
Processing SPARQL TOP-k Queries Online with Web
Preemption
Julien Aimonier-Davat1, Hala Skaf-Molli1 and Pascal Molli1

1 LS2N, University of Nantes, 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex3, France

Abstract
Processing top-𝑘 queries on public online SPARQL endpoints often runs into fair use policy quotas
and does not complete. Indeed, existing endpoints mainly follow the traditional materialize-and-sort
strategy. Although restricted SPARQL servers ensure the termination of top-𝑘 queries without quotas
enforcement, they follow the materialize-and-sort approach, resulting in high data transfer and poor
performance. In this paper, we propose to extend the Web preemption model with a preemptable
partial top-𝑘 operator. This operator drastically reduces data transfer and significantly improves query
execution time. Experimental results show a reduction in data transfer by a factor of 100 and a reduction
of up to 39% in Wikidata query execution time.

Keywords
Semantic Web, SPARQL, Web Preemption, top-𝑘 Queries

1. Introduction

Context and motivation. In knowledge graphs, top-𝑘 queries allow users to search for the
largest cities in the world, the longest rivers, the highest mountains, the oldest software, etc [1].
However, processing top-𝑘 queries on public SPARQL endpoints is challenging, mainly due to
the fair-use policies of public endpoints that stop queries before termination [2, 3]. For instance,
a query that just looks for the 10 oldest people on Wikidata runs out of time (cf. figure 1a). Such
a problem is not restricted to Wikidata. The query that returns the ten first classes ordered by
their name timeout both on Wikidata and DBpedia (cf. figure 1b).

Why are top-𝑘 queries interrupted by quotas? Mainly because SPARQL engines follow the
materialize-and-sort approach to answer top-𝑘 queries [4], i.e. engines first materialize all the
query results, then sort them according to the ORDER-BY clause, and finally keep and return
the first 𝑘 results. To return the 10 oldest people on Wikidata, the query depicted in Figure 1a
materializes more than 2,8M people.

Related works. Many techniques have been proposed to provide early termination or early
pruning when processing top-𝑘 queries [1]. In SPARQL, thanks to sorted access to data, a smart

QuWeDa’22: 6th Workshop on Storing, Querying and Benchmarking Knowledge Graphs, October 23–24, 2022,
Hangzhou, China
Envelope-Open julien.aimonier-davat@univ-nantes.fr (J. Aimonier-Davat); hala.skaf@univ-nantes.fr (H. Skaf-Molli);
pascal.molli@univ-nantes.fr (P. Molli)
Orcid 0000-0001-6707-0204 (J. Aimonier-Davat); 0000-0003-1062-6659 (H. Skaf-Molli); 0000-0001-8048-273X (P. Molli)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:julien.aimonier-davat@univ-nantes.fr
mailto:hala.skaf@univ-nantes.fr
mailto:pascal.molli@univ-nantes.fr
https://orcid.org/0000-0001-6707-0204
https://orcid.org/0000-0003-1062-6659
https://orcid.org/0000-0001-8048-273X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

SELECT
? humanLabel
(YEAR (? death) − YEAR (? b i r t h) AS ? l i f e s p a n)

WHERE {
?human wdt : P31 / wdt : P279 ∗ wd : Q5 .
?human wdt : P569 ? b i r t h .
?human wdt : P570 ? death .
SERVICE w ik i ba s e : l a b e l {

bd : s e r v i c ePa ram wik i ba s e : l anguage ” en ” .
}

} ORDER BY DESC (? l i f e s p a n) LIMIT 10

(a) TOP 10 oldest people

SELECT DISTINCT ? c ? l
WHERE {

? s a ? c .
? s r d f s : l a b e l ? l

} ORDER BY ? l LIMIT 10

(b) TOP 10 classes

Figure 1: top-𝑘 queries over RDF knowledge graphs

engine can decide to stop the query execution earlier because the remaining mappings are
guaranteed not to be part of the top 𝑘 results [4, 5]. Although early termination or early pruning
can drastically improve execution time, none of them guarantee that a query will terminate
before quotas on a public SPARQL endpoint.

To ensure termination of top-𝑘 queries, existing approaches rely on servers that ensure a
fair-use policy without quotas, i.e. fairness is guaranteed by a restricted SPARQL interface.
Restricted SPARQL servers such as TPF [6], Web preemption [7] or SmartKG [8] only support
a restricted set of SPARQL operators that do not impact the responsiveness of the restricted
server. Other SPARQL operators are supported by the client. To the best of our knowledge,
efficient evaluation of top-𝑘 queries has not been studied in the context of restricted SPARQL
servers. top-𝑘 queries are evaluated following the traditional materialize-and-sort approach,
where materialization is done on the client-side. Even if queries are guaranteed to terminate,
data transfer and execution time can be prohibitive.

The research question is to study how a restricted server can provide early termination or
early pruning while ensuring the fairness of the server and the termination of top-𝑘 queries.

Approach and Contributions. In this paper, we propose to extend Web preemption with
a new preemptable top-𝑘 operator that ensures termination of top-𝑘 queries, while enabling
the use of early pruning techniques. The contributions of the paper are the following: (1) We
propose a preemptable top-𝑘 operator whose overhead does not depend on 𝑘, i.e. the server
is fair whatever the value of the LIMIT clause. (2) We implement the top-𝑘 operators as an
extension of the preemptable SaGe server. (3) The experimental results show that the new
operators can improve query execution time by up to 60% and divide the data transfer by 100.

The remainder of this paper is organized as follows. Section 2 introduces SPARQL top-𝑘
queries and briefly recalls the definitions related to our proposal. Section 3 presents the
approach for processing top-𝑘 queries using preemptable top-𝑘 operators. Section 4 presents
our experimental results. Section 5 summarizes related works. Finally, conclusions and future
work are outlined in Section 6.

: a1 : c on f e r en c e :WWW . : a3 : c on f e r en c e : ISWC . : a5 : c on f e r en c e : ESWC .
: a1 : p u b l i c a t i o n 2021 . : a3 : p u b l i c a t i o n 2022 . : a5 : p u b l i c a t i o n 2021 .
: a1 : c i t a t i o n s 20 . : a3 : c i t a t i o n s 15 . : a5 : c i t a t i o n s 10 .

: a2 : c on f e r en c e : ISWC . : a4 : c on f e r en c e : ISWC . : a6 : c on f e r en c e : ESWC .
: a2 : p u b l i c a t i o n 2021 . : a4 : p u b l i c a t i o n 2022 . : a6 : p u b l i c a t i o n 2022 .
: a2 : c i t a t i o n s 10 . : a4 : c i t a t i o n s 12 . : a6 : c i t a t i o n s 2 .

:WWW : rank 1 . : ISWC : rank 2 . : ESWC : rank 3 .

(a) RDF Graph 𝒢1

SELECT ? a r t i c l e WHERE {
? con f : rank ? rank . #1
? a r t i c l e : c on f e r en c e ? con f . #2
? a r t i c l e : p u b l i c a t i o n ? data . #3
? a r t c i l e : c i t a t i o n s ? c i t a t i o n s . #4

} ORDER BY ? rank , DESC (? c i t a t i o n s) LIMIT 2

(b) SPARQL query 𝑄1

Figure 2: A top-𝑘-join query over an RDF knowledge graph

2. Preliminaries and backgrounds

In this section, we briefly recall the definitions related to our proposal. We follow the notations
from [9, 10] and consider three disjoint sets 𝐼 (IRIs), 𝐿 (literals) and 𝐵 (blank nodes). We denote
the set 𝑇 of RDF terms as 𝐼 ∪ 𝐿 ∪ 𝐵. An RDF triple (𝑠, 𝑝, 𝑜) ∈ (𝐼 ∪ 𝐵) × 𝐼 × 𝑇 connects a subject 𝑠
through a predicate 𝑝 to an object 𝑜. An RDF graph 𝒢 is a finite set of RDF triples. We assume
the existence of an infinite set 𝑉 of variables, disjoint from the previous sets. A mapping 𝜇 from
𝑉 to 𝑇 is a partial function 𝜇 ∶ 𝑉 → 𝑇. The domain of 𝜇, denoted by 𝑑𝑜𝑚(𝜇), is the subset of 𝑉
where 𝜇 is defined. A SPARQL graph pattern expression 𝑃 is defined recursively as follows:

1. A tuple from (𝑇 ∪ 𝑉) × (𝐼 ∪ 𝑉) × (𝑇 ∪ 𝑉) is a triple graph pattern.
2. If 𝑃1 and 𝑃2 are graph patterns, then expressions (𝑃1 AND 𝑃2), (𝑃1 OPT 𝑃2) and (𝑃1 UNION

𝑃2) are graph patterns.
3. If 𝑃 is a graph pattern and 𝑅 is a SPARQL built-in condition, then the expression (𝑃 FILTER

𝑅) is a graph pattern.
The evaluation of a graph pattern 𝑃 over an RDF graph 𝒢, denoted by J𝑃K𝒢, produces a multiset
Ω of solution mappings.

2.1. TOP-k Queries

top-𝑘 queries return the top 𝑘 results according to a user-specified ranking (scoring) function.
top-𝑘 SPARQL queries can be expressed using ORDER BY and LIMIT clauses that first impose
an order on the result set and then limit the number of results. Following [4], the ORDER BY
clause can be formulated as a ranking function ℱ combining several ranking criteria {𝑏1, … , 𝑏𝑛}.
Given a graph pattern 𝑃, a ranking criterion 𝑏(?𝑥1, … , ?𝑥𝑚) is a function defined over a set
of 𝑚 variables, where ∀𝑖∈[1,𝑚] ∶ ?𝑥𝑖 ∈ 𝑣𝑎𝑟(𝑃). The evaluation of a ranking criterion 𝑏 on a
mapping 𝜇, denoted by 𝑏[𝜇], is the substitution of all variables ?𝑥𝑖 ∈ 𝑏 by the corresponding
values from the mapping, i.e. 𝜇(?𝑥𝑖). Given two mappings 𝜇1 and 𝜇2, 𝜇1 > 𝜇2 according to a

ranking function ℱ ({𝑏1, … , 𝑏𝑛}), denoted by ℱ [𝜇1] > ℱ [𝜇2], iff ∃𝑖∈[1,𝑛] ∶ 𝑏𝑖[𝜇1] > 𝑏𝑖[𝜇2] and
∀𝑗∈[1,𝑖[∶ 𝑏𝑗[𝜇1] = 𝑏𝑗[𝜇2].

In order to evaluate the ranking function ℱ, all the variables in 𝑣𝑎𝑟(𝑃) that contribute in the
evaluation of ℱ must be bounded. Since OPTIONAL and UNION clauses can introduce unbound
variables, we assume all the variables in 𝑣𝑎𝑟(𝑃) to be certain variables as defined in [11], i.e.
variables that are certainly bounded for every mapping produced by 𝑃. The relaxation of the
certain variables constraint is part of the future work.

2.2. Web Preemption and TOP-k Queries

Web preemption [7] is the capacity of a Web server to suspend a running SPARQL query after a
fixed quantum of time and resume the following waiting query. When suspending a query 𝑄, a
preemptable server saves the internal state of all operators of 𝑄 in a saved plan 𝑄𝑠, which is
sent to the client. The client can continue the execution of 𝑄 by sending 𝑄𝑠 back to the server.
When reading 𝑄𝑠, the server restarts query 𝑄 from where it has been stopped. As a preemptable
server can restart queries from where they have been stopped and makes a progress at each
quantum, it eventually delivers complete results after a bounded number of quanta.

However, Web preemption comes with overheads. The time of the suspend and resume
operations represents the overhead in time of a preemptable server. The size of 𝑄𝑠 represents
the overhead in space of a preemptable server and may be transferred over the network each
time the server suspends a query. To be tractable, a preemptable server has to minimize these
overheads. For this purpose, a preemptable server only implements SPARQL operators that
can be saved and resumed in bounded time, i.e. preemptable operators. Other operators are
considered as not preemptable and implemented on the client. For instance, the SCAN, JOIN,
UNION, LIMIT and FILTER operators just need to manage one mapping at a time, consequently,
they can be saved and resumed in bounded time. On the other hand, some SPARQL operators
require to materialize mappings, e.g. the ORDER BY operator requires materializing mappings
before sorting, while the GROUP BY operator requires materializing the group keys (see [12]).
As materialization of mappings requires space resources that depends on the size of the data,
they cannot be saved in bounded time.

Figure 3 illustrates how Web preemption processes the top-𝑘 query 𝑄1 over the RDF graph
𝒢1, both depicted in Figure 2. First, the client decomposes the query 𝑄1 into 𝑄′

1 so that only
preemptable operators are sent to the preemptable server, i.e. the ORDER BY and LIMIT clauses
are removed from 𝑄1. Let us suppose that query 𝑄′

1 requires 3 quanta to complete. At the end
of each quantum 𝑞𝑖, the client receives the mappings 𝜔𝑖 and asks for the following results by
sending the saved plan 𝑄𝑠 of 𝑄′

1 back to the server. Once all mappings are obtained, the client
sorts them according to the ranking function defined by the ORDER BY clause, and apply the
slice operator to keep only the top 2 mappings.

Although top-𝑘 queries are expected to transfer only 𝑘 results, in the case of Web preemp-
tion, because the ORDER BY operator is implemented on the client-side, all mappings will be
transferred anyway Moreover, this execution strategy prevents us from taking advantage of
possible optimizations when evaluating SPARQL top-𝑘 queries, such as early termination or
early pruning of partial mappings [1, 13]. To overcome this issue, one solution could be to apply
state-of-art solutions on the client-side. However, this solution requires computing joins on the

quantum Preemptable Server

Client
SELECT ?a WHERE {
? c : rank ? r .
?a : c on f e r en c e ? c .
?a : p u b l i c a t i o n ?d .
?a : c i t a t i o n s ? c s . }

ORDER BY ? r , DESC (? c s) LIMIT 2

q1
𝜇1 = {a: a1, r: 1, cs: 20}
𝜇2 = {a: a2, r: 2, cs: 10}
𝜔1 = ⟨𝜇1, 𝜇2⟩

Ω = Ω ∪ 𝜔1

q2
𝜇3 = {a: a3, r: 2, cs: 15}
𝜇4 = {a: a4, r: 2, cs: 12}
𝜔2 = ⟨𝜇3, 𝜇4⟩

Ω = Ω ∪ 𝜔2

q3
𝜇5 = {a: a5, r: 3, cs: 10}
𝜇6 = {a: a6, r: 3, cs: 2}
𝜔3 = ⟨𝜇5, 𝜇6⟩

Ω = Ω ∪ 𝜔3

Ω = 𝑂𝑟𝑑𝑒𝑟𝐵𝑦(Ω, ⟨?𝑟 , 𝐷𝐸𝑆𝐶(?𝑐𝑠)⟩)
Ω = 𝑆𝑙𝑖𝑐𝑒(Ω, 2) = ⟨𝜇1, 𝜇3⟩

𝜔1, 𝑄𝑠

𝑄𝑠

𝜔2, 𝑄𝑠

𝑄𝑠

𝜔3, 𝑛𝑖𝑙

Q1 ’ : SELECT ? a ? r ? c s WHERE {
? c : rank ? r .
? a : c on f e r en c e ? c .
? a : p u b l i c a t i o n ?d .
? a : c i t a t i o n s ? c s . }

Figure 3: Evaluation of 𝑄1 on 𝒢1 using Web preemption [7] without top-𝑘 iterators.

quantum
Preemptable Server

𝑘 = 2
ℱ ({?𝑟 , 𝐷𝐸𝑆𝐶(?𝑐𝑠)})

Client

q1
𝜇1 = {a: a1, r: 1, cs: 20}
𝜇2 = {a: a2, r: 2, cs: 10}

Ω = Ω ∪ 𝜔1

q2
𝜇3 = {a: a3, r: 2, cs: 15}
𝜇4 = {a: a4, r: 2, cs: 12}

Ω = Ω ∪ 𝜔2

q3
𝜇5 = {a: a5, r: 3, cs: 10}
𝜇6 = {a: a6, r: 3, cs: 2}

𝜔3 = 𝑇𝑄
ℱ = ⟨𝜇1, 𝜇3⟩

Ω = Ω ∪ 𝜔3

Ω = ⟨𝜇1, 𝜇3⟩

𝜔1 = ∅, 𝑄𝑠[𝑇
𝑄
ℱ = ⟨𝜇1, 𝜇2⟩]

𝑄𝑠

𝜔2 = ∅, 𝑄𝑠[𝑇
𝑄
ℱ = ⟨𝜇1, 𝜇3⟩]

𝑄𝑠

𝜔3, nil

𝑄1

Figure 4: Evaluation of 𝑄1 on 𝒢1 using Algorithm 1.

client, which may drastically impact query execution performance [7]. Another solution is to
implement a dedicated preemptable iterator to compute top-𝑘 queries on the server.

3. Preemptable TOP-k Operator

Given a ranking function ℱ, the computation of the top 𝑘 mappings only requires maintaining
an ordered list of 𝑘 mappings. If we set an upper bound 𝐾 for 𝑘, a simple iterator as defined
by Algorithm 1 is preemptable. Algorithm 1 is a simple adaptation of the “Top-N heapsort”
algorithm that is commonly used in the Postgres database. The idea of the Top-N heapsort
algorithm is to maintain in a main-memory buffer only the best 𝑘 mappings seen so far. In a real-
world configuration, the upper bound 𝐾 should be set by the SPARQL endpoint administrator.

Algorithm 1 relies on a data structure 𝑇𝑄ℱ that maintains a list of mappings 𝜇1, … , 𝜇𝑛 such that
∀𝑖∈[1,𝑛[, ℱ [𝜇𝑖] ≤ ℱ [𝜇𝑖+1]. First, the algorithm fills 𝑇𝑄ℱ with the first 𝑘 mappings drawn from the

Algorithm 1: Server-Side top-𝑘 iterator.
Require: ℐ: previous iterator in the pipeline, ℱ: ranking function, 𝑘 ∈ ℕ+: limit 𝑘 of the top-𝑘 query, 𝐾 ∈ ℕ+:

maximum limit 𝑘 for top-𝑘 queries.
Data: 𝑇𝑄

ℱ: ordered list of mappings according to ℱ, 𝜇𝑐: last mapping read, 𝜇𝑡: threshold to enter the top-𝑘.
1 Function GetNext():
2 if 𝜇𝑐 = 𝑛𝑖𝑙 then 𝜇𝑐 = ℐ .𝐺𝑒𝑡𝑁 𝑒𝑥𝑡()
3 while 𝜇𝑐 ≠ 𝑛𝑖𝑙 do
4 if 𝜇𝑡 = 𝑛𝑖𝑙 ∨ ℱ [𝜇𝑐] > ℱ [𝜇𝑡] then
5 NonInterruptible
6 if |𝑇𝑄

ℱ| < 𝑘 then
7 𝑇𝑄

ℱ.𝑎𝑑𝑑(𝜇𝑐)
8 else
9 𝑇𝑄

ℱ.𝑟 𝑒𝑚𝑜𝑣𝑒(𝜇𝑡)
10 𝑇𝑄

ℱ.𝑎𝑑𝑑(𝜇𝑐)

11 𝜇𝑐 = 𝑛𝑖𝑙

12 if |𝑇𝑄
ℱ| = 𝑘 then

13 𝜇𝑡 = 𝑇𝑄
ℱ.𝑙𝑎𝑠𝑡()

14 𝜇𝑐 = ℐ .𝐺𝑒𝑡𝑁 𝑒𝑥𝑡()

15 if |𝑇𝑄
ℱ| > 0 then return 𝑇𝑄

ℱ.𝑝𝑜𝑝()
16 return 𝑛𝑖𝑙

17 Procedure Open():
18 if 𝑘 > 𝐾 then
19 raise InvalidLimitK

20 𝑇𝑄
ℱ = ∅

21 𝜇𝑐 = 𝑛𝑖𝑙
22 𝜇𝑡 = 𝑛𝑖𝑙

23 Procedure Load(𝑇
′𝑄
ℱ , 𝜇′𝑐):

24 𝑇𝑄
ℱ = 𝑇

′𝑄
ℱ

25 𝜇𝑐 = 𝜇′𝑐
26 if |𝑇𝑄

ℱ| = 𝑘 then
27 𝜇𝑡 = 𝑇𝑄

ℱ.𝑙𝑎𝑠𝑡()

28 Function Save():
29 return ⟨𝑇𝑄

ℱ, 𝜇𝑐⟩

30 Procedure Close():
31 ℐ .𝐶𝑙𝑜𝑠𝑒()

previous iterator ℐ. Then, each time a new mapping 𝜇𝑐 is drawn from ℐ, 𝜇𝑐 is compared with
the mapping with the smallest rank in 𝑇𝑄ℱ, i.e. 𝜇1 denoted by 𝜇𝑡 in Algorithm 1. Ifℱ [𝜇𝑐] > ℱ [𝜇𝑡],
𝜇𝑐 replaces 𝜇𝑡 in the top 𝑘. Once ℐ exhausted, Algorithm 1 incrementally returns 𝑇𝑄ℱ.

When the query is suspended (resp. resumed) by the preemptable SPARQL server, Algorithm 1
just has to save 𝑇𝑄ℱ in 𝑄𝑠 (resp. resume 𝑇𝑄ℱ from 𝑄𝑠). As the time and space complexities of
saving (resp. resuming) the iterator is in 𝒪(𝑚𝑖𝑛(𝑘, 𝐾)), Algorithm 1 is preemptable.

However, Algorithm 1 has two drawbacks. First, it imposes a maximum value 𝐾 on the
number of results returned by top-𝑘 queries. If users want to execute a top-𝑘 query 𝑄 with
𝑘 > 𝐾, they have to rely on the client-side solution, i.e. transferring and sorting all solutions of
𝑄 to end up keeping only 𝑘 solutions. Second, even if the size of the top-𝑘 is bounded by 𝐾, the
overhead of saving and resuming the top-𝑘 can have a significant impact on the execution time
and the data transfer (when 𝑄𝑠 is sent to the client), as demonstrated in our experimental study.

Problem Statement. Is it possible to implement a preemptable top-𝑘 iterator whose com-
plexity does not depend on 𝑘?

3.1. Preemptable Partial TOP-k Iterator

The key idea to avoid depending on 𝑘 is to rely on partial top-𝑘. Using a preemptive Web
server, the evaluation of a graph pattern 𝑃 over an RDF graph 𝒢 naturally creates a partition
of mappings 𝜔1, ..., 𝜔𝑛 over time, where 𝜔𝑖 is produced during quantum 𝑞𝑖. Intuitively, a partial
top-𝑘 is obtained by computing the top 𝑘 mappings on a partition of mappings 𝜔𝑖.

Instead of computing the whole top-𝑘 query on the server, which requires saving and
resuming it each time the preemption occurs, the server only computes partial top-𝑘 𝑇 1ℱ, … , 𝑇 𝑛ℱ

Algorithm 2: Server-Side Preemptable Partial top-𝑘 iterator.
Require: ℐ: previous iterator in the pipeline, ℱ: ranking function, 𝑘 ∈ ℕ+: limit 𝑘 of the top-𝑘 query, 𝐾 ∈ ℕ+:

maximum limit 𝑘 for top-𝑘 queries, 𝑇ℱ: empty list of ordered mappings according to ℱ, 𝜇𝑡: threshold to enter
the top-𝑘.

Data: 𝜇𝑐: last mapping read.

1 Function GetNext():
2 if 𝜇𝑐 = 𝑛𝑖𝑙 then 𝜇𝑐 = ℐ .𝐺𝑒𝑡𝑁 𝑒𝑥𝑡()
3 while 𝜇𝑐 ≠ 𝑛𝑖𝑙 do
4 if 𝜇𝑡 = 𝑛𝑖𝑙 ∨ ℱ [𝜇𝑐] > ℱ [𝜇𝑡] then
5 NonInterruptible
6 if |𝑇ℱ| < 𝑘 then
7 𝑇ℱ.𝑎𝑑𝑑(𝜇𝑐)
8 else
9 𝑇ℱ.𝑟 𝑒𝑚𝑜𝑣𝑒(𝜇𝑡)

10 𝑇ℱ.𝑎𝑑𝑑(𝜇𝑐)

11 𝜇𝑐 = 𝑛𝑖𝑙

12 if |𝑇ℱ| = 𝑘 then
13 𝜇𝑡 = 𝑇ℱ.𝑙𝑎𝑠𝑡()

14 if |𝑇ℱ| ≥ 𝐾 then
15 raise MaxTOPKLimitReached

16 𝜇𝑐 = ℐ .𝐺𝑒𝑡𝑁 𝑒𝑥𝑡()

17 return 𝑛𝑖𝑙

18 Procedure Open():
19 𝜇𝑐 = 𝑛𝑖𝑙

20 Procedure Load(𝜇′𝑐):
21 𝜇𝑐 = 𝜇′𝑐

22 Function Save():
23 return ⟨𝜇𝑐⟩

24 Procedure Close():
25 ℐ .𝐶𝑙𝑜𝑠𝑒()

that are sent to the client at the end of each quantum. Thus, a preemptable partial top-𝑘 iterator
can be saved and resumed in bounded time.

To comply with the Web preemption model [7], the amount of data transferred to the client
per quantum need to be bounded. Consequently, the size of a partial top-𝑘 𝑇 𝑖ℱ is bounded by 𝐾.
If 𝑇 𝑖ℱ reaches 𝐾 mappings, it will trigger the end of the quantum 𝑞𝑖, and 𝑇 𝑖ℱ will be sent to the
client. Thus, end-users are no more limited by 𝐾, but reaching 𝐾 may degrade performance in
terms of data transfer and execution time. When the query execution completes, the client just
needs to merge all 𝑇 1ℱ, … , 𝑇 𝑛ℱ to compute the top 𝑘 solution mappings 𝑇𝑄ℱ of the query. However,
because the server does not remember the top-𝑘 between quanta, it may transfer up to 𝑚𝑖𝑛(𝑘, 𝐾)
mappings at each quantum, even if those mappings do not contribute to the top-𝑘. To avoid
transferring too many useless mappings, the client sends to the server the mapping with the
smallest rank 𝜇𝑡 (for decreasing order), with the saved plan 𝑄𝑠. Using 𝜇𝑡 as a threshold, the
server can discard a part of the solution mappings that do not contribute to the top-𝑘.

Figure 5 illustrates how to compute query 𝑄1 over the RDF graph 𝒢1 using Algorithm 2 and 3.
Algorithm 2 implements a preemptable iterator that computes a partial top-𝑘 𝑇 𝑖ℱ based on the
mappings produced by ℐ during a quantum 𝑞𝑖. Algorithm 3 merges partial top-𝑘 𝑇 𝑖ℱ produced
by the server until the query completes. Let us assume that query 𝑄1 requires 3 quanta 𝑞1, 𝑞2
and 𝑞3 to complete, with two mappings produced per quantum. For 𝑞1, mappings 𝜇1 and 𝜇2 are
produced by ℐ and inserted into 𝑇 1ℱ. When preemption occurs, both 𝑄𝑠 and 𝑇 1ℱ are sent to the
client. Then, the client merges 𝑇 1ℱ into 𝑇𝑄ℱ and sends 𝑄𝑠 back to the server. Because |𝑇𝑄ℱ| = 2 = 𝑘,
the client also sends the mapping with the smallest rank, i.e. 𝜇2, next to 𝑄𝑠. During quantum 𝑞2,
mappings 𝜇3 and 𝜇4 are produced. Because both mappings have a higher rank than 𝜇2, they are
both inserted into 𝑇 2ℱ. However, if the server had known the current state of the top-𝑘, it would

quantum
Preemptable Server

𝑘 = 2
ℱ ({?𝑟 , 𝐷𝐸𝑆𝐶(?𝑐𝑠)})

Client

q1
𝜇1 = {a: a1, r: 1, cs: 20}
𝜇2 = {a: a2, r: 2, cs: 10}
𝜔1 = 𝑇ℱ = ⟨𝜇1, 𝜇2⟩

𝑇𝑄
ℱ = ⟨𝜇1, 𝜇2⟩
𝜇𝑡 = 𝜇2

q2
𝜇3 = {a: a3, r: 2, cs: 15}
𝜇4 = {a: a4, r: 2, cs: 12}
𝜔2 = 𝑇ℱ = ⟨𝜇3, 𝜇4⟩

𝑇𝑄
ℱ = ⟨𝜇1, 𝜇3⟩
𝜇𝑡 = 𝜇3

q3
𝜇5 = {a: a5, r: 3, cs: 10}
𝜇6 = {a: a6, r: 3, cs: 2}
𝜔3 = 𝑇ℱ = ∅

𝑇𝑄
ℱ = ⟨𝜇1, 𝜇3⟩
𝜇𝑡 = 𝜇3

Ω = 𝑇𝑄
ℱ = ⟨𝜇1, 𝜇3⟩

𝜔1, 𝑄𝑠

𝑄𝑠, 𝜇𝑡

𝜔2, 𝑄𝑠

𝑄𝑠, 𝜇𝑡

𝜔3, nil

𝑄1

Figure 5: Evaluation of 𝑄1 on 𝒢1 using Algorithms 2 and 3.

have known that 𝜇4 does not contribute to the top-𝑘, but without remembering the whole top
𝑘, like Algorithm 1 in Figure 4, the server cannot safely reject 𝜇4. This scenario illustrates the
overhead of relying on a partial top-𝑘 iterator. By knowing only 𝜇𝑡, the server may transfer
mappings that do not contribute to the top-𝑘, such as 𝜇4. At the end of quantum 𝑞2, 𝑇 2ℱ and 𝑄𝑠
are sent to the client, 𝑇 2ℱ is merged into 𝑇𝑄ℱ, and 𝜇3 becomes the mapping with the lowest rank.
Finally, during quantum 𝑞3, all generated mappings have a lower rank than 𝜇3, consequently,
no new mappings are transferred to the client. The query completes with 𝑇𝑄ℱ = ⟨𝜇1, 𝜇3⟩, the top
2 mappings of query 𝑄1 on 𝒢1.

Algorithm 3: Client-Side top-𝑘 iterator.
Require: 𝑄: SPARQL top-𝑘 query.
Data: ℱ: ranking function of 𝑄, 𝑘: limit 𝑘 of 𝑄, 𝑇𝑄

ℱ: ordered list of mappings according to ℱ, 𝜇𝑡: threshold to enter the
top-𝑘.

1 Procedure Open():
2 𝜇𝑡 = 𝑛𝑖𝑙
3 (𝑄𝑠, 𝑇

𝑄
ℱ) = 𝐸𝑣𝑎𝑙𝑄𝑢𝑒𝑟𝑦(𝑄, 𝜇𝑡)

4 if |𝑇𝑄
ℱ| = 𝑘 then 𝜇𝑡 = 𝑇𝑄

ℱ.𝑙𝑎𝑠𝑡()
5 while 𝑄𝑠 ≠ 𝑛𝑖𝑙 do
6 (𝑄𝑠, 𝑇ℱ) = 𝐸𝑣𝑎𝑙𝑄𝑢𝑒𝑟𝑦(𝑄𝑠, 𝜇𝑡)
7 foreach 𝜇𝑐 ∈ 𝑇ℱ do
8 if |𝑇𝑄

ℱ| < 𝑘 then
9 𝑇𝑄

ℱ.𝑎𝑑𝑑(𝜇𝑐)
10 else
11 𝑇𝑄

ℱ.𝑟 𝑒𝑚𝑜𝑣𝑒(𝜇𝑡) ; 𝑇
𝑄
ℱ.𝑎𝑑𝑑(𝜇𝑐)

12 if |𝑇𝑄
ℱ| = 𝑘 then 𝜇𝑡 = 𝑇𝑄

ℱ.𝑙𝑎𝑠𝑡()

13 Function GetNext():
14 if |𝑇𝑄

ℱ| > 0 then
15 return 𝑇𝑄

ℱ.𝑝𝑜𝑝()

16 return 𝑛𝑖𝑙

17 Procedure Close():

3.2. Early Pruning of Partial Solution Mappings

To improve query execution time, state-of-art approaches try to guarantee early termination
of top-𝑘 queries. Unfortunately, existing techniques rely on expensive sort operations that
are not preemptable. Although early termination cannot be achieved using Web preemption,

early pruning only requires knowing the mapping with the lowest rank among the top 𝑘
mappings [13, 4]. Intuitively, early pruning consists in pruning a partial mapping if its rank
is smaller than the lowest of the 𝑘 so far computed mappings. For instance, let us suppose
that query 𝑄1 is executed using a join order that corresponds to the order of triple patterns in
the query. In this case, we can use early pruning to skip all the articles published at ESWC.
Following the execution depicted in Figure 5, it is known from the first quantum that none of
the papers published at ESWC can enter the top-2, because the ESWC conference rank is higher
than 2.

Early pruning can be very efficient but highly depends on the join order. Moreover, the
opportunity for pruning arises only when 𝑘 (or more) complete results have been produced.

4. Experimental Study

The purpose of the experimental study is to answer the following questions: (1) Does using a
preemptable top-𝑘 operator improve query execution performance? (2) What is the impact of 𝑘
and the duration of a quantum on performance? (3) What is the impact of early pruning on
performance? (4) How does this approach perform on real-world top-𝑘 queries?

4.1. Experimental Setup

To implement our approach, we used the SaGe query engine 1. Following the Web preemption
model, SaGe is divided into a Python preemptable Web server and a JavaScript Web client.
top-𝑘 iterators, i.e. Algorithms 1 and 2, have been implemented as an extension of the SaGe
preemptable Web server. To make experiments simpler, we created three custom Python clients:

• SaGe is our baseline, i.e. Web preemption without a top-𝑘 iterator. top-𝑘 queries are
executed using the ORDER BY and LIMIT operators as explained in section 2.2 and depicted
in Figure 3.

• SaGe-top-𝑘 executes top-𝑘 queries using Algorithm 1 defined in section 3. This corre-
sponds to the adaptation of the “Top-N heapsort” operator that is already used in the
Postgres database.

• SaGe-partial-top-𝑘 executes top-𝑘 queries using the partial top-𝑘 iterator defined in
section 3.1. This corresponds to our contribution without early pruning enabled.

In all experiments, the maximum limit 𝐾, to be set by the SaGe server administrator, was fixed
at 𝐾 = 10000. The maximum number of mappings that can be sent to the client per quantum
was set at 10000.

Data and Queries. We used the Waterloo SPARQL Diversity Benchmark (WatDiv 2) [14]. We
re-used the RDF graph and the SPARQL queries from the SaGe [7] experimental study. The RDF
graph contains 107 triples, while the workload contains 193 queries. From these 193 queries,

1https://sage.univ-nantes.fr
2https://dsg.uwaterloo.ca/watdiv

https://sage.univ-nantes.fr
https://dsg.uwaterloo.ca/watdiv

we randomly picked 20 SPARQL conjunctive queries with different shapes and up to 10 joins
per query. Because queries do not have ORDER BY clauses, we randomly generated an ORDER
BY clause for each query, with up to 2 variables per clause. For the choice of the variables, we
privileged those which take Literals as value. For the LIMIT 𝑘 clauses, we experiment different
values of 𝑘, namely 10, 100, 1000, 10000.

To test our approach on real queries, we extracted 20 queries from the Wikidata query logs 3.
Queries contain from 1 to 10 joins, an ORDER BY clause with a single variable, and a LIMIT 𝑘
operator with 𝑘 ∈ [1, 10000]. Queries are executed on the 2017-03-13 dump of Wikidata 4 with
2262M triples.

All RDF graphs are stored using HDT [15]. The HDT-backend of the SaGe query engine is
used to query the RDF graphs. Code, configurations, queries, and RDF graphs can be found
online for reproducible purposes 5.

Evaluation Metrics. (1) Execution Time is the time spent executing a query, from when the
query is sent to the server until the client returns the last result. (2) Data Transfer is the number
of bytes exchanged between the client and the server during the execution of a query. (3)Number
of HTTP Calls is the number of HTTP requests sent to the server during the execution of a
query.

Hardware Setup. We ran all experiments on a local cloud instance with Ubuntu 20.04.4 LTS,
a AMD EPYC 7513 32-Core processor (the VM was configured with 16 vCPUs and 1 thread per
core), 1TB SSD (part of a storage pool), and 64GB of RAM. Both the client and the server were
running on the same machine.

Software Setup. We used Python v3.9.7, Virtuoso Open Source Edition v7.2.6 and SaGe as of
July 24 2022 (7ea3468).

4.2. Experimental Results

We first ensured that our top-𝑘 iterators yield complete and correct results. We ran both
Virtuoso and the different approaches to check if they provide complete and accurate results for
each query using Virtuoso results as the ground truth.

Does using a preemptable top-𝑘 operator improve query execution performance? Figure 6
presents the performance achieved by the different approaches on the WatDiv queries. First,
let us consider only the results obtained with 𝑘 = 10, without enabling early pruning. We
will then see what is the impact of 𝑘 and early pruning on performance. As expected, using a
dedicated top-𝑘 iterator significantly improves query execution performance compared to SaGe.
First, both SaGe-top-𝑘 and SaGe-partial-top-𝑘 significantly reduce data transfer compared
to SaGe that requires to transfer all mappings to the client. SaGe-top-𝑘 only sends the top 𝑘

3https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
4https://www.rdfhdt.org/datasets
5https://github.com/momo54/sage-orderby-experiment

https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en
https://www.rdfhdt.org/datasets
https://github.com/momo54/sage-orderby-experiment

(a) WatDiv queries with 𝑘 = 10

(b) WatDiv queries with 𝑘 = 100

(c) WatDiv queries with 𝑘 = 1000

(d) WatDiv queries with 𝑘 = 10000

Figure 6: Average performance on the WatDiv queries according to 𝑘 and the duration 𝑑 of a quantum.
For each approach and each configuration (𝑑, 𝑘), the number of HTTP calls, the amount of data
transferred, and the execution time are averages over the 20 WatDiv queries, with 3 executions per
query. When early pruning is enabled, approaches are suffixed by -earlypruning. Note that the scale
may vary from one plot to another.

(a) SaGe-partial-top-𝑘 (b) SaGe-top-𝑘

Figure 7: Average Execution Time on the WatDiv queries, with Web preemption overheads. Measure-
ments are averages over the 20 WatDiv queries, with 3 executions per query.

mappings, while SaGe-partial-top-𝑘 only transfers the top 𝑘 mappings seen during a quantum
that are greater than the threshold computed by the client. Compared to SaGe, SaGe-top-𝑘
and SaGe-partial-top-𝑘 require sending fewer HTTP calls. Because SaGe transfers more
mappings, it more often triggers the end of quanta. Indeed, Web preemption limits the number
of mappings sent to the client per quantum [7]. When the limit is reached, it triggers the end of
the quantum, even if there was time left, and the longer the duration of a quantum, the more
likely it is to occur. In terms of execution time, both SaGe-top-𝑘 and SaGe-partial-top-𝑘 are
close to SaGe. The slight difference can be explained because SaGe transfers more mappings,
increasing serialization times.

What is the impact of 𝑘 and the duration of a quantum? As depicted in Figure 6, 𝑘 does not
impact the number of HTTP calls. No matter the value of 𝑘, all approaches require seeing all
solution mappings. Consequently, they need the same number of quanta to complete, regardless
of 𝑘.

While 𝑘 does not impact the number of HTTP calls, it drastically affects the execution time of
SaGe-top-𝑘. Algorithm 1 used by SaGe-top-𝑘 requires to save (resp. load) the current top 𝑘 re-
sults each time a query is suspended (resp. resumed). Consequently, when 𝑘 increases, the time
spent suspending and resuming top-𝑘 queries increase accordingly. On the WatDiv queries, Fig-
ure 7 presents the time spent executing, saving, and resuming queries, both for the SaGe-top-𝑘
and the SaGe-partial-top-𝑘 approaches. As expected, when 𝑘 increases, SaGe-top-𝑘 makes
Web preemption overheads increase drastically, to the point where the server spends more
time saving and resuming queries than executing them. As a result, SaGe-top-𝑘 can require

Figure 8: Average performance on Wikidata queries according to the duration of a quantum. Queries
are executed using their default limit 𝑘. For each approach, the number of HTTP calls, the amount of
data transferred, and the execution time are averages over the 20 Wikidata queries, with 3 executions
per query. When early pruning is enabled, approaches are suffixed by -earlypruning.

more time than SaGe to complete. The duration 𝑑 of a quantum also plays an important role.
When 𝑑 is small, queries are more often suspended (resp. resumed), increasing Web preemption
overheads. Thus, it is tractable to use the SaGe-top-𝑘 approach, but 𝐾 and 𝑑 must be carefully
configured by the SPARQL endpoint administrator. The higher the duration of a quantum, the
higher 𝐾 could be. Compared to SaGe-top-𝑘, 𝑘 does not impact SaGe-partial-top-𝑘 because
the time complexity of saving and resuming a partial top-𝑘 iterator does not depend on 𝑘 (see
Figure 7).

This property comes at the cost of an overhead on the data transfer compared to SaGe-top-𝑘.
The partial top-𝑘 iterator does not remember the current state of the top-𝑘 between quanta.
The only information it has is the threshold computed by the client. If the threshold becomes
outdated during a quantum, the server may transfer useless solution mappings that do not
contribute to the top-𝑘. Nevertheless, SaGe-partial-top-𝑘 is better than SaGe-top-𝑘 in almost
all tested configurations. Because SaGe-top-𝑘 has to transfer the top 𝑘 results each time the
query is suspended (resp. resumed), the data transfer can increase rapidly if 𝑘 is large or the
query is suspended/resumed too often. In the worst case, SaGe-top-𝑘 can transfer more data
than SaGe, i.e. more than all the query solutions.

What is the impact of early pruning? As depicted in Figure 6, early pruning has a significant
impact on WatDiv queries. When 𝑘 ≤ 1000, we observe a 60% reduction of the execution time
when using SaGe-partial-top-𝑘 (resp. SaGe-top-𝑘) with early pruning enabled, compared
to SaGe-partial-top-𝑘 (resp. SaGe-top-𝑘) without early pruning. Because the opportunity
for pruning arises only when 𝑘 (or more) complete results have been produced, early pruning
has less impact when 𝑘 increases. As a result, we observe a smaller reduction, around 15%,
when 𝑘 = 10000. Another critical factor is the join order. The earlier the variables used by the
ranking function are evaluated, the more influential the pruning is likely to be. Finally, even if
the threshold is only updated between quanta when using SaGe-partial-top-𝑘, it does not
significantly impact the efficiency of early pruning compared to SaGe-top-𝑘.

How does this approach perform on real top-𝑘 queries? Figure 8 presents the performance of
the different approaches on Wikidata queries, with and without early pruning. Compared to
SaGe, both SaGe-top-𝑘 and SaGe-partial-top-𝑘 allow a significant reduction in terms of data
transfer. However, SaGe-top-𝑘 requires 𝐾 and 𝑑 to be well configured to avoid increasing Web
preemption overheads. As expected, all approaches behave in a similar way in terms of execution
time. However, if early pruning is enabled when using SaGe-top-𝑘 and SaGe-partial-top-𝑘,
we observe a 35% reduction compared to SaGe.

5. Related Works

State-of-the-art SPARQL query engines, such as Virtuoso and Jena, rely on a materialize-
and-sort [1] approach to process SPARQL top-𝑘 queries. This consists of computing all the
matching solutions (e.g., thousands), even if only a limited number 𝑘 of solutions (e.g., ten) is
requested [16]. Consequently, these queries are often long-running queries that require a lot of
CPU and memory resources to terminate. To ensure stable and responsive services to users,
public SPARQL endpoints set up quotas, e.g. on the number of results returned to the client, the
execution time, or the arrival rate. Therefore, many top-𝑘 queries cannot be executed online
simply because they reach quotas of the fair-use policies [7, 17, 2]. Compared to existing public
endpoints, our approach ensures that all top-𝑘 join queries terminate without materializing all
results.

Early termination and early pruning are common techniques to speed-up the processing
of top-𝑘 queries in databases [1]. Such techniques have been adapted for RDF and SPARQL
in [18, 4, 5, 13]. Early termination allows deciding if it is possible to stop the execution of
a running top-𝑘 query. A top-𝑘 query can be stopped as soon as the remaining mappings
are guaranteed not to be part of the top-𝑘 results. Early termination relies both on sorted
access to data and the computation of upper bounds to enter the top-𝑘. Magliacane et al. [4]
propose a SPARQL engine-level implementation of rank-aware physical operators allowing early
termination. The SPARQL-RANK execution model creates a rank-aware pipeline of operators
that incrementally output a ranked set of mappings according to a user-defined scoring function.
Unfortunately, rank-aware operators require to materialize the sorted mappings. Following the
Web preemption model, rank-join operators are not preemptable because they cannot be saved
and resumed in bounded time. Early termination can be further improved thanks to MS-tree
indexes, allowing the computation of tighter upper bounds, as proposed by Dong et al. [18].
Such an approach is efficient, but the maintenance of extra indexes is costly. Yang et al. [19]
propose the STAR framework. SPARQL queries are decomposed into sets of star-shaped queries
for which an efficient algorithm to compute the top-𝑘 is provided. Thanks to a join algorithm
and an upper bound schema that allows the computation of tight upper bounds, STAR can
combine the top-𝑘 of star-shaped queries to compute the top-𝑘 of any SPARQL top-𝑘 query.
However, just like SPARQL-RANK, Yang et al. use non-preemptable algorithms due to their
space complexities. Wagner et al. [5] propose an approach to compute top-𝑘 queries without
complete result materialization that relies on a probabilistic early pruning method. Given a
partial mapping 𝜇𝑐, the algorithm predicts with bounded accuracy the probability of 𝜇𝑐 being
part of the top-𝑘 results. Our approach makes use of early pruning, but we aimed to compute

fully accurate results as in [13].

6. Conclusion

In this paper, we extended Web preemption with a partial top-𝑘 iterator, significantly improving
queries performance. By relying on partial top-𝑘, we can compute top-𝑘 queries with arbitrary
large and small values of 𝑘, without increasing Web preemption overheads. Moreover, with a
dedicated top-𝑘 iterator, it becomes possible to use early pruning techniques to improve query
execution time. In future work, we plan to work on a way to support early termination of
top-𝑘 queries in the context of Web preemption. Another path we would like to explore is
the evaluation of top-𝑘 queries when the ranking function is defined over aggregates. The
evaluation of SPARQL aggregate queries usingWeb preemption also rely on a partial preemptable
iterator [20, 12]. If our partial top-𝑘 iterator can be used over [20, 12], a dedicated approach
may allow to significantly improve performance.

Acknowledgments

This work is supported by the ANR-19-CE23-0014 DeKaloG project (CE23 - Intelligence artifi-
cielle) and the CominLabs MiKroloG project.

References

[1] I. F. Ilyas, G. Beskales, M. A. Soliman, A survey of top-k query processing techniques in
relational database systems, ACM Computing Surveys 40 (2008) 1–58.

[2] A. Soulet, F. M. Suchanek, Anytime Large-Scale Analytics of Linked Open Data, in: 18th
International Semantic Web Conference, Auckland, New Zealand, October 26–30, 2019,
Proceedings, Part I, volume 11778 of Lecture Notes in Computer Science, Springer, 2019, p.
576–592.

[3] A. Hasnain, Q. Mehmood, S. S. e Zainab, A. Hogan, SPORTAL: Profiling the Content
of Public SPARQL Endpoints, International Journal on Semantic Web and Information
Systems (IJSWIS) 12 (2016) 134–163.

[4] S. Magliacane, A. Bozzon, E. D. Valle, Efficient Execution of Top-K SPARQL Queries, in:
11th International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012,
Proceedings, Part I, volume 7649 of Lecture Notes in Computer Science, Springer, 2012, p.
344–360.

[5] A. Wagner, V. Bicer, T. Tran, Pay-as-you-go Approximate Join Top-k Processing for the
Web of Data, in: 11th International Conference, ESWC 2014, Anissaras, Crete, Greece,
May 25-29, 2014, Proceedings, Springer, 2014, pp. 130–145.

[6] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester, G. Hae-
sendonck, P. Colpaert, Triple Pattern Fragments: A low-cost knowledge graph interface
for the Web, Journal of Web Semantics 37-38 (2016) 184–206.

[7] T. Minier, H. Skaf-Molli, P. Molli, SaGe: Web Preemption for Public SPARQL Query
Services, in: WWW ’19: The World Wide Web Conference, Association for Computing
Machinery, New York, NY, United States, 2019, p. 1268–1278.

[8] A. Azzam, J. D. Fernández, M. Acosta, M. Beno, A. Polleres, SMART-KG: Hybrid Shipping
for SPARQL Querying on the Web, in: WWW ’20: Proceedings of The Web Conference
2020, Association for Computing Machinery, New York, NY, United States, 2020, pp.
984–994.

[9] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, in: W3C Recommendation, 2013.
[10] J. Pérez, M. Arenas, C. Gutiérrez, Semantics and complexity of SPARQL, ACM Transactions

on Database Systems 34 (2009) 1–45.
[11] M. Schmidt, M. Meier, G. Lausen, Foundations of SPARQL query optimization, in: Pro-

ceedings of the 13th international conference on database theory, 2010, p. 4–33.
[12] J. Aimonier-Davat, H. Skaf-Molli, P. Molli, A. Grall, T. Minier, Online approximative

SPARQL query processing for COUNT-DISTINCT queries with Web Preemption, Semantic
Web Journal 13 (2022) 735–755.

[13] A. Wagner, T. T. Duc, G. Ladwig, A. Harth, R. Studer, Processing SPARQL Property Path
Queries Online with Web Preemption, in: 9th Extended Semantic Web Conference, ESWC
2012, Heraklion, Crete, Greece, May 27-31, 2012, Proceedings, Springer, 2012, pp. 56–71.

[14] G. Aluç, O. Hartig, M. T. Özsu, K. Daudjee, Diversified Stress Testing of RDF Data
Management Systems, in: 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I, Springer, 2014, p. 197–212.

[15] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, M. Arias, Binary RDF
representation for publication and exchange (HDT), Journal of Web Semantics 19 (2013)
22–41.

[16] S. Zahmatkesh, E. D. Valle, D. Dell’Aglio, A. Bozzon, Towards a top-K SPARQL query
benchmark generator, in: OrdRing’14: Proceedings of the 3rd International Conference
on Ordering and Reasoning, volume 1303, CEUR-WS.org, 2014, pp. 35–46.

[17] C. Buil-Aranda, A. Polleres, J. Umbrich, Strategies for Executing Federated Queries in
SPARQL 1.1, in: 13th International Semantic Web Conference, Riva del Garda, Italy,
October 19-23, 2014. Proceedings, Part II, Springer, 2014, p. 390–405.

[18] W. Dong, Z. Lei, Z. Dongyan, Top-k queries on RDF graphs, Information Sciences: an
International Journal 316 (2015) 201–217.

[19] Y. Shengqi, H. Fangqiu, W. Yinghui, Y. Xifeng, Fast top-k search in knowledge graphs,
in: 2016 IEEE 32nd international conference on data engineering (ICDE), IEEE, 2016, pp.
990–1001.

[20] A. Grall, T. Minier, H. Skaf-Molli, P. Molli, Processing SPARQL Aggregate Queries with
Web Preemption, in: 17th International Conference, ESWC 2020, Heraklion, Crete, Greece,
May 31–June 4, 2020, Proceedings, volume 12123 of Lecture Notes in Computer Science,
Springer, 2020, pp. 235–251.

	1 Introduction
	2 Preliminaries and backgrounds
	2.1 TOP-k Queries
	2.2 Web Preemption and TOP-k Queries

	3 Preemptable TOP-k Operator
	3.1 Preemptable Partial TOP-k Iterator
	3.2 Early Pruning of Partial Solution Mappings

	4 Experimental Study
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Works
	6 Conclusion

