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Abstract: Eliciting non-functional security requirements within a company was 
one of the major aspects of the SIKOSA1 project [WKKG07]. Scenarios, such as 
the METRO one presented in this paper, show how besides the company's internal 
requirements, customers' preferences play an important role as well. However, 
conflicts between specific customers' privacy policies and the company's one need 
to be detected and dealt with. We present a policy language able to tackle the 
comparison problem and outline a monitor for the enforcement of such policies. 

1 Introduction  

Personalized services are often viewed as the panacea of e-commerce [SaSA06]. User 
profiles, such as click streams logging every site the user accesses, are used to generate a 
profile of interests of the users. The decisive advantage of such services lies in the 
opportunity of entering a one-to-one relationship in order to thereby achieve more 
effective customer loyalty. Thereby, service tailoring is not limited to e-commerce 
anymore. In Germany, the METRO-Group is developing the "Future Store", where 
shopping trolleys are fitted with personal shopping assistants, i.e. little computers 
connected to the store's information system. Services, such as recommender systems, are 
personalized by means of the customer cards [KaAc06]. However, personalization 
involves intensive collection and usage of personal-related data. If customers want to 
benefit from such services, enforcing privacy by minimizing data disclosure is no longer 
possible. Customers need means to control the usage of their data [PHBa06]. 

In this paper, we present the Extended Privacy Definition Tool (ExPDT) as a mean for 
companies to comply not only with regulatory and business requirements, but also with 
customers' privacy preferences. In chapter 2, we classify our ExPDT solution consisting 
of a policy language described in chapter 3 and a corresponding monitor described in 
chapter 4. In the conclusion, an outlook on further work is given. 
                                                           
1 SIKOSA: Sichere Kollaborative Softwareentwicklung und Anwendung. A project in collaboration with the 
Uni of Heidelberg (Software Engineering Group), Uni of Hohenheim (Information Systems II), the ETH 
Zürich (Databases and Information Systems) and Uni of Freiburg (Telematics) funded by MWK of BW. 



2 Tackling the privacy problem 

Privacy and security for enterprise information systems is about ensuring that business 
processes are executed as expected and operations such as data accesses are in 
accordance with a prescribed or agreed on set of norms, such as laws, regulations, and 
decisions. Solutions for achieving that can be broken down to two main approaches 
according to the time of application. One approach is called the retrospective reporting 
where traditional audits usually done 
through manual checks based on 
comprehensive logs and reports of the last 
period of time are used to show policy 
conformance [Acco07]. The other, more 
recent approach is often called security by-
design exhibiting a more preventive focus. 
Non-functional privacy and security 
requirements are captured and subsequently 
propagated into the enterprise applications. 
We propose a model of different layers w.r.t 
abstraction and possibility for automation by IT (c.f. Figure 1). Since laws only describe, 
what has to be done in general, these regulations have to be interpreted into control 
objectives for the particular business domain of a company. Although formulated by 
experts, those control objectives are still in natural language. For IT systems, they need 
to be interpreted once more and mapped to the particular services, components, and 
employees of the company. Policies are a set of formalized rules precisely describing for 
each unit what is allowed or mandatory and what is prohibited. Such policies serve as 
input for security monitors, enforcing them on the lower system level. A high degree of 
automation is only possible within the policy and the monitor layer, where ExPDT is 
situated, as this is the first level providing laws in a machine-understandable format.  

2.1 Policy and monitor requirements 

For a policy language, it is not only essential to feature sufficient expressiveness based 
on a wide range of compassing modalities like permissions, prohibitions and orders and 
on context inclusion based on a fine grained vocabulary [HPSW06, BAMK05]. It is also 
necessary for a policy language to allow for modular specification and, in particular, for 
comparison of policies. Not only regulatory objectives that could be realized in one 
central policy have to be enforced by a company. Its customers need to be able to control 
the collection and usage of their own personal data by formulating their own privacy and 
security preferences [Bund83, PHBa06]. Their policies need to be adhered to at runtime, 
too. 

For enforcing such expressive languages, monitors have not only to cope with 
conditions, i.e. he "traditional" access control, but also to enforce orders and obligations. 
Particularly, evaluation of policy rules depends on the evaluation of their conditions. 
Therefore, a monitor has to provide and track the current values of condition variables 
by requesting the relevant information from the system. 

Figure 1: ExPDT within the layer model 



2.2 Related Work  

Tackling privacy by means of policies is not new. The W3C developed P3P to express 
website privacy policies in a machine-readable format and its counterpart APPEL to 
express customers' preferences [P3P, CrLM05]. Both designed for comparing policies, 
they lack conditions, prohibitions, obligations, and enforceability. For internal policies, 
XACML was designed by the OASIS consortium [Mose04]. While XACML can express 
privacy related policies, IBM's EPAL is dedicated to this task with its fine grained 
vocabulary, high expressiveness and monitor integration [EPAL03]. NAPS enhances 
EPAL to an algebra allowing for modular specification of policies [RaSt06]. 

3 ExPDT - Expressing Privacy Policies 

The ExPDT language is a policy specification language in OWL-DL that allows users to 
develop declarative privacy and security policies over specific domain knowledge. The 
ExPDT language is used to describe positive permissions, negative prohibitions, and 
orders that have to be adhered to if certain contextual conditions are met or some 
obligations have to be fulfilled. Based on the algebraic framework NAPS, it inherits 
semantic and combination operators allowing for a modular specification of policies. A 
distinguishing feature of the language is the difference operator for policy for analysis 
and comparison. As ExPDT is geared towards dynamic environments, it can deal with 
incomplete context information and also includes sanctions that can be imposed. 

For the presentation of the ExPDT language in the following chapters, we introduce 
three logical layers: the language layer, the domain layer and the instance layer. At the 
bottom, the language layer establishes the basis by providing fixed vocabulary for the 
specification of language itself, just like the grammar of a natural language. Based upon 
that, the domain layer fills up vocabulary by defining the instances of assets, actuators 
and environment. In contrast to the language layer, the specifications on the domain 
layer have to be consistent with the current scenario. Therefore, they are subject to 
occasional adaptations. A common understanding of privacy preferences is not possible, 
until language and domain are commonly defined. On the third layer, concrete policy 
instances both of the companies as well as of the customers can be defined, exchanged 
and agreed upon. 

3.1 Language specification layer 

A language is made from its syntax and semantic. Hereby, syntax is the definition of all 
words allowed to be used in the language as well as their set up, in particular the 
definition of a rule and its parts. The semantic describes the meaning behind the syntax. 
For a policy, the semantic is given by its evaluation function that provides the results for 
a particular policy query. The subsequent specification of the ExPDT language layer 
follows this sectioning and starts with the description of the syntax, before the semantic 
is given with its evaluation function and the policy operators for combining and 
comparing policies. 



 

3.1.1 Syntax 
Although the ExPDT language features a representation in OWL, its syntax is presented 
in a more space-saving way on the basis of the simplified owl class diagram with the 
inheritance and selected properties of the OWL classes shown in Figure 2. Short 
examples of the actual OWL syntax2 are given in chapters 3.2 and 3.3 for the domain 
and instance layer. 

A policy consists of a prioritized list of rules and a default ruling in the case where no 
rule applies. A rule itself is comprised of one or more possibly negated guards 
constraining the scope of this rule from users, actions, data and purpose, a number of 
conditions and the ruling that subsequently delivers the decision of this rule. Hence, a 
generic rule has the following form: [(user, action, data, purpose), conditions, ruling] 

For intuitive specification of the scenario on the domain layer later on, the element 
instances of a guard are partially ordered in hierarchical structures allowing for grouping 
of instances and the formulation of policies rules applying to entire sub-hierarchies, e.g. 
to all users of a particular department or all the data belonging to contact information. 
Thereby, each of them has his own structure: customers, employees and services are 
combined in the user structure, sensitive data items are described in data, possible 
actions on these data items are given in action and the possible intentions of actions in 
question are structured in purpose. It is not required that hierarchies have unique 
predecessors, as long as they form a directed acyclic graph. 

Regulations often depend on context information, e.g. permitting data access only if the 
customer is not under age or the legal guardian has given his consent. For the inclusion 

                                                           
2 The full OWL ontology can be found at <http://www.telematik.uni-freiburg.de/mitarbeiter/kaehmer/ExPDT/> 
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Figure 2: OWL class diagram of ExPDT policy language



of such constraints, ExPDT reverts to a 3-valued, many-sorted condition logic. A 
condition is a formula of this condition logic defined over the condition vocabulary and 
its interpretation functions. A vocabulary consists of the final set of sorts (i.e. variable 
types) each with a final set of variables. The set of non-logical symbols of simple 
constrains includes relations, the set of logical symbols the operators and, or, not, weak 
not, 0, 1 and u as undefined. The single-valued operators not and weak not have only a 
first parameter, the others additionally a second one. Formulas and terms of the 
condition logic are recursively defined as usual as in the predicate logic free of quantors. 
The semantic of a formula is given as in the 3-values Łukasiewicz L3 logic [Gall88]. The 
undefined value is advantageous to an environment of dynamic character, such as stores 
with continuously changing customers and modified or switched services, in that it 
supports the rule evaluation even with incomplete context information. If the evaluation 
of a condition does not return a clear decision 0 or 1 due to lack of information, the 
evaluation is continued and the decision conjunctively linked with the final decision, as 
will be shown in chapter 3.1.2.2. 

A policy rule not only regulates the actions on data 
items, but can impose obligations, such as "notify 
customer" or "delete data within one day". ExPDT does 
not consider obligations as pure black box instructions, 
but has an underlying obligation model (O, ≤, ∧, T, ⊥) 
of a half lattice with maximum element top T as the 
empty obligation and the minimal element bottom ⊥ as 
the unfulfillable obligation. Imposing the obligation T 
means that the action of the guard can be carried out 
without further undertaking, imposing ⊥ that an action 
may not be carried out. For policy specification, we use a lattice above the power set of 
the elementary obligations Õ, of the conjunction as aggregation, T := ∅, ⊥ := Õ and for 
a, b in Pot(Õ): A ≤ B :⇔ A ⊆ B. The usage of this model allows us for the exclusion of 
impossible obligation combinations, such as "delete data within 1 week" and "keep data 
for a year" at the same time. 

The ruling of an ExPDT rule and the default ruling of the overall policy are specified by 
a tuple of obligation (postiveObligation, negativeObligation), each an element of Pot(Õ). 
While the tuple (⊥, ⊥) indicates an internal error state, the actual semantic of a ruling is 
discussed in chapter 3.1.2.1. Since ExPDT policies make statements about users 
performing an action on some data for a particular purpose, the policy query is 
accordingly also a tuple of user, action, data, and purpose, too.  

3.1.2 Semantic 
While the specification of policies, queries and rulings were part of the syntax, the 
evaluation function of a query resulting in a ruling for a given policy defines the 
semantic of the ExPDT policy language. Firstly, the semantic of a single ruling is 
explained, followed by the description of the evaluation function. Afterwards, the 
combination and comparison operators on policies are introduced and defined. 

Figure 3: Half lattice of obligations 



3.1.2.1 Ruling of a rule 
The required authorization and order rule modalities presented can both be expressed in 
the ExPDT language, as shown in Table 1. Actions can therefore not only be permitted 
but also forbidden. It is also possible to compulsorily regulate the execution of actions. 
In addition to the conditions (sometimes called provisions), obligations can also be 
imposed on the user. These are actions that have to be performed in future. The ExPDT 
language also allows the users a certain degree of freedom in rule compliance. While this 
always applies in the case of a permit – if an action is allowed, one does not necessarily 
have to use this right – users can decide for themselves whether they adhere to a 
prohibition or a command. If they do not, sanctions in the form of additional obligations 
can be specified in an ExPDT rule. If these sanctions correspond however to the 
impossible obligation ⊥, adherence becomes necessary for the users. The various rule 
modalities as well as the obligations and sanctions are mapped in ExPDT via the tuple of 
obligations of the ruling, whereby the first obligation specifies the future additional 
actions and the second possible sanctions. Here are some examples: 

• Permission: A retailer can access the customer number. Ruling: (T, T) 
• Permission with obligation: A retailer can access the customer’s shopping list 

but not secretly. Ruling: (notify, T) 
• Prohibition with sanction: A retailer may not access the shopping list, which is 

achieved by imposing the impossible obligation. If he disregards this 
prohibition and reads it out, he must inform the customer and pay him a fine as 
sanction. Ruling: (⊥, payFine) 

• Essential command: The security administrator must in any event classify the 
data requested according to its sensitivity. For the ruling, this means that there 
are no additional obligations but there is the sanction according to the 
impossible obligation. Ruling: (T, ⊥) 

 
Modality Obligations Sanctions Ruling 

  (T, T) Permission 
O+  (O+, T) 

  (⊥, T) Prohibition 
 O- (⊥, O-) 
  (T, ⊥) 

O+  (O+, ⊥) 
 O- (T, O-) 

Order 

O+ O- (O+, O-) 
Error   (⊥, ⊥) 

Table 1: ExPDT codes the modalities into the ruling 

3.1.2.2 Evaluation of a policy 
The semantic of the policy language is determined through the evaluation function 
evalα(P,q) for a query q regarding a particular policy P and current assignment α of the 
contextual condition variables. Roughly, the function searches through the list of policy 



rules until a rule is matched by the query. Matching means that all elements of the rule 
guard are either equal to the user, action, data, and purpose of the query or stand higher 
up in their corresponding hierarchy. Additionally, the condition of the rule must not 
evaluate to false using the current variable assignment. Thus, queries are not restricted to 
minimal elements of the guard hierarchies and allow for scenarios, where, for example, a 
basic policy company policy referring to departments is only composed with a 
department policy making concrete statements about individuals. Although the particular 
user Bob may not be mentioned in the company policy, its rules still apply to him. The 
complete evaluation algorithm works as follows: 

1) Initialize the ruling rp with (T, T) and preset evaluation status v to default. 
2) Evaluate rules one by one according to their priority.  

a. If the rule's guard is matched by the query and its condition evaluates 
to 1, return the conjunction of the rule's ruling and hitherto 
accumulated rp as policy ruling and an evaluation status v of final. 

b. If the query is matched by a rule's guard and its condition evaluates 
to u, add rule's ruling to rp, set the status v to applicable and proceed 
with the next rule. 

3) If the status v is applicable, than return rp as ruling and that status. 
4) If the status is still default, no rule has matched and the default ruling is 

returned together with the status v default. 

The case of incomplete context information resulting in an undefined condition value for 
a rule is taken into account by accumulating the ruling of such a rule with a possibly 
previous found ruling, i.e. conjunct both the positive obligations and the negative 
obligations, and proceeding with the evaluation. Hence, it is ensured that the evaluated 
ruling is possibly too restrictive due to the additional obligations, but never too weak. 

3.1.2.3 Combination of policies 
The extensive dragging along of the evaluation status v with its distinction of final, 
applicable or default ruling allows ExPDT the definition combination operators despite 
the stub-behavior of the policies. The stub-behavior corresponds to the intention of the 
default ruling is to ensure a safe ruling until another rule matches, therefore the 
refinement of a default ruling with an applicable or final one should be possible in case 
of a policy combination. In ExPDT, two combination operators are defined: the 
conjunction P1 ^ P2 thereby evaluates P1 and P2 with equal priority, while the 
composition P1 || P2 gives P1 higher priority for the evaluation, therefore evaluates it first. 
For more detailed combination tables of the rulings and generating algorithms, see 
[Raub04]. On account of the evaluation status, an adequate policy in turn emerges from 
connected policies, which leads to numerous algebraic laws, such as the query evaluation 
of (P1 ^ P2) is equal to the conjunction of the rulings separately evaluated for P1 and  P2. 
If a policy P consists of the conjunction of two partial policies P1 and P2, then each query 
at the entire policy P leads to the same result as when the query at P1 and P2 is each 
placed separately and only their results are subsequently conjunctively connected. The 
same thing similarly applies for the composition. Hence, local evaluation of two partial 



policies is possible instead of generating the combination of two policies beforehand. 

3.1.2.4 Comparison of policies 
In related literature, for the comparison of two guidelines one often finds the equivalence 
where both guidelines always supply the same results and the refinement which 
examines a guideline as to whether it is more restrictive or specific than another. In 
practice, these tests are however only suitable to a certain extent for users, if they can 
only determine with them whether their preferences are fulfilled by a service. How 
should the users behave, however, if the policy of a service does not correspond with 
that of their own, therefore being not equivalent or more restrictive? They will not reject 
a utilization of the service in each case. It can even be their wish, depending on the 
current situation, to lower their data protection demands in favor of the utilization. 

In such situations, the users must be able to quickly survey and estimate how far the 
service guideline deviates from their own preferences or the service's previous ruling. In 
dynamic environments, in particular, where the users are faced with many different 
services and their respective individual policies, this task can no longer be manually 
accomplished. In order to alleviate the user’s personal decision for or against service 
utilization, the difference operator for two guidelines is defined in the following. This 
operator reduces the regulation of the policy to become effective to precisely those rules 
describing situations that are of interest to the users for their assessments, namely to 
those that allow additional actions or at least actions on weaker conditions or obligations 
and therefore supply more generous results. 

Difference: Given two policies P1 and P2 over compatible vocabulary, the difference 
P2 – P1 is a mapping from P x P  to a list of rules R that covers exactly those queries q 
and assignments α of conditional variables that result in a less restrictive ruling for P2, 
so (ri, vi) = evalα(Pi,q) for i = 1, 2  r1 ≤/  r2. For these, the difference rule list results in the 
same decisions as P2. 

This rule list describes the functional difference of both policies, so they are compared 
independent of their possible evaluation status; the stub behavior of the policies is not 
taken into consideration. This is particularly significant if policy P1 is to be replaced by a 
different policy P2, for example if a customer discards his own preferences P1 and 
releases his personal data under the service's policy P2. Then it is irrelevant whether an 
action is forbidden owing to the standard ruling of P1, but this standard ruling is refined 
with a permit. It is only important here that this action is subsequently permitted. 
However, if policies P1 and P2 are intended to be connected afterwards, the difference 
should consider the stub-behavior of P1. For instance, the P1 default ruling can be 
replaced by an arbitrary non-default ruling of P2, which would provide a more specific 
result without the need to get the users' attention– as long as they are aware of this stub-
behavior. However, we abstain from defining difference versions regarding this special 
behavior by considering the evaluation status v in this paper because they only add 
complexity without giving additional insight. 

In fact, the former mentioned equivalence and refinement of two policies can be 
computed by means of the difference: if P2 – P1 results in an empty list, P2 describe less 



restrictive situations and P2 is a functional refinement of P1. If the difference of switched 
policies results in an empty rule list as well, P1 and P2 are functional equivalent.  

An initial implementation can take place here by way of a brute force approach. The 
decisions for all possible enquiries and all possible allocations of the environment 
parameter must simply be calculated for both P1 and P2 policies. A rule with the scope of 
the query (i.e. corresponding guard) and the conditions and ruling of the rule appropriate 
in each case of P2 is included in the rule list P2-P1, if the ruling r1 has other or lesser 
obligations than r2. This brute force approach tests all possible combinations of enquiries 
and parameter allocations so that its complexity grows exponentially with the vocabulary 
used.  

Therefore, a more efficient 
approach is presented in 
this paper. As outlined by 
algorithm 1, the rules of 
both policies are looped 
through according to their 
priority, so that each rule 
of P2 is compared with all 
rules of P1. According to 
the guard logic, guards can 
contain disjunctions, 
conjunctions and negations 
of guards. Therefore, 
guards cannot be 
compared using their top-

elements alone, but by the set of hierarchy elements described by them, defined by the 
closure. For an element h, the closure h consists of h itself and all elements lower in the 
hierarchy. The guard operators ∨, ∧, and ⌐ can be mapped accordingly to ∪, ∩, and ≤/ . 
If such a comparison detects only equal or more restrictive situations with bigger scope 
or weaker conditions and obligations, the looping is continued with the remaining rules 

of P1. If there are, however, 
such situations and if they are 
not captured by a following P1-
rule with lower priority (cf. 
recursive call), they are 
formally captured by a new 
rule that is appended to the 
difference result. Then, the 
looping is discontinued for the 
current P2 rule and starts with 
the next rule anew. If all P2 
rules are examined, the 
construction of the difference 
terminates. However, before 
algorithm 1 can start, the 



policies have to be preprocessed by upgrading the default rulings and normalizing P2. 

For the construction of the functional difference, a distinction between normal rules and 
default ruling is not necessary. Hence, the standard rulings of both policies are upgraded 
to normal rules by appending rules to the list with the root elements of the guard 
hierarchies, without conditions, and with default ruling as rule ruling: 

(userroot, dataroot, actionroot, purposeroot), 1, (default ruling) 
If there is more than one root for a hierarchy, append a rule for each of them. These rules 
match all possible queries by design, so that the default ruling is not triggered anymore 
and can be disregarded for the difference construction.  

Since the evaluation function of ExPDT considers the policy rules as prioritized a list 
with dependencies, the rules of P2 cannot be individually compared; P2 has to be 
normalized first. Following algorithm 2, for each rule all the situations matched by rules 

with higher priority are explicitly 
excluded from its guard and 
conditions. For P1, this 
normalization is not necessary 
because the recursive call already 
copes with the dependencies.  

For the comparison of two rules in 
algorithm 3, it has to be determined 
whether there is an overlap between 
the two scopes. If they do not 
overlap, the comparison stops. 
Otherwise, the difference between 
these two rules is examined by the 
following case differentiation: 

• r1 ≤/  r2: The ruling of rule2 is less restrictive or different. Independent of the 
conditions, rule2 is appended to the rule difference and returned. 

• Otherwise: The r2 is stricter or equal. Hence, up to two rules have to be 
appended to the rule difference:  

1. For queries matching guard2 but not guard1, this stricter or other ruling 
is in any case new, so that a rule with these queries as guard, 
conditions of c2, and ruling r2 is appended. 

2. For queries also matching guard2 as guard1 (i.e. the disjunction of their 
closures), the r1 is less restrictive, but a less restrictive condition c2 can 
necessitate another difference rule. This new rule should only describe 
the new situations, so that its condition is c2 ∧ (⌐ c1). 
Example: c1=≤ 18;  c2 = (≤ 18 ∨ guardianOK),   
  c2 ∧ (⌐ c1) = (≤/ 18 ∧ guardianOK) 

For the last case, it is essential to not only evaluate conditions but to also compare the 
ability to satisfy two given conditions. It must be determined whether one rule restricts 
its applicability with more strict or equivalent conditions than another rule or features a 



greater application space with additional context situations. This yields in the 
examination whether a condition c1 satisfies another c2, i.e. if c1 is satisfied, then c2 is 
also satisfied, or if c1 results in the undefined state u, c2 is also undefined or even 
satisfied. For independency of the current situation, this has to hold for all possible 
variable assignments. This examination is, however, NP-complete over the number of 
variables of the vocabulary considered, so that no efficient algorithm is to be expected 
for the general case. Nevertheless, in order to be able to compare the conditions, the 
examination is reduced to a satisfy relation similar to [BKBS04], which is at least 
correct, i.e. if two conditions c1 and c2 are contained in the relation, then the above-
mentioned satisfaction holds true. 

Satisfy relation: Given a conditional vocabulary Voc, the satisfy relation for Voc is the 
relation → CVoc x CVoc. The relation is correct if for all conditions c1, c2 ∈ CVoc und for all 
possible assignments α holds. In infix notation:  
 c1 →Voc c2  :⇔ [ evalα(c1) = 1 ⇒ evalα(c2) = 1 ]  ∨  
   [ evalα(c1) = u ⇒ evalα(c2) = u ∨ 1 ] 
If the opposite direction also holds, the satisfy relation is complete. A correct satisfy 
relation can often be constructed via the symbolic evaluation by all pairs of atomic 
formulas with known semantic satisfy dependency, but also via the comparison on a pure 
syntactic level of their interpretation functions of the same sort. Such a correct satisfy 
relation is mostly adequate for practical application, even if it is not complete. For if two 
conditions are mutually dependent and this dependency is unknown to the users and 
therefore not included in the relation, then such conditions should be independently 
treated in order to meet the users' expectation. At worst, the differential result hereby 
increases by an additional rule, however without changing its evaluation. 

3.2 Domain layer 

Based upon the language layer, the vocabulary is filled up by defining concrete instances 
of assets, actuators, conditions, and obligations and by and categorizing them 
accordingly on the domain layer. These specifications should always be consistent with 
the current scenario and, therefore, needs to be adapted in case of environmental 
changes. ExPDT uses an ontology specified in OWL-DL, as it supports not only for the 
representing and displaying of the domain specific knowledge, but also for the 
automated interpretation and reasoning.  

Figure 6 gives an example for the data hierarchy specification. Here, a shopping list is a 
subclass of the dataroot DATA. In turn, a medical prescription is a subclass of shopping 
list, and its instances are dynamically assigned by a property restriction: all shopping 
lists that contain at least one drug to buy are considered as prescription. Hence, 
customers can formulate rules for this particular kind of shopping list and taking care not 
to provide its contents to normal salespersons, but only the druggist of the shop. 

Examples of obligation are given in Figure 5. The obligation "delete data after usage" is 
coded as elementary obligation that, of course, is incompatible with obligation to keep 
the data afterwards. Obligations used in rulings are either instances of single or multiple 



elementary obligations. A condition 
instance is the simple constraint 
gaveConsent in Figure 4 that is 
basically spanning a relation between 
the sort Consent and an element of 
data hierarchy. The Consent-variable 
has two possible strings "no" and 
"yes" that are mapped to the Boolean 
values 0 and 1 for evaluation purpose 
by the interpretation function. 

 

3.3 Policy layer 

On the policy layer, instances of policy can be formulized by combining the building 
blocks of the domain layer glued together with the elements of the language layer. 
Figure 7 shows a privacy policy containing only two rules. The first rule allows a 
druggist to access a 
particular prescription for 
the purpose of giving 
further information, e.g. 
the compatibleness of 
some ingredients. The 
second rule allows all 
persons working for sales 
to read shopping lists, if 
the customer has 
consented, the data is 
deleted afterwards and the 
customer is notified about 
this event. Queries for all 
other situations are not 
matched by the rules, but 
by the restrictive default 
ruling of the policy that 
prohibits everything not 
already covered by the 

Figure 4: Example condition 

<owl:Class rdf:about="DOM#OBL:Delete"> 
<rdfs:subClassOf rdf:resource="LANG#OBL:ELEOBLIG"/>
<owl:disjointWith> 
  <owl:Class rdf:about="DOM#OBL:keep"/> 
</owl:disjointWith> 

</owl:Class> 
 
<Obligation rdf:about="DOM#OBL:deleteAndNotify"> 

<rdfs:subClassOf rdf:resource="DOM#OBL:keep"/> 
<rdfs:subClassOf rdf:resource=" DOM#OBL:notify"/> 

</Obligation> 

<owl:Class rdf:about="DOM#DATA:shoppingList"> 
<rdfs:subClassOf rdf:about="DATA"/> 

</owl:Class> 
 
<owl:Class rdf:about="DOM#DATA:Prescription"> 
  <rdfs:subClassOf rdf:resource="DOM#DATA:shoppingList"/> 
  <rdfs:subClassOf> 
    <owl:Restriction> 
      <owl:onProperty rdf:resource="DOM#COND:contains"/> 
      <owl:someValuesFrom rdf:resource="DOM#DATA:drugs"/> 
    </owl:Restriction> 
  </rdfs:subClassOf> 
</owl:Class> 

 
<Prescription rdf:ID="DOM#DATA:shoppingAtDrugstore"/> 

<POL:Policy rdf:ID="MyPolicy"> 
  <POL:PolicyHasRules> 
    <rdf:Seq rdf:ID="MyPolicyRules"> 
      <rdf:li> 
        <POL:Rule rdf:ID="Rule1"> 
          <POL:RuleHasUser rdf:resource="DOM#USER:druggist"/> 
          <POL:RuleHasAction rdf:resource="DOM#ACTION:read"/> 
          <POL:RuleHasData rdf:resource="DOM#DATA:shoppingAtDrugstore"/> 
          <POL:RuleHasPurpose rdf:resource="DOM#PURP:information "/> 
          <POL:RuleHasPosObligation rdf:resource="LANG#OBL:top"/> 
          <POL:RuleHasNegObligation rdf:resource="LANG#OBL:top"/> 
        </POL:Rule> 
      </rdf:li> 
      <rdf:li> 
        <POL:Rule rdf:ID="Rule2"> 
          <POL:RuleHasUser rdf:resource="DOM#USER:sales"/> 
          <POL:RuleHasAction rdf:resource="DOM#ACTION:read"/> 
          <POL:RuleHasData rdf:resource="DOM#DATA:advertisment"/> 
          <POL:RuleHasPurpose rdf:resource="DOM#PURP:shoppingList"/> 
          <POL:RuleHasCondition rdf:resource="DOM#COND:hasConsented"/> 
          <POL:RuleHasPosObligation rdf:resource="DOM#OBL:deleteAndNotify"/> 
          <POL:RuleHasNegObligation rdf:resource="LANG#OBL:top"/> 
        </POL:Rule> 
      </rdf:li> 
    </rdf:Seq> 
  </POL:PolicyHasRules> 
  <POL:PolicyHasPosDefaultRuling rdf:resource="LANG#OBL:bottom"/> 
  <POL:PolicyHasNegDefaultRuling rdf:resource="LANG#OBL:top"/> 
</POL:Policy> 
 
<ASS:Data rdf:about="DOM#DATA:Customer"> 
  <ASS:gaveConsent rdf:resource="DOM#Consent:no"/> 
</ASS:Data> 

<CON:SimpleConstraint rdf:ID="DOM#COND:gaveConsented"> 
  <CON:ToHierarchy rdf:resource="LANG#DATA:DATA"/> 
  <CON:TypeOf rdf:resource="DOM#COND:Consent"/> 
</CON:SimpleConstraint> 
 
<owl:Class rdf:about="DOM#Consent:Consent"> 
  <rdfs:subClassOf rdf:resource="LANG#COND:Interpretation"/> 
</owl:Class> 
<Consent:Consent rdf:about="DOM#Consent:no"> 
  <LANG:HasValue rdf:datatype=  
       "http://www.w3.org/2001/XMLSchema#int">0</LANG:HasValue> 
</Consent:Consent> 
<Consent:Consent rdf:about="DOM#Consent:yes"> 
  <LANG:HasValue rdf:datatype=  
       "http://www.w3.org/2001/XMLSchema#int">1</LANG:HasValue> 
</Consent:Consent> 
 
<owl:ObjectProperty rdf:about="LANGPOL#ASS:Consent"> 
  <rdfs:range rdf:resource="DOM#COND:Var_Consent"/> 
  <rdfs:domain rdf:resource="#ASS:Data"/> 
</owl:ObjectProperty> 

Figure 6: Definition of guard elements 

Figure 5: Definition of obligations 

Figure 7: Expamle of a policy 



rules. Alike the policy instance, the assignment of the conditional variables to the guard 
hierarchies – customer has not given consent for actions on his data – is part of the 
policy layer, but the actual variable values have to be provided by the monitor. 

4 ExPDT - Query evaluation and policy enforcement at runtime 

The previous section described in detail the semantic and syntactic aspects of the policy 
language itself. This section focuses on how – at runtime – an incoming query is 
evaluated and enforced. For example, the store’s marketing process "create personalized 
advertisement" analyzes the purchases of a customer in order select special offers 
according to his shopping habits. Thus, the system requests access the data of a customer 
C. The access control monitor evaluates this request according to the policy rules of 
customer C and of the store and, as a result, grants or denies the access to the data of 
customer C.  

The components of 
the access control 
architecture are 
depicted in Figure 8 . 
For evaluating the 
guard, the subject, 
the action and the 
object are mapped to 
their corresponding 
hierarchy in order to 
determine the 

relevant policy rules. Once this is done, based on system events the monitor evaluates 
the current values of the conditions. This requires an interpretation of earlier access 
decisions with respect to the current access request. Finally, the monitor must enforce its 
access decision.  

4.1 Rule evaluation 

In order to identify the relevant policy rules for a given query, the evaluation functions 
checks for each rule if the rules elements user, data, action, purpose match the 
corresponding element of the request. This might be an exact match or the policy's 
elements are higher within the element hierarchy than the query's elements. Once a 
relevant rule is detected, it is evaluated according to the evaluation function given in 
section 3.1.2.2. 

 

 

Figure 8: ExPDT monitor 



4.2 Condition value assignment 

In order to evaluate the conditions, the concrete values of the conditions have to be 
known. Contextual conditions can refer either to the user, the data, the action or the 
purpose. Some condition values are static. Once the value of the condition "over 18" is 
true, it stays true. In contrast, the value of the condition "has agreed" has to be evaluated 
at each request, as the user may in between have revoked his consent. The monitor gets 
information, like the current time, on demand form the system and keeps itself track of 
earlier access decisions. This allows the monitor to evaluate conditions like "read at most 
twice" autonomously.  

4.3 Enforcing a policy 

Policies of the type [(guard)(conditions)] can be enforced by an access control monitor 
[HaMS06]. Some obligations are liveness properties, as for example "customer must be 
notified". This can neither be enforced, nor can violation of these obligations be 
reported, as the notification may take place some time later. By adding time constraints 
on these obligations, they are turned into safety-properties: "customer must be notified 
within 2 days". Such obligations are in general still not enforceable by a monitor, but at 
least can violations be detected if after two days no notification took place.  

5 Summary and Conclusion and further steps 

Motivated by an example of the retailer METRO, we show that enterprises have – beside 
their internal security requirements – also to consider their customers' preferences. This 
requires an expressive policy language permitting the comparison of two different 
policies. We therefore present the extended privacy definition tool ExPDT for expressing 
privacy preferences for access to and usage of personal data allowing also the 
comparison of two policies. Further more, we show how ExPDT rules are evaluated and 
how they can be enforced at runtime by a monitor.  

For now, ExPDT allows to find differences between policies. How these differences can 
be resolved has not been considered yet. The next step, therefore, is a negotiation 
protocol. The goal is not a fully automated procedure, but a tool to assist the negotiation 
process step by step. Enforcement of obligations and orders is a current open research 
issue. We currently investigate how obligations can be enforced by rewriting business 
process. A second approach to the enforcement of obligations uses heuristics in order to 
determine at runtime process executions that will probably lead to obligation violation.
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