-type node connections (e.g., user-user) and different-type node connections (e.g., user-item) are formally
highlighted, in an effort to unveil their influence on the metrics’ trade-off.

2 RELATEDWORK

This section provides an overview of graph collaborative filtering and novelty/diversity in recommendation. The scope
is to underline the contributions of our work to the existing literature.

2.1 Graph Collaborative Filtering

After pioneer works [33, 42] adopting vanilla GCN [20] for recommendation, other approaches propose finer neigh-
borhood explorations built upon it. Wang et al. [38] aggregate the messages from the neighborhood considering the
similarity between each neighbor node and its ego node, while the works in [8, 15, 18] improve accuracy when removing
non-linearities and feature transformations. As neighbor nodes are not equally important to their ego node, noisy
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messages tend to over-smooth the existing node differences after multiple hops [7, 45]. To tackle the issue, messages
are propagated to a maximum of three hops [15, 38], optionally leveraging attention mechanisms [36] to learn the
importance of users’ intents on the interacted items [39, 40]. The above-cited works leverage what we might define
as an explicit message aggregation, meaning that it is always possible to derive a formulation where user and item
node embeddings are explicitly updated through their multi-hop neighbors. Conversely, following a different rationale,
more recent approaches take a step further and try to rethink the message-passing schema by allowing theoretically
unlimited propagation hops [25] and revisiting the concept of graph convolution and node embedding smoothness
through the lens of graph signal processing [29]. To distinguish such techniques from the explicit ones, in this work,
we introduce the concept of implicit message-passing, where message aggregation is replaced and improved through
ad-hoc mathematical proxies.
Contribution 1. We study the influence of explicit and implicit message-passing on accuracy/novelty/diversity recommen-

dation trade-off. Additionally, focusing on explicit message-passing, we propose a simple mathematical reformulation of the

message aggregation, highlighting same- and different-type node explorations (see later).

2.2 Novelty and Diversity in Recommendation

User experience is becoming crucial on recommendation platforms [17, 19, 30] as the suggestion of interesting lists of
items satisfies users and entices them to remain loyal to the platform, thus increasing profits [37]. A good user experience
requires the recommended items to be nontrivial, as diverse as possible, and possibly unexpected [10, 30]. However,
designing dedicated models is particularly challenging due to the inherent difficulty of evaluating them without a user
study. For this reason, researchers have dedicated a considerable effort to the beyond-accuracy dimensions over the
past two decades [28, 35, 43]. While the search for the accuracy/novelty/diversity trade-off has gained momentum in
recommendation [2, 5, 23, 31, 41], to the best of our knowledge, only two studies investigate novelty and diversity
dimensions in the field of graph collaborative filtering [32, 44]. They focus on identifying the accuracy/diversity trade-off
by proposing specific models that could achieve competitive performance. However, they do not deepen into analyzing
the influence of neighborhood exploration on the highlighted dimensions.
Contribution 2. On the contrary, in this work, we assess the state-of-the-art, most accurate models for graph recommen-

dation and inspect how they behave on novelty and diversity, exploring the potential motivations with a focus on their

different neighborhood exploration strategies.

3 REFORMULATING EXPLICIT MESSAGE-PASSING

Starting from the novel model classification for graph collaborative filtering outlined in this work (i.e., neighborhood
exploration approaches leveraging explicit or implicit message-passing), in this section we propose a simple (but
useful) reformulation for the former family where same- and different-type node interactions (e.g., user-user and
user-item, respectively) are formally highlighted.

3.1 Preliminaries

Let U = {𝑢1, 𝑢2, . . . , 𝑢𝑁 } and I = {𝑖1, 𝑖2, . . . , 𝑖𝑀 } be the sets of users and items. Starting from U and I, we consider
the bipartite and undirected graph connecting pairs of nodes (i.e., users and items) with an existing interaction among
them. User and item node features are the embeddings e𝑢 ∈ R𝑑 ,∀𝑢 ∈ U and e𝑖 ∈ R𝑑 ,∀𝑖 ∈ I, respectively.
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Fig. 1. User and item neighborhood exploration after (a) 2 and (b) 3 hops. Contributions to the ego node update are highlighted
through dashed ovals. Edge direction indicates the message propagation from neighbor to ego nodes.

3.2 Traditional message-passing

Let 𝑢 and 𝑖 be the nodes for the user and the item to update (ego nodes), and let N(𝑢) and N(𝑖) be the sets of nodes at
one hop from 𝑢 and 𝑖 , respectively (neighbor nodes). The schema aggregates the embeddings from the neighborhood
(messages) to refine the ego nodes:

e(1)𝑢 = 𝜔

({
e(0)
𝑖′ ,∀𝑖 ′ ∈ N (𝑢)

})
, e(1)

𝑖
= 𝜔

({
e(0)
𝑢′ ,∀𝑢 ′ ∈ N (𝑖)

})
(1)

where e(1)𝑢 and e(1)
𝑖

are the refined embedding versions of user 𝑢 and item 𝑖 after one hop, 𝜔 (·) is the aggregation
function (e.g., the summation), while e(0)

𝑢′ = e𝑢′ and e(0)
𝑖′ = e𝑖′ . To explore deeper and deeper neighborhoods of the ego

nodes, aggregation is usually iterated. After two hops, the embeddings of user 𝑢 and item 𝑖 are:

e(2)𝑢 = 𝜔

({
e(1)
𝑖′ ,∀𝑖 ′ ∈ N (𝑢)

})
, e(2)

𝑖
= 𝜔

({
e(1)
𝑢′ ,∀𝑢 ′ ∈ N (𝑖)

})
(2)

Thus, the general message-passing formulation after 𝑙 hops is:

e(𝑙)𝑢 = 𝜔

({
e(𝑙−1)
𝑖′ ,∀𝑖 ′ ∈ N (𝑢)

})
, e(𝑙)

𝑖
= 𝜔

({
e(𝑙−1)
𝑢′ ,∀𝑢 ′ ∈ N (𝑖)

})
(3)

3.3 Proposed reformulation

The two-hop node update in Equation (2) is further expanded through the one-hop node update in Equation (1):

e(2)𝑢 = 𝜔

({
𝜔

({
e(0)
𝑢′′ ,∀𝑢 ′′ ∈ N (𝑖 ′) \ {𝑢}︸                  ︷︷                  ︸

2-hop

})
,∀𝑖 ′ ∈ N (𝑢)︸        ︷︷        ︸

1-hop

})
e(2)
𝑖

= 𝜔

({
𝜔

({
e(0)
𝑖′′ ,∀𝑖

′′ ∈ N (𝑢 ′) \ {𝑖}︸                 ︷︷                 ︸
2-hop

})
,∀𝑢 ′ ∈ N (𝑖)︸        ︷︷        ︸

1-hop

}) (4)

where set differences are used to avoid node duplicates. After two hops, the node embeddings of user 𝑢 and item 𝑖 get
the contributions of those users 𝑢 ′′ and items 𝑖 ′′ for whom there exists a user-item-user path connecting 𝑢 with 𝑢 ′′, and
an item-user-item path connecting 𝑖 with 𝑖 ′′, respectively (Figure 1a). Such paths link same-type nodes. In a similar
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manner, let us apply the general formula from Equation (3) to the three-hop node update:

e(3)𝑢 = 𝜔

({
e(2)
𝑖′ ,∀𝑖 ′ ∈ N (𝑢)

})
, e(3)

𝑖
= 𝜔

({
e(2)
𝑢′ ,∀𝑢 ′ ∈ N (𝑖)

})
(5)

which we expand through Equation (4):

e(3)𝑢 = 𝜔

({
𝜔

({
𝜔

({
e(0)
𝑖′′′ ,∀𝑖

′′′ ∈ N (𝑢 ′′) \ {𝑖 ′′}︸                     ︷︷                     ︸
3-hop

})
,

∀𝑢 ′′ ∈ N (𝑖 ′) \ {𝑢 ′′}︸                    ︷︷                    ︸
2-hop

})
,∀𝑖 ′ ∈ N (𝑢)︸        ︷︷        ︸

1-hop

})
e(3)
𝑖

= 𝜔

({
𝜔

({
𝜔

({
e(0)
𝑢′′′ ,∀𝑢 ′′′ ∈ N (𝑖 ′′) \ {𝑢 ′′}︸                      ︷︷                      ︸

3-hop

})
,

∀𝑖 ′′ ∈ N (𝑢 ′) \ {𝑖 ′′}︸                   ︷︷                   ︸
2-hop

})
,∀𝑢 ′ ∈ N (𝑖)︸        ︷︷        ︸

1-hop

})
(6)

After three hops, the node embeddings of user 𝑢 and item 𝑖 get the contributions of those items 𝑖 ′′′ and users 𝑢 ′′′ for
whom there exists a user-item-user-item path connecting 𝑢 with 𝑖 ′′′, and an item-user-item-user path connecting 𝑖 with
𝑢 ′′′, respectively (Figure 1b). In this case, such paths link different-type nodes.

This reformulation outlines two neighborhood exploration types, propagatingmessages through same- and different-
type nodes after an even and an odd number of hops, respectively. While previous works assess recommendation
performance when indistinctly increasing the hop numbers, we provide a finer evaluation based on the type of the
explored nodes. In the next sections, we will count hops following the introduced categorization. For example, same-type
node explorations after 1 and 2 hops refer to the paths user-item-user and user-item-user-item-user, respectively, while
different-type node explorations after 1 and 2 hops refer to the paths user-item and user-item-user-item, respectively.

4 EXPERIMENTS AND DISCUSSION

In the following, we describe datasets, baselines, reproducibility details, evaluation protocol, and results of our work.

4.1 Experimental Setup

Datasets. We adopt Movielens-1M [12], Amazon Digital Music [26], and Epinions [27]. Following a similar approach
to [4], these datasets are binarized by retaining interactions with a score greater than 3 (Epinions already has an implicit
version) and filtered through the 𝑝-core to avoid the cold-start effect [13, 14] which is out of the scope of this paper.
Movielens-1M counts 5,915 users, 2,753 items, and 570,622 interactions, Amazon Digital Music counts 8,328 users, 6,275
items, and 99,400 interactions, and Epinions counts 14,341 users, 13,145 items, and 269,170 interactions. All datasets
statistics are fully reported in Table 1.
Baselines.We evaluate graph recommendation models adopting explicit and implicit message propagation.
Explicit message-passing

• Neural graph collaborative filtering (NGCF) [38] proposes to refine users’ and items’ collaborative embeddings
by using a GCN-like model which explores the neighborhood and the inter-dependencies among ego and neighbor
nodes.



6 Anelli et al.

Table 1. Statistics of the tested datasets.

Datasets #Users #Items #Interactions Sparsity

Movielens-1M 5,915 2,753 570,622 0.9650
Amazon Digital Music 8,328 6,275 99,400 0.9981

Epinions 14,341 13,145 269,170 0.9986

• Light graph convolutional network (LightGCN) [15] lightens and improves the NGCF architecture by removing
the embedding projections and non-linear activations in each propagation layer.

• Disentangled graph collaborative filtering (DGCF) [39] weights the importance of neighbor nodes on the ego
node by disentangling the intents involved in each user/item interaction for the sake of explainability.

• Linear residual graph convolutional collaborative filtering (LR-GCCF) [8] improves the LightGCN approach
by introducing a novel residual block in the convolutional layer for the user-item preference prediction.

Implicit message-passing

• Ultra simplification of graph convolutional networks (UltraGCN) [25] introduces additional objective function
components to approximate infinite propagation layers and learn useful item-item connections.

• Graph filter based collaborative filtering (GFCF) [29] leverages graph signal processing to formulate a closed-
form user-item preference prediction based upon the bipartite graph.

Reproducibility.Datasets are split into train/validation/test with the 80/10/10 hold-out. Models are trained by searching
the best hyperparameters as in [6] and setting search spaces according to the original works while fixing the number
of epochs to 400 and batch size to 1024. Our implementation is based upon the Elliot framework for reproducible
recommender systems [3]. To foster the future reproduction of our work, datasets, codes, and configuration files are
made accessible to a public GitHub repository1.
Evaluation. First, we use the recall (𝑅𝑒𝑐𝑎𝑙𝑙@𝑘) and the normalized discounted cumulative gain (𝑛𝐷𝐶𝐺@𝑘) to measure
the recommendationAccuracy of the baselines. Then, following [34, 35], we select the expected popularity complement
(𝐸𝑃𝐶@𝑘) and the expected free discovery (𝐸𝐹𝐷@𝑘) as Novelty metrics [35], along with the 1’s complement of the
Gini index (𝐺𝑖𝑛𝑖@𝑘) and the Shannon entropy (𝑆𝐸@𝑘) as Diversity metrics [28]. Both the 𝐸𝑃𝐶@𝑘 and the 𝐸𝐹𝐷@𝑘

account for long-tail items and measure the expected number of recommended unknown and known items, which are
also relevant, respectively. The𝐺𝑖𝑛𝑖@𝑘 and the 𝑆𝐸@𝑘 calculate how unequally a recommender system shows different
items to users. We set the 𝑅𝑒𝑐𝑎𝑙𝑙@20 as validation metric to follow the original papers. For each recommendation
metric, higher values stand for better performance.

4.2 Results and Discussion

This section shows the recommendation performance of the tested baselines from a general and a finer evaluation of
the accuracy/novelty/diversity trade-offs. All reported results refer to the top-20 recommendation lists.
Overall Recommendation Performance. Table 2 depicts recommendation performance on accuracy, novelty, and
diversity, when comparing explicit to implicit message-passing graph approaches in their best configuration.

Coherently with the literature, DGCF and LR-GCCF are steadily the best or the second-to-best models on accuracy
(e.g., DGCF reaches the second-to-best 𝑅𝑒𝑐𝑎𝑙𝑙 on Amazon Digital Music, while LR-GCCF obtains the best 𝑛𝐷𝐶𝐺 on
Movielens-1M). Approaches with implicit message aggregation (i.e., UltraGCN and GFCF) still compete with the

1https://github.com/sisinflab/Novelty-Diversity-Graph.

https://github.com/sisinflab/Novelty-Diversity-Graph
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Table 2. Overall recommendation performance on accuracy, novelty, and diversity metrics for top-20 recommendation lists, when
comparing explicit to implicit message propagation. Bold and underline stand for best and second-to-best values, respectively.

Models Movielens-1M Amazon Digital Music Epinions

Accuracy Novelty Diversity Accuracy Novelty Diversity Accuracy Novelty Diversity

Recall nDCG EPC EFD Gini SE Recall nDCG EPC EFD Gini SE Recall nDCG EPC EFD Gini SE

MostPop 0.1380 0.1099 0.0473 0.5365 0.0105 5.2156 0.0319 0.0154 0.0029 0.0263 0.0031 4.3832 0.0467 0.0224 0.0054 0.0489 0.0015 4.4358
Random 0.0077 0.0060 0.0036 0.0414 0.9105 11.4085 0.0017 0.0007 0.0002 0.0021 0.8929 12.5890 0.0015 0.0006 0.0002 0.0024 0.8789 13.6486

Explicit message-passing

NGCF 0.2535 0.1985 0.0929 1.0214 0.1479 8.9930 0.1127 0.0606 0.0109 0.1270 0.4130 11.6953 0.0792 0.0394 0.0096 0.1079 0.2107 11.6255
LightGCN 0.2712 0.2167 0.1013 1.1129 0.1465 9.0079 0.1189 0.0628 0.0113 0.1310 0.3148 11.2940 0.0914 0.0466 0.0115 0.1217 0.0759 9.7898
DGCF 0.2791 0.2231 0.1047 1.1490 0.1462 9.0111 0.1264 0.0674 0.0123 0.1400 0.2483 10.8904 0.1046 0.0536 0.0132 0.1407 0.0599 9.6502
LR-GCCF 0.2876 0.2274 0.1056 1.1589 0.1245 8.7438 0.1246 0.0664 0.0119 0.1388 0.4037 11.6542 0.0990 0.0504 0.0124 0.1377 0.1367 10.8977

Implicit message-passing

UltraGCN 0.2540 0.2045 0.0901 0.9921 0.0766 8.0334 0.1256 0.0675 0.0123 0.1382 0.1737 10.0458 0.1041 0.0541 0.0131 0.1397 0.0586 9.0948
GFCF 0.1685 0.1398 0.0583 0.6577 0.0117 5.4064 0.1287 0.0744 0.0137 0.1544 0.2392 10.4923 0.0946 0.0496 0.0115 0.1158 0.0277 7.5926

other baselines on accuracy (e.g., GFCF is the best model on Amazon Digital Music for the 𝑅𝑒𝑐𝑎𝑙𝑙 and the 𝑛𝐷𝐶𝐺 , and
UltraGCN is the best technique on Epinions for the 𝑛𝐷𝐶𝐺).

As for the accuracy/novelty/diversity trade-off, we see that, independently of the adoption of message-passing,
accurate approaches can also produce novel recommendations (e.g., LR-GCCF and DGCF are the best and second-
to-best approaches for accuracy and novelty on Movielens-1M, and GFCF and UltraGCN provide superior accuracy
performance on Amazon Digital Music and Epinions, respectively, with GFCF outperforming all other baselines on
novelty, and UltraGCN getting slightly lower 𝐸𝑃𝐶 and 𝐸𝐹𝐷 values than DGCF). Unexpectedly, NGCF settles as the
approach producing the most diverse lists of recommended items on all datasets (i.e., see 𝐺𝑖𝑛𝑖 and 𝑆𝐸) but cannot
cope with the other baselines in terms of 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑛𝐷𝐶𝐺 (similarly to Random). Other graph models with explicit

message-passing (especially DGCF and LR-GCCF) are placed in the best accuracy/diversity trade-off spot, as they are
often the second-to-best approaches on diversity, with limited observable drops in the accuracy. Contrarily, techniques
with implicit message aggregation always show the lowest diversity.
Observation 1.While the accuracy/novelty trade-off does not depend on the explicit/implicit message-passing, the accu-

racy/diversity trade-off is preserved only when explicitly propagating messages, at the expense of (limited) recommendation

accuracy drops.

A finer trade-offs evaluation. Figure 2 shows the accuracy/novelty/diversity trade-off on Amazon Digital Music
by varying the message-passing strategy (i.e., explicit and implicit) and neighbor exploration depth only for the
former case. Specifically, we use the reformulation from Section 3.3 to separate explicit message propagation results
into same- and different-type node explorations at 1/2 hops.

We confirm that, while UltraGCN and GFCF can compete well on the accuracy/novelty trade-off with the other
baselines (whatever the explored number of hops and node type), the opposite occurs on the accuracy/diversity trade-off.
Indeed, higher accuracy values for UltraGCN and GFCF are obtained at the expense of significant drops in their diversity,
even compared to message propagation at 1 hop (e.g., DGCF surpasses them on diversity at the expense of a slightly
lower accuracy in the same-node setting).

As for the influence of same- and different-type node explorations, wider explorations of the neighborhood almost
always lead to improved accuracy/novelty and accuracy/diversity performance, independently of the explored node
types (apart from the same-type settings for NGCF on the 𝑅𝑒𝑐𝑎𝑙𝑙 and LR-GCCF on the 𝑅𝑒𝑐𝑎𝑙𝑙 and the 𝐸𝑃𝐶). Noticeably,
the exploration of 1 hop in the same-type node setting leads to a better trade-off in accuracy/novelty/diversity than
the exploration of 2 hops in the different-node setting (e.g., LightGCN increases the 𝑅𝑒𝑐𝑎𝑙𝑙 and the 𝐸𝑃𝐶 without a
significant variation of 𝐺𝑖𝑛𝑖 , and DGCF slightly decreases the 𝑅𝑒𝑐𝑎𝑙𝑙 and the 𝐸𝑃𝐶 , but improves 𝐺𝑖𝑛𝑖).
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Fig. 2. Accuracy/Novelty (a) and Accuracy/Diversity (b) trade-offs of graph models with explicit (i.e., filled bar plots) and implicit
message-passing (i.e., patterned bar plots) on Amazon Digital Music for top-20 recommendation lists. As for explicit message-passing,
results are further categorized into different- and same-node type explorations (i.e., the leftmost and central tabs in each plot,
respectively), when varying the number of hops from 1 to 2. Accuracy, novelty, and diversity are assessed through Recall (in teal blue),
EPC (in lime green), and Gini (in melon), respectively. Best viewed in color.

Observation 2. To confirm observation 1, explicit message propagation (even at 1 hop) can reach a better accuracy/diversity

trade-off than implicit propagation; then, same-type node explorations may lead to improved accuracy/novelty and accu-

racy/diversity trade-offs.

5 CONCLUSION AND FUTUREWORK

This work studies the accuracy/novelty/diversity trade-off in graph collaborative filtering for different neighborhood
exploration strategies (i.e., explicit and implicit message-passing) and depths (i.e., number of explored hops). Results for
six state-of-the-art graph models on three e-commerce datasets reveal that the accuracy/diversity trade-off is reachable
only when explicitly propagating messages. Thanks to a message-passing reformulation, we show that user-user and
item-item explorations may improve accuracy/diversity/novelty trade-off. We plan to expand the evaluation to recent
graph models which optimize diversity and better investigate the same-type node setting.
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