
Extended Privacy Definition Tool

Martin Kähmer, Maike Gilliot

Institute of Computer Science and Social Studies, Department of Telematics
Albert-Ludwigs University Freiburg
Friedrichstrasse 50, 79098 Freiburg

{kaehmer,gilliot}@iig.uni-freiburg.de

Abstract: Eliciting non-functional security requirements within a company was
one of the major aspects of the SIKOSA1 project [WKKG07]. Scenarios, such as
the METRO one presented in this paper, show how besides the company's internal
requirements, customers' preferences play an important role as well. However,
conflicts between specific customers' privacy policies and the company's one need
to be detected and dealt with. We present a policy language able to tackle the
comparison problem and outline a monitor for the enforcement of such policies.

1 Introduction

Personalized services are often viewed as the panacea of e-commerce [SaSA06]. User
profiles, such as click streams logging every site the user accesses, are used to generate a
profile of interests of the users. The decisive advantage of such services lies in the
opportunity of entering a one-to-one relationship in order to thereby achieve more
effective customer loyalty. Thereby, service tailoring is not limited to e-commerce
anymore. In Germany, the METRO-Group is developing the "Future Store", where
shopping trolleys are fitted with personal shopping assistants, i.e. little computers
connected to the store's information system. Services, such as recommender systems, are
personalized by means of the customer cards [KaAc06]. However, personalization
involves intensive collection and usage of personal-related data. If customers want to
benefit from such services, enforcing privacy by minimizing data disclosure is no longer
possible. Customers need means to control the usage of their data [PHBa06].

In this paper, we present the Extended Privacy Definition Tool (ExPDT) as a mean for
companies to comply not only with regulatory and business requirements, but also with
customers' privacy preferences. In chapter 2, we classify our ExPDT solution consisting
of a policy language described in chapter 3 and a corresponding monitor described in
chapter 4. In the conclusion, an outlook on further work is given.

1 SIKOSA: Sichere Kollaborative Softwareentwicklung und Anwendung. A project in collaboration with the
Uni of Heidelberg (Software Engineering Group), Uni of Hohenheim (Information Systems II), the ETH
Zürich (Databases and Information Systems) and Uni of Freiburg (Telematics) funded by MWK of BW.

2 Tackling the privacy problem

Privacy and security for enterprise information systems is about ensuring that business
processes are executed as expected and operations such as data accesses are in
accordance with a prescribed or agreed on set of norms, such as laws, regulations, and
decisions. Solutions for achieving that can be broken down to two main approaches
according to the time of application. One approach is called the retrospective reporting
where traditional audits usually done
through manual checks based on
comprehensive logs and reports of the last
period of time are used to show policy
conformance [Acco07]. The other, more
recent approach is often called security by-
design exhibiting a more preventive focus.
Non-functional privacy and security
requirements are captured and subsequently
propagated into the enterprise applications.
We propose a model of different layers w.r.t
abstraction and possibility for automation by IT (c.f. Figure 1). Since laws only describe,
what has to be done in general, these regulations have to be interpreted into control
objectives for the particular business domain of a company. Although formulated by
experts, those control objectives are still in natural language. For IT systems, they need
to be interpreted once more and mapped to the particular services, components, and
employees of the company. Policies are a set of formalized rules precisely describing for
each unit what is allowed or mandatory and what is prohibited. Such policies serve as
input for security monitors, enforcing them on the lower system level. A high degree of
automation is only possible within the policy and the monitor layer, where ExPDT is
situated, as this is the first level providing laws in a machine-understandable format.

2.1 Policy and monitor requirements

For a policy language, it is not only essential to feature sufficient expressiveness based
on a wide range of compassing modalities like permissions, prohibitions and orders and
on context inclusion based on a fine grained vocabulary [HPSW06, BAMK05]. It is also
necessary for a policy language to allow for modular specification and, in particular, for
comparison of policies. Not only regulatory objectives that could be realized in one
central policy have to be enforced by a company. Its customers need to be able to control
the collection and usage of their own personal data by formulating their own privacy and
security preferences [Bund83, PHBa06]. Their policies need to be adhered to at runtime,
too.

For enforcing such expressive languages, monitors have not only to cope with
conditions, i.e. he "traditional" access control, but also to enforce orders and obligations.
Particularly, evaluation of policy rules depends on the evaluation of their conditions.
Therefore, a monitor has to provide and track the current values of condition variables
by requesting the relevant information from the system.

Figure 1: ExPDT within the layer model

2.2 Related Work

Tackling privacy by means of policies is not new. The W3C developed P3P to express
website privacy policies in a machine-readable format and its counterpart APPEL to
express customers' preferences [P3P, CrLM05]. Both designed for comparing policies,
they lack conditions, prohibitions, obligations, and enforceability. For internal policies,
XACML was designed by the OASIS consortium [Mose04]. While XACML can express
privacy related policies, IBM's EPAL is dedicated to this task with its fine grained
vocabulary, high expressiveness and monitor integration [EPAL03]. NAPS enhances
EPAL to an algebra allowing for modular specification of policies [RaSt06].

3 ExPDT - Expressing Privacy Policies

The ExPDT language is a policy specification language in OWL-DL that allows users to
develop declarative privacy and security policies over specific domain knowledge. The
ExPDT language is used to describe positive permissions, negative prohibitions, and
orders that have to be adhered to if certain contextual conditions are met or some
obligations have to be fulfilled. Based on the algebraic framework NAPS, it inherits
semantic and combination operators allowing for a modular specification of policies. A
distinguishing feature of the language is the difference operator for policy for analysis
and comparison. As ExPDT is geared towards dynamic environments, it can deal with
incomplete context information and also includes sanctions that can be imposed.

For the presentation of the ExPDT language in the following chapters, we introduce
three logical layers: the language layer, the domain layer and the instance layer. At the
bottom, the language layer establishes the basis by providing fixed vocabulary for the
specification of language itself, just like the grammar of a natural language. Based upon
that, the domain layer fills up vocabulary by defining the instances of assets, actuators
and environment. In contrast to the language layer, the specifications on the domain
layer have to be consistent with the current scenario. Therefore, they are subject to
occasional adaptations. A common understanding of privacy preferences is not possible,
until language and domain are commonly defined. On the third layer, concrete policy
instances both of the companies as well as of the customers can be defined, exchanged
and agreed upon.

3.1 Language specification layer

A language is made from its syntax and semantic. Hereby, syntax is the definition of all
words allowed to be used in the language as well as their set up, in particular the
definition of a rule and its parts. The semantic describes the meaning behind the syntax.
For a policy, the semantic is given by its evaluation function that provides the results for
a particular policy query. The subsequent specification of the ExPDT language layer
follows this sectioning and starts with the description of the syntax, before the semantic
is given with its evaluation function and the policy operators for combining and
comparing policies.

3.1.1 Syntax
Although the ExPDT language features a representation in OWL, its syntax is presented
in a more space-saving way on the basis of the simplified owl class diagram with the
inheritance and selected properties of the OWL classes shown in Figure 2. Short
examples of the actual OWL syntax2 are given in chapters 3.2 and 3.3 for the domain
and instance layer.

A policy consists of a prioritized list of rules and a default ruling in the case where no
rule applies. A rule itself is comprised of one or more possibly negated guards
constraining the scope of this rule from users, actions, data and purpose, a number of
conditions and the ruling that subsequently delivers the decision of this rule. Hence, a
generic rule has the following form: [(user, action, data, purpose), conditions, ruling]

For intuitive specification of the scenario on the domain layer later on, the element
instances of a guard are partially ordered in hierarchical structures allowing for grouping
of instances and the formulation of policies rules applying to entire sub-hierarchies, e.g.
to all users of a particular department or all the data belonging to contact information.
Thereby, each of them has his own structure: customers, employees and services are
combined in the user structure, sensitive data items are described in data, possible
actions on these data items are given in action and the possible intentions of actions in
question are structured in purpose. It is not required that hierarchies have unique
predecessors, as long as they form a directed acyclic graph.

Regulations often depend on context information, e.g. permitting data access only if the
customer is not under age or the legal guardian has given his consent. For the inclusion

2 The full OWL ontology can be found at <http://www.telematik.uni-freiburg.de/mitarbeiter/kaehmer/ExPDT/>

ActionPurposeDataUser

Policy

Request Rule

Pol1Pol2

DifferenceConjunction

Positive
Ruling

Obligation

Negative
Default
Ruling

Positive
Default
Ruling

elementaryObligation

Operation

Condition

ConditionVoc

Interpretation

Variables

BooleanConstraintSimpleConstraint

One

Weak_NotNot And Or

Two

second
param

Negative
Ruling

Composition

Sorts

Values

first param

Guard
Guard

NotGuard

Object Property

Subclass Of

toHierachry

typeOf

Figure 2: OWL class diagram of ExPDT policy language

of such constraints, ExPDT reverts to a 3-valued, many-sorted condition logic. A
condition is a formula of this condition logic defined over the condition vocabulary and
its interpretation functions. A vocabulary consists of the final set of sorts (i.e. variable
types) each with a final set of variables. The set of non-logical symbols of simple
constrains includes relations, the set of logical symbols the operators and, or, not, weak
not, 0, 1 and u as undefined. The single-valued operators not and weak not have only a
first parameter, the others additionally a second one. Formulas and terms of the
condition logic are recursively defined as usual as in the predicate logic free of quantors.
The semantic of a formula is given as in the 3-values Łukasiewicz L3 logic [Gall88]. The
undefined value is advantageous to an environment of dynamic character, such as stores
with continuously changing customers and modified or switched services, in that it
supports the rule evaluation even with incomplete context information. If the evaluation
of a condition does not return a clear decision 0 or 1 due to lack of information, the
evaluation is continued and the decision conjunctively linked with the final decision, as
will be shown in chapter 3.1.2.2.

A policy rule not only regulates the actions on data
items, but can impose obligations, such as "notify
customer" or "delete data within one day". ExPDT does
not consider obligations as pure black box instructions,
but has an underlying obligation model (O, ≤, ∧, T, ⊥)
of a half lattice with maximum element top T as the
empty obligation and the minimal element bottom ⊥ as
the unfulfillable obligation. Imposing the obligation T
means that the action of the guard can be carried out
without further undertaking, imposing ⊥ that an action
may not be carried out. For policy specification, we use a lattice above the power set of
the elementary obligations Õ, of the conjunction as aggregation, T := ∅, ⊥ := Õ and for
a, b in Pot(Õ): A ≤ B :⇔ A ⊆ B. The usage of this model allows us for the exclusion of
impossible obligation combinations, such as "delete data within 1 week" and "keep data
for a year" at the same time.

The ruling of an ExPDT rule and the default ruling of the overall policy are specified by
a tuple of obligation (postiveObligation, negativeObligation), each an element of Pot(Õ).
While the tuple (⊥, ⊥) indicates an internal error state, the actual semantic of a ruling is
discussed in chapter 3.1.2.1. Since ExPDT policies make statements about users
performing an action on some data for a particular purpose, the policy query is
accordingly also a tuple of user, action, data, and purpose, too.

3.1.2 Semantic
While the specification of policies, queries and rulings were part of the syntax, the
evaluation function of a query resulting in a ruling for a given policy defines the
semantic of the ExPDT policy language. Firstly, the semantic of a single ruling is
explained, followed by the description of the evaluation function. Afterwards, the
combination and comparison operators on policies are introduced and defined.

Figure 3: Half lattice of obligations

3.1.2.1 Ruling of a rule
The required authorization and order rule modalities presented can both be expressed in
the ExPDT language, as shown in Table 1. Actions can therefore not only be permitted
but also forbidden. It is also possible to compulsorily regulate the execution of actions.
In addition to the conditions (sometimes called provisions), obligations can also be
imposed on the user. These are actions that have to be performed in future. The ExPDT
language also allows the users a certain degree of freedom in rule compliance. While this
always applies in the case of a permit – if an action is allowed, one does not necessarily
have to use this right – users can decide for themselves whether they adhere to a
prohibition or a command. If they do not, sanctions in the form of additional obligations
can be specified in an ExPDT rule. If these sanctions correspond however to the
impossible obligation ⊥, adherence becomes necessary for the users. The various rule
modalities as well as the obligations and sanctions are mapped in ExPDT via the tuple of
obligations of the ruling, whereby the first obligation specifies the future additional
actions and the second possible sanctions. Here are some examples:

• Permission: A retailer can access the customer number. Ruling: (T, T)
• Permission with obligation: A retailer can access the customer’s shopping list

but not secretly. Ruling: (notify, T)
• Prohibition with sanction: A retailer may not access the shopping list, which is

achieved by imposing the impossible obligation. If he disregards this
prohibition and reads it out, he must inform the customer and pay him a fine as
sanction. Ruling: (⊥, payFine)

• Essential command: The security administrator must in any event classify the
data requested according to its sensitivity. For the ruling, this means that there
are no additional obligations but there is the sanction according to the
impossible obligation. Ruling: (T, ⊥)

Modality Obligations Sanctions Ruling

 (T, T) Permission
O+ (O+, T)

 (⊥, T) Prohibition
 O- (⊥, O-)
 (T, ⊥)

O+ (O+, ⊥)
 O- (T, O-)

Order

O+ O- (O+, O-)
Error (⊥, ⊥)

Table 1: ExPDT codes the modalities into the ruling

3.1.2.2 Evaluation of a policy
The semantic of the policy language is determined through the evaluation function
evalα(P,q) for a query q regarding a particular policy P and current assignment α of the
contextual condition variables. Roughly, the function searches through the list of policy

rules until a rule is matched by the query. Matching means that all elements of the rule
guard are either equal to the user, action, data, and purpose of the query or stand higher
up in their corresponding hierarchy. Additionally, the condition of the rule must not
evaluate to false using the current variable assignment. Thus, queries are not restricted to
minimal elements of the guard hierarchies and allow for scenarios, where, for example, a
basic policy company policy referring to departments is only composed with a
department policy making concrete statements about individuals. Although the particular
user Bob may not be mentioned in the company policy, its rules still apply to him. The
complete evaluation algorithm works as follows:

1) Initialize the ruling rp with (T, T) and preset evaluation status v to default.
2) Evaluate rules one by one according to their priority.

a. If the rule's guard is matched by the query and its condition evaluates
to 1, return the conjunction of the rule's ruling and hitherto
accumulated rp as policy ruling and an evaluation status v of final.

b. If the query is matched by a rule's guard and its condition evaluates
to u, add rule's ruling to rp, set the status v to applicable and proceed
with the next rule.

3) If the status v is applicable, than return rp as ruling and that status.
4) If the status is still default, no rule has matched and the default ruling is

returned together with the status v default.

The case of incomplete context information resulting in an undefined condition value for
a rule is taken into account by accumulating the ruling of such a rule with a possibly
previous found ruling, i.e. conjunct both the positive obligations and the negative
obligations, and proceeding with the evaluation. Hence, it is ensured that the evaluated
ruling is possibly too restrictive due to the additional obligations, but never too weak.

3.1.2.3 Combination of policies
The extensive dragging along of the evaluation status v with its distinction of final,
applicable or default ruling allows ExPDT the definition combination operators despite
the stub-behavior of the policies. The stub-behavior corresponds to the intention of the
default ruling is to ensure a safe ruling until another rule matches, therefore the
refinement of a default ruling with an applicable or final one should be possible in case
of a policy combination. In ExPDT, two combination operators are defined: the
conjunction P1 ^ P2 thereby evaluates P1 and P2 with equal priority, while the
composition P1 || P2 gives P1 higher priority for the evaluation, therefore evaluates it first.
For more detailed combination tables of the rulings and generating algorithms, see
[Raub04]. On account of the evaluation status, an adequate policy in turn emerges from
connected policies, which leads to numerous algebraic laws, such as the query evaluation
of (P1 ^ P2) is equal to the conjunction of the rulings separately evaluated for P1 and P2.
If a policy P consists of the conjunction of two partial policies P1 and P2, then each query
at the entire policy P leads to the same result as when the query at P1 and P2 is each
placed separately and only their results are subsequently conjunctively connected. The
same thing similarly applies for the composition. Hence, local evaluation of two partial

policies is possible instead of generating the combination of two policies beforehand.

3.1.2.4 Comparison of policies
In related literature, for the comparison of two guidelines one often finds the equivalence
where both guidelines always supply the same results and the refinement which
examines a guideline as to whether it is more restrictive or specific than another. In
practice, these tests are however only suitable to a certain extent for users, if they can
only determine with them whether their preferences are fulfilled by a service. How
should the users behave, however, if the policy of a service does not correspond with
that of their own, therefore being not equivalent or more restrictive? They will not reject
a utilization of the service in each case. It can even be their wish, depending on the
current situation, to lower their data protection demands in favor of the utilization.

In such situations, the users must be able to quickly survey and estimate how far the
service guideline deviates from their own preferences or the service's previous ruling. In
dynamic environments, in particular, where the users are faced with many different
services and their respective individual policies, this task can no longer be manually
accomplished. In order to alleviate the user’s personal decision for or against service
utilization, the difference operator for two guidelines is defined in the following. This
operator reduces the regulation of the policy to become effective to precisely those rules
describing situations that are of interest to the users for their assessments, namely to
those that allow additional actions or at least actions on weaker conditions or obligations
and therefore supply more generous results.

Difference: Given two policies P1 and P2 over compatible vocabulary, the difference
P2 – P1 is a mapping from P x P to a list of rules R that covers exactly those queries q
and assignments α of conditional variables that result in a less restrictive ruling for P2,
so (ri, vi) = evalα(Pi,q) for i = 1, 2 r1 ≤/ r2. For these, the difference rule list results in the
same decisions as P2.

This rule list describes the functional difference of both policies, so they are compared
independent of their possible evaluation status; the stub behavior of the policies is not
taken into consideration. This is particularly significant if policy P1 is to be replaced by a
different policy P2, for example if a customer discards his own preferences P1 and
releases his personal data under the service's policy P2. Then it is irrelevant whether an
action is forbidden owing to the standard ruling of P1, but this standard ruling is refined
with a permit. It is only important here that this action is subsequently permitted.
However, if policies P1 and P2 are intended to be connected afterwards, the difference
should consider the stub-behavior of P1. For instance, the P1 default ruling can be
replaced by an arbitrary non-default ruling of P2, which would provide a more specific
result without the need to get the users' attention– as long as they are aware of this stub-
behavior. However, we abstain from defining difference versions regarding this special
behavior by considering the evaluation status v in this paper because they only add
complexity without giving additional insight.

In fact, the former mentioned equivalence and refinement of two policies can be
computed by means of the difference: if P2 – P1 results in an empty list, P2 describe less

restrictive situations and P2 is a functional refinement of P1. If the difference of switched
policies results in an empty rule list as well, P1 and P2 are functional equivalent.

An initial implementation can take place here by way of a brute force approach. The
decisions for all possible enquiries and all possible allocations of the environment
parameter must simply be calculated for both P1 and P2 policies. A rule with the scope of
the query (i.e. corresponding guard) and the conditions and ruling of the rule appropriate
in each case of P2 is included in the rule list P2-P1, if the ruling r1 has other or lesser
obligations than r2. This brute force approach tests all possible combinations of enquiries
and parameter allocations so that its complexity grows exponentially with the vocabulary
used.

Therefore, a more efficient
approach is presented in
this paper. As outlined by
algorithm 1, the rules of
both policies are looped
through according to their
priority, so that each rule
of P2 is compared with all
rules of P1. According to
the guard logic, guards can
contain disjunctions,
conjunctions and negations
of guards. Therefore,
guards cannot be
compared using their top-

elements alone, but by the set of hierarchy elements described by them, defined by the
closure. For an element h, the closure h consists of h itself and all elements lower in the
hierarchy. The guard operators ∨, ∧, and ⌐ can be mapped accordingly to ∪, ∩, and ≤/ .
If such a comparison detects only equal or more restrictive situations with bigger scope
or weaker conditions and obligations, the looping is continued with the remaining rules

of P1. If there are, however,
such situations and if they are
not captured by a following P1-
rule with lower priority (cf.
recursive call), they are
formally captured by a new
rule that is appended to the
difference result. Then, the
looping is discontinued for the
current P2 rule and starts with
the next rule anew. If all P2
rules are examined, the
construction of the difference
terminates. However, before
algorithm 1 can start, the

policies have to be preprocessed by upgrading the default rulings and normalizing P2.

For the construction of the functional difference, a distinction between normal rules and
default ruling is not necessary. Hence, the standard rulings of both policies are upgraded
to normal rules by appending rules to the list with the root elements of the guard
hierarchies, without conditions, and with default ruling as rule ruling:

(userroot, dataroot, actionroot, purposeroot), 1, (default ruling)
If there is more than one root for a hierarchy, append a rule for each of them. These rules
match all possible queries by design, so that the default ruling is not triggered anymore
and can be disregarded for the difference construction.

Since the evaluation function of ExPDT considers the policy rules as prioritized a list
with dependencies, the rules of P2 cannot be individually compared; P2 has to be
normalized first. Following algorithm 2, for each rule all the situations matched by rules

with higher priority are explicitly
excluded from its guard and
conditions. For P1, this
normalization is not necessary
because the recursive call already
copes with the dependencies.

For the comparison of two rules in
algorithm 3, it has to be determined
whether there is an overlap between
the two scopes. If they do not
overlap, the comparison stops.
Otherwise, the difference between
these two rules is examined by the
following case differentiation:

• r1 ≤/ r2: The ruling of rule2 is less restrictive or different. Independent of the
conditions, rule2 is appended to the rule difference and returned.

• Otherwise: The r2 is stricter or equal. Hence, up to two rules have to be
appended to the rule difference:

1. For queries matching guard2 but not guard1, this stricter or other ruling
is in any case new, so that a rule with these queries as guard,
conditions of c2, and ruling r2 is appended.

2. For queries also matching guard2 as guard1 (i.e. the disjunction of their
closures), the r1 is less restrictive, but a less restrictive condition c2 can
necessitate another difference rule. This new rule should only describe
the new situations, so that its condition is c2 ∧ (⌐ c1).
Example: c1=≤ 18; c2 = (≤ 18 ∨ guardianOK),
 c2 ∧ (⌐ c1) = (≤/ 18 ∧ guardianOK)

For the last case, it is essential to not only evaluate conditions but to also compare the
ability to satisfy two given conditions. It must be determined whether one rule restricts
its applicability with more strict or equivalent conditions than another rule or features a

greater application space with additional context situations. This yields in the
examination whether a condition c1 satisfies another c2, i.e. if c1 is satisfied, then c2 is
also satisfied, or if c1 results in the undefined state u, c2 is also undefined or even
satisfied. For independency of the current situation, this has to hold for all possible
variable assignments. This examination is, however, NP-complete over the number of
variables of the vocabulary considered, so that no efficient algorithm is to be expected
for the general case. Nevertheless, in order to be able to compare the conditions, the
examination is reduced to a satisfy relation similar to [BKBS04], which is at least
correct, i.e. if two conditions c1 and c2 are contained in the relation, then the above-
mentioned satisfaction holds true.

Satisfy relation: Given a conditional vocabulary Voc, the satisfy relation for Voc is the
relation → CVoc x CVoc. The relation is correct if for all conditions c1, c2 ∈ CVoc und for all
possible assignments α holds. In infix notation:
 c1 →Voc c2 :⇔ [evalα(c1) = 1 ⇒ evalα(c2) = 1] ∨
 [evalα(c1) = u ⇒ evalα(c2) = u ∨ 1]
If the opposite direction also holds, the satisfy relation is complete. A correct satisfy
relation can often be constructed via the symbolic evaluation by all pairs of atomic
formulas with known semantic satisfy dependency, but also via the comparison on a pure
syntactic level of their interpretation functions of the same sort. Such a correct satisfy
relation is mostly adequate for practical application, even if it is not complete. For if two
conditions are mutually dependent and this dependency is unknown to the users and
therefore not included in the relation, then such conditions should be independently
treated in order to meet the users' expectation. At worst, the differential result hereby
increases by an additional rule, however without changing its evaluation.

3.2 Domain layer

Based upon the language layer, the vocabulary is filled up by defining concrete instances
of assets, actuators, conditions, and obligations and by and categorizing them
accordingly on the domain layer. These specifications should always be consistent with
the current scenario and, therefore, needs to be adapted in case of environmental
changes. ExPDT uses an ontology specified in OWL-DL, as it supports not only for the
representing and displaying of the domain specific knowledge, but also for the
automated interpretation and reasoning.

Figure 6 gives an example for the data hierarchy specification. Here, a shopping list is a
subclass of the dataroot DATA. In turn, a medical prescription is a subclass of shopping
list, and its instances are dynamically assigned by a property restriction: all shopping
lists that contain at least one drug to buy are considered as prescription. Hence,
customers can formulate rules for this particular kind of shopping list and taking care not
to provide its contents to normal salespersons, but only the druggist of the shop.

Examples of obligation are given in Figure 5. The obligation "delete data after usage" is
coded as elementary obligation that, of course, is incompatible with obligation to keep
the data afterwards. Obligations used in rulings are either instances of single or multiple

elementary obligations. A condition
instance is the simple constraint
gaveConsent in Figure 4 that is
basically spanning a relation between
the sort Consent and an element of
data hierarchy. The Consent-variable
has two possible strings "no" and
"yes" that are mapped to the Boolean
values 0 and 1 for evaluation purpose
by the interpretation function.

3.3 Policy layer

On the policy layer, instances of policy can be formulized by combining the building
blocks of the domain layer glued together with the elements of the language layer.
Figure 7 shows a privacy policy containing only two rules. The first rule allows a
druggist to access a
particular prescription for
the purpose of giving
further information, e.g.
the compatibleness of
some ingredients. The
second rule allows all
persons working for sales
to read shopping lists, if
the customer has
consented, the data is
deleted afterwards and the
customer is notified about
this event. Queries for all
other situations are not
matched by the rules, but
by the restrictive default
ruling of the policy that
prohibits everything not
already covered by the

Figure 4: Example condition

<owl:Class rdf:about="DOM#OBL:Delete">
<rdfs:subClassOf rdf:resource="LANG#OBL:ELEOBLIG"/>
<owl:disjointWith>
 <owl:Class rdf:about="DOM#OBL:keep"/>
</owl:disjointWith>

</owl:Class>

<Obligation rdf:about="DOM#OBL:deleteAndNotify">

<rdfs:subClassOf rdf:resource="DOM#OBL:keep"/>
<rdfs:subClassOf rdf:resource=" DOM#OBL:notify"/>

</Obligation>

<owl:Class rdf:about="DOM#DATA:shoppingList">
<rdfs:subClassOf rdf:about="DATA"/>

</owl:Class>

<owl:Class rdf:about="DOM#DATA:Prescription">
 <rdfs:subClassOf rdf:resource="DOM#DATA:shoppingList"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="DOM#COND:contains"/>
 <owl:someValuesFrom rdf:resource="DOM#DATA:drugs"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<Prescription rdf:ID="DOM#DATA:shoppingAtDrugstore"/>

<POL:Policy rdf:ID="MyPolicy">
 <POL:PolicyHasRules>
 <rdf:Seq rdf:ID="MyPolicyRules">
 <rdf:li>
 <POL:Rule rdf:ID="Rule1">
 <POL:RuleHasUser rdf:resource="DOM#USER:druggist"/>
 <POL:RuleHasAction rdf:resource="DOM#ACTION:read"/>
 <POL:RuleHasData rdf:resource="DOM#DATA:shoppingAtDrugstore"/>
 <POL:RuleHasPurpose rdf:resource="DOM#PURP:information "/>
 <POL:RuleHasPosObligation rdf:resource="LANG#OBL:top"/>
 <POL:RuleHasNegObligation rdf:resource="LANG#OBL:top"/>
 </POL:Rule>
 </rdf:li>
 <rdf:li>
 <POL:Rule rdf:ID="Rule2">
 <POL:RuleHasUser rdf:resource="DOM#USER:sales"/>
 <POL:RuleHasAction rdf:resource="DOM#ACTION:read"/>
 <POL:RuleHasData rdf:resource="DOM#DATA:advertisment"/>
 <POL:RuleHasPurpose rdf:resource="DOM#PURP:shoppingList"/>
 <POL:RuleHasCondition rdf:resource="DOM#COND:hasConsented"/>
 <POL:RuleHasPosObligation rdf:resource="DOM#OBL:deleteAndNotify"/>
 <POL:RuleHasNegObligation rdf:resource="LANG#OBL:top"/>
 </POL:Rule>
 </rdf:li>
 </rdf:Seq>
 </POL:PolicyHasRules>
 <POL:PolicyHasPosDefaultRuling rdf:resource="LANG#OBL:bottom"/>
 <POL:PolicyHasNegDefaultRuling rdf:resource="LANG#OBL:top"/>
</POL:Policy>

<ASS:Data rdf:about="DOM#DATA:Customer">
 <ASS:gaveConsent rdf:resource="DOM#Consent:no"/>
</ASS:Data>

<CON:SimpleConstraint rdf:ID="DOM#COND:gaveConsented">
 <CON:ToHierarchy rdf:resource="LANG#DATA:DATA"/>
 <CON:TypeOf rdf:resource="DOM#COND:Consent"/>
</CON:SimpleConstraint>

<owl:Class rdf:about="DOM#Consent:Consent">
 <rdfs:subClassOf rdf:resource="LANG#COND:Interpretation"/>
</owl:Class>
<Consent:Consent rdf:about="DOM#Consent:no">
 <LANG:HasValue rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#int">0</LANG:HasValue>
</Consent:Consent>
<Consent:Consent rdf:about="DOM#Consent:yes">
 <LANG:HasValue rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#int">1</LANG:HasValue>
</Consent:Consent>

<owl:ObjectProperty rdf:about="LANGPOL#ASS:Consent">
 <rdfs:range rdf:resource="DOM#COND:Var_Consent"/>
 <rdfs:domain rdf:resource="#ASS:Data"/>
</owl:ObjectProperty>

Figure 6: Definition of guard elements

Figure 5: Definition of obligations

Figure 7: Expamle of a policy

rules. Alike the policy instance, the assignment of the conditional variables to the guard
hierarchies – customer has not given consent for actions on his data – is part of the
policy layer, but the actual variable values have to be provided by the monitor.

4 ExPDT - Query evaluation and policy enforcement at runtime

The previous section described in detail the semantic and syntactic aspects of the policy
language itself. This section focuses on how – at runtime – an incoming query is
evaluated and enforced. For example, the store’s marketing process "create personalized
advertisement" analyzes the purchases of a customer in order select special offers
according to his shopping habits. Thus, the system requests access the data of a customer
C. The access control monitor evaluates this request according to the policy rules of
customer C and of the store and, as a result, grants or denies the access to the data of
customer C.

The components of
the access control
architecture are
depicted in Figure 8 .
For evaluating the
guard, the subject,
the action and the
object are mapped to
their corresponding
hierarchy in order to
determine the

relevant policy rules. Once this is done, based on system events the monitor evaluates
the current values of the conditions. This requires an interpretation of earlier access
decisions with respect to the current access request. Finally, the monitor must enforce its
access decision.

4.1 Rule evaluation

In order to identify the relevant policy rules for a given query, the evaluation functions
checks for each rule if the rules elements user, data, action, purpose match the
corresponding element of the request. This might be an exact match or the policy's
elements are higher within the element hierarchy than the query's elements. Once a
relevant rule is detected, it is evaluated according to the evaluation function given in
section 3.1.2.2.

Figure 8: ExPDT monitor

4.2 Condition value assignment

In order to evaluate the conditions, the concrete values of the conditions have to be
known. Contextual conditions can refer either to the user, the data, the action or the
purpose. Some condition values are static. Once the value of the condition "over 18" is
true, it stays true. In contrast, the value of the condition "has agreed" has to be evaluated
at each request, as the user may in between have revoked his consent. The monitor gets
information, like the current time, on demand form the system and keeps itself track of
earlier access decisions. This allows the monitor to evaluate conditions like "read at most
twice" autonomously.

4.3 Enforcing a policy

Policies of the type [(guard)(conditions)] can be enforced by an access control monitor
[HaMS06]. Some obligations are liveness properties, as for example "customer must be
notified". This can neither be enforced, nor can violation of these obligations be
reported, as the notification may take place some time later. By adding time constraints
on these obligations, they are turned into safety-properties: "customer must be notified
within 2 days". Such obligations are in general still not enforceable by a monitor, but at
least can violations be detected if after two days no notification took place.

5 Summary and Conclusion and further steps

Motivated by an example of the retailer METRO, we show that enterprises have – beside
their internal security requirements – also to consider their customers' preferences. This
requires an expressive policy language permitting the comparison of two different
policies. We therefore present the extended privacy definition tool ExPDT for expressing
privacy preferences for access to and usage of personal data allowing also the
comparison of two policies. Further more, we show how ExPDT rules are evaluated and
how they can be enforced at runtime by a monitor.

For now, ExPDT allows to find differences between policies. How these differences can
be resolved has not been considered yet. The next step, therefore, is a negotiation
protocol. The goal is not a fully automated procedure, but a tool to assist the negotiation
process step by step. Enforcement of obligations and orders is a current open research
issue. We currently investigate how obligations can be enforced by rewriting business
process. A second approach to the enforcement of obligations uses heuristics in order to
determine at runtime process executions that will probably lead to obligation violation.

References

[Acco07] Accorsi, R.: “Automated Privacy Audits to Complement the Notion of Control for
Identity Management”. In: To appear: Policies and Research in Identity Management,
IFIP, 2007.

[AHKP03] Ashley, P.; Hada, S.; Karjoth, G.; Powers, C.; et al.: “Enterprise Privacy
Authorization Language (EPAL 1.2)”. Submission to W3C, 2003.

[BAKK05] Breaux, T. D.; Anton, A. I.; Karat, C.-M.; Karat, J.: “Enforceability vs. Accountability
in Electronic Policies”. TR-2005-47, North Carolina State University Computer
Science, 2005.

[BKBS04] Backes, M.; Karjoth, G.; Bagga, W.; Schunter, M.: “Efficient comparison of
enterprise privacy policies”. In: Proc. of 2004 ACM Symposium on Applied
Computing, pp. 375 – 382, 2004.

[Bund83] Bundesverfassungsgericht: “Volkszählungsurteil”. In: Entscheidungen des
Bundesverfassungsgerichts, vol. 65, Urteil vom 15.12.1983; Az.: 1 BvR 209/83; NJW
84, 419, 1983.

[CrLM05] Cranor, L. F.; Langheinrich, M.; Marchiori, M.: “A P3P Preference Exchange
Language 1.0 (APPEL)”. Tech. rep., W3C, 2005.

[Gall88] Gallier, J. H.: “Logic for Computer Science”. John Wiley and Sons, 1988.
[HaMS06] Halmen, K. W.; Morrisett, G.; Schneider, F. B.: “Computability Classes for

Enforcement Mechanisms”. In: ACM Transactions on Programming Languages and
Systems, vol. 28, 2006.

[HPSW06] Hilty, M.; Pretschner, A.; Schaefer, C.; Walter, T.: “Enforcement for Usage Control -
A System Model and an Obligation Language for Distributed Usage Control”.
I-ST-18, Do-CoMo Euro-Labs Internal, 2006.

[KaAc06] Kähmer, M.; Accorsi, R.: “Kundenkarten in hochdynamischen Systemen”. In: Proc. of
KiVS NETSEC´06, 2006.

[Mose04] Moses, T.: “eXtensible Access Control Markup Language (XACML) Version 2.0”.
OASIS, 2004.

[PrHB06] Pretschner, A.; Hilty, M.; Basin, D.: “Distributed Usage Control”. In:
Communications of the ACM, vol. 49(9), pp. 39–44, 2006.

[RaSt06] Raub, D.; Steinwandt, R.: “An Algebra for Enterprise Privacy Policies Closed Under
Composition and Conjunction”. In: Proc. of Int. Conf. on Emerging Trends in
Information and Communication Security (ETRICS), pp. 132 – 146, 2006.

[Raub04] Raub, D.: “Algebraische Spezifikation von Privacy Policies”. Master's thesis, Uni.
Karlsruhe, 2004.

[SaSA06] Sackmann, S.; Strücker, J.; Accorsi, R.: “Personalization in Privacy-Aware Highly
Dynamic Systems”. In: Communications of the ACM, vol. 49(9), 2006.

[W3C06] W3C: “Platform for Privacy Preferences (P3P) Project”. http://www.w3.org/P3P/,
2006.

[WKKG07] Weiß, D.; Kaack, J.; Kirn, S.; Gilliot, M.; et al.: “Die SIKOSA-Methodik:
Unterstützung der industriellen Softwareproduktion durch methodische integrierte
Softwareentwicklungsprozesse”. In: Wirtschaftsinformatik, vol. 49(3), 2007.

