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Abstract:
A common problem in model-driven software development processes is the tra-

cing of requirements across different phases of the software development life cycle
and multiple levels of abstraction down to the code level. Because debugging at the
model level is not feasible yet, unwanted or unexpected behavior of the executable
system needs to be analyzed at the code level at run-time and in a feedback loop must
be traced back to and handled at the model level. Thus, traceability is a very import-
ant success factor and quality criterion in software engineering and maintenance and
especially when developing high-quality model-driven infrastructures. In this paper we
present the conceptual design and prototypical implementation of a lightweight tracea-
bility approach that supports tracing requirements across different models and levels
of abstraction. While providing support for representing different types of traceability
links between design models and implementation details, our approach can easily be
integrated into existing MDSD projects without increasing their complexity.

1 Introduction

Model-driven software development (MDSD) aims at raising the level of abstraction of
development processes by describing software systems using formal models on different
levels of abstraction, which are ultimately used as a basis for automatic code generation
(cf. [29], [12]). Ideally, all changes to an existing system are applied to the model level and
propagated to the code level by applying transformations and code generation procedures.
Software development efforts benefit from this approach in several ways: according to
Mellor and Balcer [32], Bézivin [10] as well as Booch et al. [11], the two main goals of
MDSD are to improve the robustness of software artifacts to changes applied to a software
system [9] and, more important in this context, to increase the level of abstraction, allowing
to better deal with the problem of complexity. It is argued that any approach addressing
these problems will ultimately result in a reduction of cost and time to market, which are
the main selling arguments given by MDSD advocates. However, the optimistic outlook
of the MDSD proponents [33] is not shared by all experts in the software engineering
discipline (e.g., [24]).

Despite automatic model transformations, establishing traceability is not a trivial task in
MDSD. Due to the large number of artifacts, especially in MDSD projects, and thus po-
tential relationships and dependencies among them, this task is time consuming, tedious



and error-prone [20]. A few basic preconditions for effective and efficient traceability ma-
nagement have been identified in theory and practice, most importantly:

• automatic recovery, validation and update of traceability links [5] and

• tool integration (in particular with respect to widely used and possibly heteroge-
neous development environments) [16].

Therefore, we propose an approach that enables and supports traceability in a model-driven
context by allowing the creation and management of traceability links between require-
ments and model elements, model elements at different levels of abstraction, and between
model elements and code sections. Based on these three types of explicit traceability links,
implicit links between requirements and code sections realizing them can be derived -
and thus horizontal and bi-directional traceability, as required by many industry standards
(e.g. [14]) can be achieved even in complex development projects. For instance, this can
be exploited to verify that all requirements specified are reified in code.

The approach we suggest has been designed to satisfy both of the previously mentioned
requirements, i.e., automation and tool integration. Due to the fact that many publications
neglect the importance of tool support for traceability (cf. section 5), we have chosen a
pragmatic approach, that can be integrated with existing MDSD tool chains and is suitable
to interoperate with widely accepted collaboration platforms. Following a fundamental de-
sign science research methodology [25], we have implemented a prototype to demonstrate
that it can easily be interoperate with a commonly used development environment (in our
case the Eclipse development platform [17]) and thus readily be applied in practice. The
prototype also shows that our approach can be automated and does not necessarily requi-
re extensive and time-consuming manual trace capturing. A descriptive evaluation of our
approach’s innovativeness and utility is conducted by means of an informed comparison
with related research (see [25, pp. 85]).

The remainder of this paper is structured as follows: after a fundamental discussion on
the role of traceability, in particular in the context of MDSD (section 2), the conceptual
design of our prototype is presented in section 3. The main part of this paper (cf. section
4) contains a description of the prototype that has been implemented to demonstrate the
applicability of the traceability concept described. This is followed by a discussion of
related research efforts as compared to our approach. The paper concludes with a summary
of our findings and an outlook on future development.

2 The Role of Traceability in Model-driven Development

MDSD approaches rely on two basic assumptions: first, that all requirements to a system
are fully and precisely reflected by the models, and second, that each model element is
ultimately transformed accurately into executable application code. The first requirement
is relaxed by some interpretations of MDSD, such as architecture-centric MDSD approa-
ches [37], that rely on manual completion of the generated code and concepts, i.e., by



defining protected code regions. Common to all MDSD approaches is the raised level of
abstraction and the problem of tracing requirements and other artifacts from the model
level to the source code level, sometimes across several intermediate model representati-
ons [1]. To support traceability in MDSD, it is necessary that the relation between each
requirement, its representation in the models (e.g. as model elements, such as classes or
associations) and the resulting code sections can be captured, managed, and analyzed [16].
Thus, traceability is generally a critical success factor and quality criterion in model-driven
development projects.

Model transformation is one of the key features of MDSD: abstract models are transfor-
med into more concrete models, which in turn are transformed into even more concrete
models or into source code. In the terminology of the Model-Driven Architecture (MDA),
a Platform-Independent Model (PIM) is successively transformed into a Platform-Specific
Model (PSM) which is then transformed into code. While the idea of a stepwise reduction
of the level of abstraction through repeated model transformations is an integral part of the
OMG’s MDA initiative, other approaches pursue a model-to-code transformation-based
strategy, where either no intermediate models are used or where they are not intended to
be manipulated by the modeler.

Either way, traceability plays a central role throughout the MDSD process, because it
enables developers to maintain an insight on the relationships between various artifacts,
on different levels of abstraction, and in the case of multiple successive transformations
even between individual transformations. For example, traceability between elements of
one model can help identifying both dependencies and commonalities (e.g., two model
elements based on a given requirement, cf. [1]). In locally distributed MDSD projects,
where people at various sites collaborate on different parts of the models, establishing and
maintaining traceability becomes even more difficult [35]. When traceability relations are
managed correctly and efficiently however, traceability can substantially support coordi-
nation in both distributed and collocated software projects [34].

As already mentioned before, traceability between requirements and their representation
in the models is crucial to ensure that the relevant set of requirements is accurately elicited
and eventually implemented in the code. Additionally, traceability information constitutes
a suitable basis for further transformations and code generation [31]. Moreover, tracea-
bility between a model element and the code generated from this element is important
for debugging generated code and for program comprehension in general. While syntactic
correctness of both input artifacts, i.e., models, and output resources, such as source code
files, XML configuration data, etc. can be verified, as well as adherence to a particular
metamodel, it is difficult to trace unexpected behavior of the resulting system back to one
of the more abstract model levels.

Finally, traceability between individual transformations is a necessary pre-condition in
order to decompose complex model transformations into modular steps. An example can
be found in [38], where information about preceding transformations is used in order to
determine which transformation steps should be performed later on in the process.



3 The TRACES Approach

In this section we provide an overview on the concepts our approach is based on and the
different kinds of traceability links that are supported.

3.1 Assumptions

We assume that requirements are represented by a textual description (free text) and a uni-
que identifier. This notion also includes requirements captured in collaboration tools, such
as CodeBeamer [27]. We also assume that each model element has a unique identifier. This
way, requirements and model elements can be referenced unambiguously. No assumptions
about the format of these identifiers are made, however, as long as their uniqueness is
guaranteed.

Since the field of model-to-model transformations is still an emerging one, our initi-
al prototype is based on a development process where code is directly generated from
the models. Nevertheless, these models are both platform-independent and technology-
independent. As a testbed for our prototype we have used the OMEGA modeling and code
generation infrastructure [22], which will be described briefly in section 4 in conjunction
with CodeBeamer.

With regard to code generation, it is assumed that the source code is generated in its entire-
ty, i.e., no manual completion of the generated source code is required. As a consequence,
each individual code section is based on one ore more specific model elements. Addi-
tionally, all relevant model data, including the identifiers of model elements, need to be
available at generation time.

3.2 Explicit Traceability Links

Based on the assumptions described in the previous section, traceability between requi-
rements and model elements is achieved by creating detailed design models where each
model element references all requirements it is involved in realizing. Since all require-
ments have unique identifiers (cf. section 3.1), these references are unambiguous.

Traceability between model elements and code sections is achieved by creating appropria-
te references during code generation. These references can be introduced into the code
and can contain the identifier of the model element a section is based on. That way, un-
ambiguous references to model elements are created in the code. These can be exploited
to trace run-time problems back to specific elements in the original model, which means
that changes necessary to solve these problems can be applied at the model level and thus,
debugging in MDSD environments is facilitated.

The creation of explicit traceability links is the responsibility of the modeler, and to some
degree of the MDSD infrastructure provider. While the former is responsible for introdu-



cing references from requirements to model elements manually when modeling a system,
the latter must make sure that the resources used in the MDSD process, such as source
code templates and code generators are prepared to propagate these references across ab-
straction levels and to introduce them into the generated output. Explicit traceability links
represent the developers knowledge about requirements and their realization in the develo-
ped system. They consist of links between model elements and requirements descriptions
that cannot be introduced automatically and an infrastructure that contains the information
on how a particular traceability link is represented throughout the model transformation
and code generation process. While the former must be created for each individual model,
the latter is part of a reusable infrastructure and only needs to be created once.

3.3 Implicit Traceability Links

In addition to the retrieval of explicit traceability information as described in the previous
section, implicit traceability links between requirements and code sections can be automa-
tically derived using explicit links (cf. requirements in section 1). The creation of implicit
traceability links can help to gain a more complete insight into a system by showing rela-
tionships between artifacts that the developer may not have been aware of.

For example, from the knowledge that model element A is involved in realizing require-
ments R1 and R2, and that code section C is based on model element A, we can conclude
that code section C is involved in realizing requirements R1 and R2. Thus we can use the
available information, for instance, to check if all requirements are implemented in the ap-
plication code. Similarly, the knowledge that any two model elements reference the same
requirement could be used to derive a traceability relationship between these two model
elements.

The creation of implicit or inferred (cf. [1]) traceability links requires an automatic ana-
lysis of exisiting explicit links in order to identify relationships that the developer has
not explicitly modeled, but that are of importance, e.g. when performing change impact
analyses to existing systems.

4 OMEGA TRACES Prototype

We have implemented a prototype to demonstrate the utility and the practical applicability
of our approach. The prototype is fully integrated into the OMEGA modeling and code
generation infrastructure. Due to the fact that our approach does not rely on being used
in conjunction with OMEGA, but can be used with other MDSD tool chains, only a short
introduction is provided. For a more comprehensive discussion, the reader is referred to
[22] and [23].



Abbildung 1: Basic structure of the prototype as described in ([22], p. 142)

4.1 The OMEGA Approach

OMEGA (Ontological Metamodel Extension For Generative Architectures) is an approach
to model-driven development that is targeted at facilitating the rapid development of domain-
specific modeling and code generation tools. The approach draws from Executable UML
(cf. [32]), i.e., it uses class and state chart models to describe software systems at an ab-
stract level. It strongly promotes the reuse of code generation artifacts, such as model trans-
formation scripts and source code templates. Instead of using a general-purpose modeling
language, OMEGA relies on domain-specific languages, represented using hierarchies of
domain metamodels, e.g. for the domain of web applications. The use of metamodel hier-
archies has been suggested by Atkinson and Kühne [9]. OMEGA draws from this idea of
describing problem domains on various levels of abstraction.

Based on the theoretical concepts outlined here, a prototype has been implemented as an
extension to the Eclipse development environment. Even though OMEGA relies on some
assumptions that clearly distinguish it from other model-driven software development ap-
proaches, our traceability framework does not depend on these assumptions or any other
specifics of OMEGA. Therefore, its use is not restricted to the OMEGA environment. Rat-
her, it can be adapted to be utilized in other code generation environments as well (cf.
[22]).

4.2 OMEGA Architecture

The OMEGA prototype consists of three Eclipse plugins; the core is a generic modeling
tool which is supplemented by a metamodel implementation and a simple, template-based
code generator. Figure 1 shows an overview of the components that constitute the OMEGA
infrastructure; a detailed description can be found in [22].



4.3 Modeling

The modeling tool consists of a model editor and a number of views which allow a user
to edit models viewing specific aspects of them. It supports both static (class diagrams)
and dynamic (state chart) models. Additionally, easy to use requirements management,
allowing a user to add, edit or delete project-specific requirements using a graphical user
interface (GUI) is supported.

To help automating traceability management, the software handles identifiers for require-
ments and model elements automatically: whenever a new requirement or model element
is created, a unique identifier for that artifact is automatically created. All identifiers are
displayed in the GUI. The identifiers of requirements are used when registering or unre-
gistering references to an arbitrary selection of requirements to a model element - which
can also be accomplished using the GUI. These references are then stored with the model
element in the serialized model.

Models are written to files in a special XML format using the XStream [13] library, or
alternatively to XMI, using the Eclipse ECore API ([18]). This way, all model data inclu-
ding model elements as well as references to requirements and information on potential
submodels are stored in a single XML file, allowing external tools to retrieve traceability
information by parsing the model files.

4.4 Code Generation

The code generator takes a model from the modeling tool as input and transforms it to
a format more suitable for code generation than the original one. Based on this ”genera-
tor model”, application code is generated automatically, using a template-based approach
[15]. During this transformation, all references to requirements are preserved.

For the purpose of generating executable systems from the generator model, the Velocity
Template Engine [8] is used. The template engine has access to all model data using a
context object which also includes the identifiers of model elements. Thus, the inclusion
of appropriate statements in the templates allows the creation of comments in the source
code referencing the model elements each code section is based on.

4.5 Trace Capturing

When using the TRACES tool for capturing traces among requirements and models, the
two types of traceability links described in section 3 need to be distinguished. In the fol-
lowing sections, we describe the ways in which explicit and implicit traceability links are
handled in our prototype.



4.5.1 Explicit Traceability Links

Traceability links between requirements and model elements are created using the mo-
deling tool. This is done by adding references to all relevant requirements to the model
elements. Figure 2 shows a screenshot of the user interface for associating textually repre-
sented requirements with model elements in the development environment. The attribute
DateOfBirth, selected in the lower section of the screen is needed to realize the requi-
rement of storing the date of birth of every customer.

The relationship between model elements and requirements usually is a many-to-many
relationship, meaning that several model elements can reference the same requirement, and
that one requirement can be realized by one or more model elements. OMEGA supports
this kind of relationship by allowing references to an arbitrary number of requirements for
each model element. As figure 2 shows, the list of requirements uses checkboxes allowing
a modeler to select and add references to an arbitrary number of requirements.

Traceability links between model elements and code sections are created automatically
during the code generation process. The associations between model elements and output
artifacts are preserved in all internally used intermediate model representations and thus
can be introduced into the generated output resources, such as Java source code files.
No additional user input is necessary to do this, as the generator model contains all the
information needed and the format of the links is defined by the generator templates. While
this procedure increases ease of use, it also has a disadvantage: the templates defined
for the output artifacts must contain variables that the code generator can replace with
references to the model level. Therefore, an initial adjustment of the templates to being
used in conjunction with the traceability module is required.

Abbildung 2: Creating traces between model elements and requirements



4.5.2 Implicit Traceability Links

OMEGA TRACES supports the extraction of implicit traceability links as described in
section 3.3 by serializing the models in a special XML format which also contains the
explicit links between model elements and requirements.

Currently, the prototype relies on external tools for the extraction of implicit traceability
links from serialized models and source code artifacts. We have used our prototype in
conjunction with the TraVis trace management and visualization tool and in the following
sections will provide an overview on our findings.

4.6 Trace Management and Visualization

In order to support model-driven development efforts in locally distributed scenarios, we
suggest the use of a collaborative software development platform (CSDP), that is used
to manage all artifacts used and created during the course of a development project and
provides controlled access to these resources to the stakeholders involved. Additionally,
the CSDP contains different synchronous and asynchronous communication facilites and
a wiki to facilitate collaborative documentation and information sharing. In our approach,
requirements, in the form of issue tracker items, models of different levels of abstraction
as well as the source code of an application are managed within a CSDP. Every artifact
is supplied with a unique identifier, which also enables the built-in wiki engine to refer
to these, e.g. when writing the documentation for future maintenance (see [27] for con-
crete features of the CodeBeamer CSDP). Thus, the associations among elements can be
managed as CSDP hyperlinks. Additionally, we have developed a complementary tool for
trace visualization (TraVis) that is tailored at supporting traceability management even in
distributed MDSD settings (see figure 3).

Abbildung 3: Visualizing traces between models, requirements, and tracker items

Traces among requirements and different models can be extracted from the CSDP and
project managers or developers are enabled to manage the traceability information visual-



ly, i.e., discover and repair inconsistencies. Moreover, TraVis provides functionality for
conducting impact analyses starting from one particular artifact, e.g. a requirement or mo-
del, and exploring those artifacts affected when changing something at the point of origin.
This in turn allows for detailed calculations on the estimated entailing costs of a particular
change and thus it’s economic feasibility [35].

4.7 Limitations

In the previous sections we have described the set of tools that support our approach to
tracing requirements across different kinds of artifacts in model-driven development pro-
cesses. Future extensions to the prototype may finally include tools for parsing models and
code in order to be able to derive implicit traceability links from the explicit links, and for
interpreting and visualizing traceability information. TraVis is currently evaluated and fur-
ther adapted to the TRACES approach for visualization of traces among model elements
stored in CSDP [35].

5 Discussion and Related Work

The general use of identifiers and references is a basic technique utilized in a wide range
of application domains, so it will not be discussed further here. In this section we will
provide an overview of related research efforts in the field of requirements traceability
in order to justify the TRACES approach and highlight its unique features as opposed to
existing solutions. This way, an evaluation of the approach’s unique utility is conducted
descriptively and based on the current body of knowledge in software engineering and
information systems research [25].

There are many instances in literature describing automatic or semi-automatic approaches
to trace capturing and management. For example, Antoniol et al. have developed a num-
ber of approaches based on information retrieval (IR) techniques [4, 2, 6, 3] and on the
observation of test scenarios [7] that are largely supported by tools automating the pro-
cess. Similar research on applying IR for candidate link generation has been conducted
by Huffman-Hayes et al. [26]. However, these approaches inherently do neither support
MDSD processes nor distributed collaboration. TRACES on the other hand was purpose-
fully designed to support this class of software engineering problems.

Egyed also suggests the use of test scenarios in order to obtain traceability information
[19, 20, 21]. This approach can only be partly automated though, due to the fact that
traces need to be established and managed mainly manually. Spanoudakis et al., on the
other hand, describe a rule-based approach which can almost completely be automated
[36]. So do Jirapanthong and Zisman who develop another rule-based approach to the
automatic generation of traceability links [28]. Since model-to-model and model-to-code
transformations also contain rules, these approaches are somewhat comparable to ours.
However, as it is the case with the IR approaches, none of the rule-based approaches can



be smoothly integrated with existing MDSD and CSDP tools in order to support distributed
MDSD.

There are only a few authors emphasizing the importance of tool integration with respect to
traceability. Even though some tool support for traceability, i.e., trace capturing, manage-
ment, and analysis exists, Aizenbud-Reshef et al. conclude that there is a lack of integrated
solutions [1]. Complementarily, Kowalczykiewicz and Weiss stress the importance of tool
integration [30]. They present a first prototype for an integrated tool platform with support
for traceability and change management whereas there are no particular capabilities for
MDSD yet.

Therefore, the unique utility of the OMEGA TRACES approach consists of allowing a
relatively high degree of automation with respect to trace generation and capturing tra-
ces among requirements and model elements at different levels of abstraction. Moreover,
TRACES is designed to integrate with existing development environments and collabora-
tion platforms in order to support collaboration in distributed model-driven development
processes, commonly found in outsourced and offshore software projects (cp. [35]). In ad-
dition, the integration with TraVis accounts for visual traceability and change management
in distributed projects (see section 4.6).

6 Conclusion

We have presented an easy to use, yet inherently powerful approach to traceability and
a prototypical implementation, which allows a high level of automation, tool integration,
and distributed collaboration. By integrating our prototype with the Eclipse and CodeBea-
mer platforms, we have demonstrated that the approach can easily be used in conjunction
with widely accepted development environments for realizing locally distributed, MDSD
projects. A main advantage of our approach is the ease of use and therefore easy adoption
for developers, since little additional effort is necessary to create a reasonable amount of
traceability information that can be retrieved from models and code using external tools,
such as TraVis.

Due to the fact that all information needed to link requirements to model elements and
source code and other textual resources is stored in XML/XMI-serialized models, our
approach can easily be adapted to other modeling and code generation environments that
use these standards.

There are, however, a few minor issues that will be addressed in the near future. Most
significantly, the current strategy of validating and updating traceability links allows ”in-
valid” model states where model elements reference requirements that no longer exist.
This is because a lazy validation and update policy was chosen for the prototype to impro-
ve its performance. However, a more efficient solution for this particular problem will be
developed and evaluated empirically in case study and/or experimental settings.
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